By Parth Mistry
Python Version: 3.7
Packages: pandas, numpy, sklearn, matplotlib, seaborn, selenium, flask, json, pickle
For Web Framework Requirements: pip install -r requirements.txt
Scraper Github: https://github.com/arapfaik/scraping-glassdoor-selenium
Scraper Article: https://towardsdatascience.com/selenium-tutorial-scraping-glassdoor-com-in-10-minutes-3d0915c6d905
Flask Productionization: https://towardsdatascience.com/productionize-a-machine-learning-model-with-flask-and-heroku-8201260503d2
Part 1:Data Preprocessing
Part 2:Regression
•Simple Linear Regression
•Multiple Linear Regression
•Polynomial Regression
•Support Vector Regression(SVR)
•Decision Tree Regression
•Random Forest Regression
•Evaluating Regression Models Performance
Part 3:Classification
•Logistic Regression
•K-Nearest Neighbors (K-NN)
•Support Vector Machine (SVM)
•Kernel SVM
•Naive Bayes
•Decision Tree Classification
•Random Forest Classification
•Evaluating Classification Models Performance
Part 4:Clustering
•K-Means Clustering
•Hierarchical Clustering
Part 5:Association Rule Learning
•Apriori
Part 6:Reinforcement Learning
•Upper Confidence Bound (UCB)
•Thompson Sampling
Part 7:Natural Language Processing
Part 8:Deep Learning
•Artificial Neural Networks
•Convolutional Neural Networks
•Transfer Learning
Part 9:Dimensionality Reduction
•Principal Component Analysis (PCA)
•Linear Discriminant Analysis (LDA)
•Kernel PCA
Part 10:Model Selection & Boosting
•Model Selection
•XGBoost