-
Notifications
You must be signed in to change notification settings - Fork 0
/
maxwell_dist_handout.tex
673 lines (628 loc) · 41.2 KB
/
maxwell_dist_handout.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
\documentclass[a4paper, 12pt]{article}
\usepackage{maxwell}
\usepackage{tcolorbox}
\title{Maxwell's Distribution for Physics Olympiads}
\author{Murad Bashirov}
\date{}
\begin{document}
\begin{titlepage}
\maketitle
\abstract{We will talk about the probability theorem and learn about the Maxwell's distribution, and solve some problems on it.}
\tableofcontents
\thispagestyle{empty}
\end{titlepage}
\section{Introduction}
\subsection{Information about Probability}
Assume that we have a system having a really large number of particles.
Also assume that our particles are characterized by some quantity, which can only have discrete values:
$$\u_1,\u_2,\ldots,\u_n$$
Let us make a very large number of measurements ($N$) of the quantity $\u$, bringing the system before
each measurement to the same initial state. Instead of performing repeated measurements of the
same system, we can take $N$ identical systems in the same state and measure the quantity
$\u$ once in all these systems. Such a set of identical systems in an identical state is called a
\emph{statistical ensemble}.
Let $N_1$ be the measurements that give result $\u_1$ and like so, $N_i$ will be measurements for $x_i$.
This is obvious that $\sum N_i = N$ which is total number of systems that ensemble. So the quantity $\frac{N_i}{N}$ called
\emph{relative frequency} which shows appearence of resuly $\u_i$, and if we take the so big amount of ensemble systems
that ratio will give us \textbf{probability of appearance} of the result: $$P_i=\lim_{N\to\infty}\frac{N_i}{N}$$
And from here if we take sum of both sides:$$\sum P_i =\sum \lim_{N\to\infty}\frac{N_i}{N}=1$$
since $\sum N_i =N$. With this definition we can also get the information about probability of being in two different quantity, namely:
$$P_{i\text{ or }k}=\frac{N_i+N_k}{N}=P_i+P_k$$
Furthermore assume that particles not only defined by $\u_i$ also there is another quantity $\veps$ also characterizes the particles.
Lets find the $P(\u_i,\veps_k )$ by the definition $N(\u_i)=P(\u_i)N$ also $\veps$ does not depend on $\u$ so:
$$N(\u_i,\veps_k)=N(\u_i)P(\veps_k)=P(\u_i)NP(\veps_k)$$
So \begin{equation} \label{eq:multiply}
P(\u_i,\veps_k )=P(\u_i)P(\veps_k)
\end{equation}
We can also find the mean value of some quantity $\u$ with knowing $P(\u)$:
$$\langle \u \rangle =\frac{\sum N_i \u_i}{N}=\sum P(\u_i) \u_i$$
\newpage
\subsection{Probability distribution function}
Let us go further and say that our quantity is not discrete. Here is diagram for simplifying:
% Pattern Info
\tikzset{
pattern size/.store in=\mcSize,
pattern size = 5pt,
pattern thickness/.store in=\mcThickness,
pattern thickness = 0.3pt,
pattern radius/.store in=\mcRadius,
pattern radius = 1pt}
\makeatletter
\pgfutil@ifundefined{pgf@pattern@name@_r6fzum5wv}{
\pgfdeclarepatternformonly[\mcThickness,\mcSize]{_r6fzum5wv}
{\pgfqpoint{0pt}{0pt}}
{\pgfpoint{\mcSize+\mcThickness}{\mcSize+\mcThickness}}
{\pgfpoint{\mcSize}{\mcSize}}
{
\pgfsetcolor{\tikz@pattern@color}
\pgfsetlinewidth{\mcThickness}
\pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
\pgfpathlineto{\pgfpoint{\mcSize+\mcThickness}{\mcSize+\mcThickness}}
\pgfusepath{stroke}
}}
\makeatother
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{figure}[h!]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,308); %set diagram left start at 0, and has height of 308
%Shape: Rectangle [id:dp8320684478804092]
\draw (168.83,113.33) -- (183.33,113.33) -- (183.33,181) -- (168.83,181) -- cycle ;
%Shape: Rectangle [id:dp46313903260005507]
