This is the repo for NCMMSC2021 competition.
Notice that the master
branch is for development, for stable release, please switch to the stable
branch.
NCMMSC2021
├─bin # Contains the runnable scripts
├─configs # Contains the configiurations
├─dataset # Contains the dataset
│ ├─merge # Concat all the audios from one person
│ │ ├─AD
│ │ ├─HC
│ │ └─MCI
│ ├─raw # Raw audios
│ │ ├─AD
│ │ ├─HC
│ │ └─MCI
│ ├─merge_vad # Perform unsupervised VAD on the separated audios and concat the results
│ │ ├─AD
│ │ ├─HC
│ │ └─MCI
│ └─raw_vad # Perform unsupervised VAD on raw audios
│ ├─AD
│ ├─HC
│ └─MCI
├─log # Contains the log files
├─model # Contains the main model
│ ├─models # Contains all the model
│ └─modules # Contains all the modules
├─weight # Contains the weight files
└─util # Contains the util files
├─log_util # Utils for log
├─tool # Useful tools for drawing and files
├─train_util # Dataloader and trainer
└─model_util # Utils for networks
There are two given tasks, predicting on 5 seconds audio and on 30 seconds audio separately
- For both, extract features (MFCC, Spectrogram and MelSpectrogram) from the audio and treat them with the Image-based Classification methods.
- LSTM is introduced into the model, however, not performing well.
- Other fusion methods like Feature Fusion are also tested but not work well in feature fusion than concat.
ID | Sample Seconds | Model | Use Feature | K-fold | Accuracy | Train Average Acc | Remark | Evaluation |
---|---|---|---|---|---|---|---|---|
20210903_230628 | 5s | SpecificTrainModel | MFCC | 4 | 75.91%,63.10%,76.21%,68.23% | 68.36% | ||
20210903_230628 | 5s | SpecificTrainModel | SPECS | 4 | 71.47%,59.78%,77.42%,62.50% | 67.79% | ||
20210903_230628 | 5s | SpecificTrainModel | MELSPEC | 4 | 71.77%,54.74%,78.73%,64.69% | 67.48% | ||
20210904_141710 | 5s | MSMJointConcatFineTuneModel | General | 4 | 75.60%,69.15%,77.22%,73.96% | 71.48% | MFCC,SPECS,MELSPEC for training | |
20210904_141710 | 5s | MSMJointConcatFineTuneModel | Fine-tune | 4 | 78.53%,68.25%,78.63%,75.00% | 75.10% | MFCC,SPECS,MELSPEC for training | |
20210904_150739 | 5s | SpecificTrainResNetModel | MELSPEC | 4 | 67.64%,70.06%,72.18%,68.23% | 69.53% | ||
20210915_093218 | 5s | CompetitionSpecificTrainVggNet19BNBackboneModel | SPEC | 4 | 70.36%,80.85%,83.67%,68.85% | 75.93% | ||
20210915_012356 | 5s | CompetitionSpecificTrainVggNet19BNBackboneModel | MFCC | 4 | 75.50%,63.41%,81.15%,74.90% | 73.74% | ||
20210914_221835 | 5s | CompetitionSpecificTrainVggNet19BNBackboneModel | MELSPEC | 4 | 79.23%,75.40%,85.69%,62.81% | 75.78% | ||
20210916_144512 | 5s | CompetitionSpecificTrainResNet18BackboneModel | MFCC | 4 | 69.96%,72.08%,76.71%,61.04% | 69.92% | ||
20210917_154750 | 5s | CompetitionSpecificTrainWideResNet | MELSPEC | 4 | 77.52%,74.80%,78.02%,55.73% | 71.51% | ||
20210917_154750 | 5s | CompetitionSpecificTrainVggNet16BNBackboneModel | MELSPEC | 4 | 76.81%,79.94%,79.64%,63.12% | 74.87% | ||
20210917_184756 | 5s | CompetitionSpecificTrainVggNet16BNBackboneModel | SPEC | 4 | 76.92%,78.63%,78.93%,61.77% | 74.06% | ||
20210917_184859 | 5s | CompetitionSpecificTrainVggNet16BNBackboneModel | MFCC | 4 | 72.48%,71.17%,80.54%,64.90% | 72.27% | ||
20210904_215820 | 25s | SpecificTrainResNetLongLSTMModel | MELSPEC | 4 | 65.32%,57.46%,65.73%,72.29% | 65.20% | Detail General | |
20210904_234029 | 25s | SpecificTrainResNetLongModel | MELSPEC | 4 | 77.62%,59.07%,64.52%,72.50% | 68.43% | Detail General | |
20210905_151007 | 25s | SpecificTrainLongLSTMModel | MELSPEC | 4 | 73.49%,61.09%,75.40%,65.10% | 68.77% | Detail General | |
20210905_130825 | 25s | SpecificTrainLongModel | MELSPEC | 4 | 78.23%,59.98%,78.63%,66.35% | 70.79% | Detail General | |
20210905_133648 | 25s | SpecificTrainLongModel | SPECS | 4 | 70.97%,58.17%,76.41%,66.88% | 68.11% | Detail General | |
20210905_133648 | 25s | SpecificTrainLongModel | MFCC | 4 | 73.19%,66.94%,76.41%,70.21% | 71.68% | Detail General | |
20210905_133648 | 25s | SpecificTrainLongModel | MELSPEC | 4 | 78.23%,59.17%,75.60%,63.75% | 68.19% | Detail General | |
20210905_133648 | 25s | MSMJointConcatFineTuneLongModel | General | 4 | 71.27%,72.38%,79.64%,72.40% | 73.92% | MFCC,SPECS,MELSPEC for training | Detail General |
