From b398241434decaa5912162096e5976e800f74f4a Mon Sep 17 00:00:00 2001 From: Jerry-Jzy Date: Fri, 27 May 2022 16:39:12 -0400 Subject: [PATCH 001/170] exchange .ipynb with .py and add a demo document --- docs/demos/pinn_forward/heat.rst | 110 +++++ examples/pinn_forward/Heat.py | 121 ++++++ .../heat_conduction_1d_uniform_bar.ipynb | 397 ------------------ 3 files changed, 231 insertions(+), 397 deletions(-) create mode 100644 docs/demos/pinn_forward/heat.rst create mode 100644 examples/pinn_forward/Heat.py delete mode 100644 examples/pinn_forward/heat_conduction_1d_uniform_bar.ipynb diff --git a/docs/demos/pinn_forward/heat.rst b/docs/demos/pinn_forward/heat.rst new file mode 100644 index 000000000..f1b248e91 --- /dev/null +++ b/docs/demos/pinn_forward/heat.rst @@ -0,0 +1,110 @@ +Heat equation in 1D with Dirichilet boundary conditions and periodic(sinusoidal) initial conditions +====================================================================================================== + +Problem setup +-------------- + +We will solve a Heat equation: + +.. math:: \alpha \frac{\partial^2u}{\partial x^2}-\frac{\partial u}{\partial t} = 0, \qquad x \in [-1, 1], \quad t \in [0, 1] + +where :math:`\alpha` is the thermal diffusivity constant. + +With Dirichlet boundary conditions: + +.. math:: u(0,t) = u(1,t)=0, + +and periodic(sinusoidal) inital condition: + +.. math:: u(x,0) = \sin (\frac{n\pi x}{L}),\qquad 0