\draw (183.33,104.67) -- (198.86,104.67) -- (198.86,181) -- (183.33,181) -- cycle ;
%Shape: Rectangle [id:dp637544228474491]
\draw (199,90) -- (213.36,90) -- (213.36,181) -- (199,181) -- cycle ;
%Shape: Rectangle [id:dp9111653973633418]
\draw (154.33,137) -- (168,137) -- (168,181) -- (154.33,181) -- cycle ;
%Shape: Rectangle [id:dp48371722593765853]
\draw (139.83,154) -- (155,154) -- (155,181) -- (139.83,181) -- cycle ;
%Shape: Rectangle [id:dp6712731805880472]
\draw (125.33,167) -- (140,167) -- (140,181) -- (125.33,181) -- cycle ;
%Curve Lines [id:da8724153525294642]
\draw [dash pattern={on 4.5pt off 4.5pt}] (99,181) .. controls (119.71,188.35) and (170,128.67) .. (209,84.67) .. controls (248,40.67) and (332,134) .. (374,155.67) .. controls (416,177.33) and (432,178.67) .. (516,182.67) ;
%Straight Lines [id:da6621967085481852]
\draw (99,181) -- (513,182.65) ;
\draw [shift={(516,182.67)}, rotate = 180.23] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Rectangle [id:dp38156457938657495]
\draw (214,76) -- (227.71,76) -- (227.71,181) -- (214,181) -- cycle ;
%Shape: Rectangle [id:dp5491197776137533]
\draw (227.71,74) -- (242.07,74) -- (242.07,181) -- (227.71,181) -- cycle ;
%Shape: Rectangle [id:dp03637882257480052]
\draw (242.07,76) -- (256.43,76) -- (256.43,181) -- (242.07,181) -- cycle ;
%Shape: Rectangle [id:dp4132386305863096]
\draw [pattern=_r6fzum5wv,pattern size=6pt,pattern thickness=0.75pt,pattern radius=0pt, pattern color={rgb, 255:red, 0; green, 0; blue, 0}] (257,81.67) -- (270.79,81.67) -- (270.79,181) -- (257,181) -- cycle ;
%Shape: Rectangle [id:dp026924080774506365]
\draw (270.79,88.67) -- (285.93,88.67) -- (285.93,181) -- (270.79,181) -- cycle ;
%Shape: Rectangle [id:dp8626972827619077]
\draw (286,96.67) -- (300.29,96.67) -- (300.29,181) -- (286,181) -- cycle ;
%Shape: Rectangle [id:dp8897832831477368]
\draw (300,108.67) -- (314.64,108.67) -- (314.64,181) -- (300,181) -- cycle ;
%Shape: Rectangle [id:dp9181809288915517]
\draw (315,118.67) -- (329,118.67) -- (329,181) -- (315,181) -- cycle ;
%Straight Lines [id:da2905135378118493]
\draw (262,111.67) -- (292,62.67) ;
% Text Node
\draw (270.97,50.96) node [anchor=north west][inner sep=0.75pt] [rotate=-337.72] {$\text{Area}$};
% Text Node
\draw (297.67,40.44) node [anchor=north west][inner sep=0.75pt] [rotate=-337.7] {$\ =\Delta P$};
% Text Node
\draw (244.07,187.4) node [anchor=north west][inner sep=0.75pt] {$\u$};
% Text Node
\draw (272.79,184.4) node [anchor=north west][inner sep=0.75pt] {$\u+\Delta \u$};
\end{tikzpicture}
\caption{Visualation with histogram}
\end{figure}
% Pattern Info
\tikzset{
pattern size/.store in=\mcSize,
pattern size = 5pt,
pattern thickness/.store in=\mcThickness,
pattern thickness = 0.3pt,
pattern radius/.store in=\mcRadius,
pattern radius = 1pt}
\makeatletter
\pgfutil@ifundefined{pgf@pattern@name@_1gqfwhjel}{
\pgfdeclarepatternformonly[\mcThickness,\mcSize]{_1gqfwhjel}
{\pgfqpoint{0pt}{0pt}}
{\pgfpoint{\mcSize+\mcThickness}{\mcSize+\mcThickness}}
{\pgfpoint{\mcSize}{\mcSize}}
{
\pgfsetcolor{\tikz@pattern@color}
\pgfsetlinewidth{\mcThickness}
\pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
\pgfpathlineto{\pgfpoint{\mcSize+\mcThickness}{\mcSize+\mcThickness}}
\pgfusepath{stroke}
}}
\makeatother
% Pattern Info
\tikzset{
pattern size/.store in=\mcSize,
pattern size = 5pt,
pattern thickness/.store in=\mcThickness,
pattern thickness = 0.3pt,
pattern radius/.store in=\mcRadius,
pattern radius = 1pt}
\makeatletter
\pgfutil@ifundefined{pgf@pattern@name@_w31vr5buc}{
\pgfdeclarepatternformonly[\mcThickness,\mcSize]{_w31vr5buc}
{\pgfqpoint{0pt}{0pt}}
{\pgfpoint{\mcSize+\mcThickness}{\mcSize+\mcThickness}}
{\pgfpoint{\mcSize}{\mcSize}}
{
\pgfsetcolor{\tikz@pattern@color}
\pgfsetlinewidth{\mcThickness}
\pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