20210905_133648 | 25s | MSMJointConcatFineTuneLongModel | Fine-tune | 4 | 73.29%,64.21%,79.94%,74.79% | 73.06% | MFCC,SPECS,MELSPEC for training | Detail General |
20210906_215527 | 25s | SpecificTrainLongModel | MELSPEC_VAD | 4 | 68.45%,66.13%,68.85%,73.12% | 69.14% | Detail General | |
20210906_185221 | 25s | SpecificTrainLongTransformerEncoderModel | MELSPEC | 4 | 67.94%,65.02%,74.40%,69.06% | 69.11% | Detail General | |
20210908_121607 | 25s | SpecificTrainResNet18BackboneLongModel | MELSPEC_VAD | 4 | 70.46%,65.83%,79.54%,64.79% | 73.77% | Detail General | |
20210907_230640 | 25s | MSMJointConcatFineTuneLongModel | General | 4 | 80.04%,63.61%,76.51%,74.90% | 73.92% | MFCC,SPECS,MELSPEC for training | Detail General |
20210907_230640 | 25s | MSMJointConcatFineTuneLongModel | Fine-tune | 4 | 77.42%,65.12%,76.11%,74.79% | 73.36% | MFCC,SPECS,MELSPEC for training | Detail General |
20210907_230704 | 25s | SpecificTrainLongModel | MELSPEC_VAD | 4 | 68.15%,64.01%,69.15%,70.21% | 67.88% | Detail General | |
20210907_230704 | 25s | SpecificTrainLongModel | SPECS_VAD | 4 | 70.87%,68.65%,64.82%,71.25% | 68.90% | Detail General | |
20210907_230704 | 25s | SpecificTrainLongModel | MFCC_VAD | 4 | 67.94%,63.00%,69.15%,64.27% | 66.09% | Detail General | |
20210907_230704 | 25s | MSMJointConcatFineTuneLongModel | General | 4 | 71.37%,62.50%,67.04%,64.90% | 66.45% | MFCC_VAD, SPECS_VAD and MELSPEC_VAD for training | Detail General |
20210907_230704 | 25s | MSMJointConcatFineTuneLongModel | Fine-tune | 4 | 67.04%,66.73%,69.15%,66.77% | 67.42% | MFCC_VAD, SPECS_VAD and MELSPEC_VAD for training | Detail General |
20210917_134347 | 25s | CompetitionSpecificTrainWideResNet | MELSPEC | 4 | 78.73%,74.29%,84.48%,55.10% | 73.15% |
-
20210904_215820 SpecificTrainResNetLongLSTMModel with MELSPEC
-
20210904_234029 SpecificTrainResNetLongModel with MELSPEC
-
20210905_151007 SpecificTrainLongLSTMModel with MELSPEC
-
20210905_130825 SpecificTrainLongModel with MELSPEC
-
20210905_133648 SpecificTrainLongModel with SPEC
-
20210905_133648 SpecificTrainLongModel with MFCC
-
20210905_133648 SpecificTrainLongModel with MELSPEC
-
20210905_133648 MSMJointConcatFineTuneLongModel with General
-
20210905_133648 MSMJointConcatFineTuneLongModel with Fine-tune
-
20210906_215527 SpecificTrainLongModel with MelSpectrogram_VAD
-
20210906_185221 SpecificTrainLongTransformerEncoderModel with MELSPEC
-
20210908_121607 SpecificTrainResNet18BackboneLongModel with MELSPEC_VAD
-
20210907_230640 MSMJointConcatFineTuneLongModel with General
-
20210907_230640 MSMJointConcatFineTuneLongModel with Fine-tune
-
20210907_230704 SpecificTrainLongModel with MELSPEC_VAD
-
20210907_230704 SpecificTrainLongModel with SPECS_VAD
-
20210907_230704 SpecificTrainLongModel with MFCC_VAD
-
20210907_230704 MSMJointConcatFineTuneLongModel with General VAD
-
20210907_230704 MSMJointConcatFineTuneLongModel with Fine tune VAD
-
20210904_215820 SpecificTrainResNetLongLSTMModel with MELSPEC
-
20210904_234029 SpecificTrainResNetLongModel with MELSPEC
-
20210905_151007 SpecificTrainLongLSTMModel with MELSPEC
-
20210905_130825 SpecificTrainLongModel with MELSPEC
-
20210905_133648 SpecificTrainLongModel with SPEC
-
20210905_133648 SpecificTrainLongModel with MFCC
-
20210905_133648 SpecificTrainLongModel with MELSPEC
-
20210905_133648 MSMJointConcatFineTuneLongModel with General
-
20210905_133648 MSMJointConcatFineTuneLongModel with Fine-tune
-
20210906_215527 SpecificTrainLongModel with MelSpectrogram_VAD
-
20210906_185221 SpecificTrainLongTransformerEncoderModel with MELSPEC
-
20210908_121607 SpecificTrainResNet18BackboneLongModel with MELSPEC_VAD
-
20210907_230640 MSMJointConcatFineTuneLongModel with General
-
20210907_230640 MSMJointConcatFineTuneLongModel with Fine-tune
-
20210907_230704 SpecificTrainLongModel with MELSPEC_VAD
-
20210907_230704 SpecificTrainLongModel with SPECS_VAD
-
20210907_230704 SpecificTrainLongModel with MFCC_VAD
-
20210907_230704 MSMJointConcatFineTuneLongModel with Gereral VAD
-
20210907_230704 MSMJointConcatFineTuneLongModel with Fine tune VAD