\pgfpathlineto{\pgfpoint{\mcSize+\mcThickness}{\mcSize+\mcThickness}}
\pgfusepath{stroke}
}}
\makeatother
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{figure}[h!]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,308); %set diagram left start at 0, and has height of 308
%Curve Lines [id:da8724153525294642]
\draw (99,181) .. controls (119.71,188.35) and (169.67,130) .. (209,84.67) .. controls (248.33,39.33) and (332,134) .. (374,155.67) .. controls (416,177.33) and (432,178.67) .. (516,182.67) ;
%Straight Lines [id:da6621967085481852]
\draw (99,181) -- (513,182.65) ;
\draw [shift={(516,182.67)}, rotate = 180.23] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da18418346383431583]
\draw (99,181) -- (99,27.5) ;
\draw [shift={(99,24.5)}, rotate = 450] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Rectangle [id:dp6073214185474616]
\draw [color={rgb, 255:red, 0; green, 0; blue, 0 } ,draw opacity=1 ][pattern=_1gqfwhjel,pattern size=6pt,pattern thickness=0.75pt,pattern radius=0pt, pattern color={rgb, 255:red, 0; green, 0; blue, 0}] (263,84) -- (263,181.57) -- (272,181.57) --(272,84);
%Shape: Right Triangle [id:dp6223355704316667]
\draw [color={rgb, 255:red, 0; green, 0; blue, 0 } ,draw opacity=1 ][pattern=_w31vr5buc,pattern size=6pt,pattern thickness=0.75pt,pattern radius=0pt, pattern color={rgb, 255:red, 0; green, 0; blue, 0}] (272,84) -- (263,79.33) -- (263,84);
%straight line
\draw (265,111.67) -- (292,62.67) ;
% Text Node
\draw (270.97,50.96) node [anchor=north west][inner sep=0.75pt] [rotate=-337.72] {$\text{Area}$};
% Text Node
\draw (297.67,40.44) node [anchor=north west][inner sep=0.75pt] [rotate=-337.7] {$\ =\mathrm{d} P$};
% Text Node
\draw (249,188.4) node [anchor=north west][inner sep=0.75pt] {$\u$};
% Text Node
\draw (272.79,184.4) node [anchor=north west][inner sep=0.75pt] {$\u+\mathrm{d} \u$};
%Text Node
\draw (65, 30) node [anchor=north west][inner sep=0.75pt] {$f(\u)$};
\end{tikzpicture}
\caption{Visualation with graph}
\end{figure}
The histogram characterizes graphically the probability of obtaining
results of measurements confined within different intervals of width $\Delta \u$. If we take the limit $\Delta \u \to 0$ we will
get those histogram transforms to smooth curve.The function $f(\u)$ defining this curve
analytically is called a \emph{probability distribution function}.
In accordance with the procedure followed in plotting the distribution
curve, the area of the bar of width $\dd \u$ equals the probability of the fact that the result of a
measurement will be within the range from $\u$ to $u + \dd\u$. Denoting this probability by $\dd P$
we can write that $$\dd P(\u) = f(\u)\dd\u$$
So integrating both sides we see that $$\int f(\u)\dd\u=1$$ Knowing the $f(\u)$ we can find the mean values:
$$\langle \u \rangle=\int \u \dd P=\int \u f(\u)\dd\u$$ Or with the similar method we can find mean value of any function $g(\u)$
$$\langle g(\u)\rangle =\int g(\u)f(\u)\dd u$$
\section{The Maxwell's Distribution}\label{sec:maxwell}
\subsection{Proving the Maxwell's Distribution}
We shall use the following procedure to find a way of quantitatively describing the distribution of
molecules by velocity magnitudes. Let us take Cartesian coordinate axes in an imaginary space which
we shall call $v$-space (velocity space). We shall lay off the values of $v_x, v_y, v_z$ of individual
molecules along these axes (what we have in view are the velocity components along the axes $x, y, z$ taken
in conventional space). Hence, a point in this $v$-space will correspond to the velocity of each molecule.
Owing to collisions, the positions of the points will continuously change, but their density at each
place will remain unchanged (we are dealing with equlibrium state).
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{figure}[h!]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,308); %set diagram left start at 0, and has height of 308
%Straight Lines [id:da49644144765049947]
\draw (330.98,60.5) -- (330,255.5) ;
\draw [shift={(331,57.5)}, rotate = 90.29] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da4067851869894472]
\draw (227.75,157.5) -- (430.25,155.53) ;
\draw [shift={(433.25,155.5)}, rotate = 539.44] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da17969570301166127]
\draw (257.96,214.75) -- (405.38,96.38) ;
\draw [shift={(255.63,216.63)}, rotate = 321.24] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Circle [id:dp2978843034346139]
\draw (276.75,156.5) .. controls (276.75,126.81) and (300.81,102.75) .. (330.5,102.75) .. controls (360.19,102.75) and (384.25,126.81) .. (384.25,156.5) .. controls (384.25,186.19) and (360.19,210.25) .. (330.5,210.25) .. controls (300.81,210.25) and (276.75,186.19) .. (276.75,156.5) -- cycle ;
%Shape: Circle [id:dp5964721573198295]
\draw (270.94,156.5) .. controls (270.94,123.6) and (297.6,96.94) .. (330.5,96.94) .. controls (363.4,96.94) and (390.06,123.6) .. (390.06,156.5) .. controls (390.06,189.4) and (363.4,216.06) .. (330.5,216.06) .. controls (297.6,216.06) and (270.94,189.4) .. (270.94,156.5) -- cycle ;
%Straight Lines [id:da45406047896510526]
\draw (330.5,156.5) -- (302.81,124.39) -- (297.31,118.01) ;
\draw [shift={(296,116.5)}, rotate = 409.22] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da2439720548719735]
\draw (276,93.5) -- (290.67,110.01) ;
\draw [shift={(292,111.5)}, rotate = 228.37] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Shape: Circle [id:dp40423032474491927]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (343,133) .. controls (343,131.62) and (344.12,130.5) .. (345.5,130.5) .. controls (346.88,130.5) and (348,131.62) .. (348,133) .. controls (348,134.38) and (346.88,135.5) .. (345.5,135.5) .. controls (344.12,135.5) and (343,134.38) .. (343,133) -- cycle ;
%Shape: Circle [id:dp9303065616806931]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (301,147) .. controls (301,145.62) and (302.12,144.5) .. (303.5,144.5) .. controls (304.88,144.5) and (306,145.62) .. (306,147) .. controls (306,148.38) and (304.88,149.5) .. (303.5,149.5) .. controls (302.12,149.5) and (301,148.38) .. (301,147) -- cycle ;
%Shape: Circle [id:dp4846243689306988]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (299,162.5) .. controls (299,161.4) and (299.9,160.5) .. (301,160.5) .. controls (302.1,160.5) and (303,161.4) .. (303,162.5) .. controls (303,163.6) and (302.1,164.5) .. (301,164.5) .. controls (299.9,164.5) and (299,163.6) .. (299,162.5) -- cycle ;
%Shape: Circle [id:dp6466212282995909]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (353,179) .. controls (353,177.62) and (354.12,176.5) .. (355.5,176.5) .. controls (356.88,176.5) and (358,177.62) .. (358,179) .. controls (358,180.38) and (356.88,181.5) .. (355.5,181.5) .. controls (354.12,181.5) and (353,180.38) .. (353,179) -- cycle ;
%Shape: Circle [id:dp8971905699129288]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (314,191) .. controls (314,189.62) and (315.12,188.5) .. (316.5,188.5) .. controls (317.88,188.5) and (319,189.62) .. (319,191) .. controls (319,192.38) and (317.88,193.5) .. (316.5,193.5) .. controls (315.12,193.5) and (314,192.38) .. (314,191) -- cycle ;
%Shape: Circle [id:dp1504932565119863]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (341,92) .. controls (341,90.62) and (342.12,89.5) .. (343.5,89.5) .. controls (344.88,89.5) and (346,90.62) .. (346,92) .. controls (346,93.38) and (344.88,94.5) .. (343.5,94.5) .. controls (342.12,94.5) and (341,93.38) .. (341,92) -- cycle ;
%Shape: Circle [id:dp5069336937258984]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (262,138) .. controls (262,136.62) and (263.12,135.5) .. (264.5,135.5) .. controls (265.88,135.5) and (267,136.62) .. (267,138) .. controls (267,139.38) and (265.88,140.5) .. (264.5,140.5) .. controls (263.12,140.5) and (262,139.38) .. (262,138) -- cycle ;
%Shape: Circle [id:dp11972303219299696]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (350,209) .. controls (350,207.62) and (351.12,206.5) .. (352.5,206.5) .. controls (353.88,206.5) and (355,207.62) .. (355,209) .. controls (355,210.38) and (353.88,211.5) .. (352.5,211.5) .. controls (351.12,211.5) and (350,210.38) .. (350,209) -- cycle ;
%Shape: Circle [id:dp20783273065922692]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (367,147) .. controls (367,145.62) and (368.12,144.5) .. (369.5,144.5) .. controls (370.88,144.5) and (372,145.62) .. (372,147) .. controls (372,148.38) and (370.88,149.5) .. (369.5,149.5) .. controls (368.12,149.5) and (367,148.38) .. (367,147) -- cycle ;
% Text Node
\draw (289,123.9) node [anchor=north west][inner sep=0.75pt] {$v$};
% Text Node
\draw (257,97.9) node [anchor=north west][inner sep=0.75pt] {$\mathrm{d} v$};
% Text Node
\draw (402,160.9) node [anchor=north west][inner sep=0.75pt] {$v_{x}$};
% Text Node
\draw (308,67.9) node [anchor=north west][inner sep=0.75pt] {$v_{y}$};
% Text Node
\draw (274,212.9) node [anchor=north west][inner sep=0.75pt] {$v_{z}$};
\end{tikzpicture}
\caption{$v$-space}
\end{figure}
Owing to all the directions of motion having equal rights, the arrangement of the points relative to the
origin of coordinates will be spherically symmetrical. Hence, the density of the points in
our $v$-space can depend only on the magnitude of the velocity $v$. Let us denote this density by
$Nf(v)$ (here $N$ is the total number of molecules in the given mass of gas). Hence, the number of
molecules whose velocity components are within the limits from $v_x \text{ to } v_x + \dd v_x$, from
$v_y \text{ to } v_y +\dd v_y$ , and from $v_z \text{ to } v_z + \dd v_z$ can be written in the form
\begin{equation} \label{eq:probvxvyvz}
\dd N_{v_x,v_y,v_z} =Nf(v)\dd v_x\dd v_y\dd v_z
\end{equation}
The product of three small changes gives ann element of volume in $v$-space.
So from the volume of the element in $v$-space the equation simplifies:
\begin{equation}
\label{eq:main}
\dd N_v=Nf(v)4\pi v^2\dd v
\end{equation}
the probability of the velocity component $v_x$ of a molecule having a value within the limits from $v_x \text{ to }
v_x + \dd v_x$ can be written in the form
$$\dd P_{v_x} = \phi(v_x) \dd v_x$$ where $\phi$ is distribution function. For the other components the equations will
symmetrical. So by the equation \ref{eq:multiply}: $$\dd P_{v_x,v_y,v_z}=\phi(v_x)\phi(v_y)\phi(v_z)\dd v_x\dd v_y\dd v_z$$
Also taking into account equation \ref{eq:probvxvyvz} we get that:
\begin{equation} \label{eq:fvvxvyvz}
f(v)=\phi(v_x)\phi(v_y)\phi(v_z)
\end{equation} So if we take logarithm both sides :$$\ln f(v)=\ln \phi(v_x)+\ln \phi(v_y)+\ln\phi(v_z)
$$ differentiating this equation with respect to $v_x$:
\begin{equation} \label{eq:parderf}
\frac{f'(v)}{f(v)}\pdv{v}{v_x}=\frac{\phi'(v_x)}{\phi(v_x)}
\end{equation}
Since $v=\sqrt{v_x^2+v_y^2+v_z^2}$ we can take partial derivative
$$\pdv{v}{v_x}=\frac{v_x}{\sqrt{v_x^2+v_y^2+v_z^2}}=\frac{v_x}{v}$$
Plugging this in equation \ref{eq:parderf}:
$$\frac{f'(v)}{f(v)}\frac{1}{v}=\frac{\phi'(v_x)}{\phi(v_x)}\frac{1}{v_x}$$
Since right hand side is not dependent on $v_y$ and $v_z$(also left hand side too, it is an equality). Consequently it cannot depend on $v_x$ too
because they are symmetrical in definition of $f(v)$, namely equation \ref{eq:fvvxvyvz}.So that equation is equal to constant.
Let that constant be $-\alpha$(why negative, it can be positive but at the end you will see it becames negative)
So: $$\frac{\phi'(v_x)}{\phi(v_x)}=-\alpha v_x$$ Integrating both sides: $$\phi(v_x))=C\exp(-\frac{\alpha v_x^2}{2})$$
For $v_y$ and $v_z$ equations will be symmetrical. Thus by the equation \ref{eq:fvvxvyvz}:
$$f(v)=C^3\exp(-\frac{\alpha(v_x^2+v_y^2+v_z^2)}{2})=C^3e^{-\frac{\alpha v^2}{2}}$$
We can find constant $C$ from normalization of $\phi$(note that $v_x$ can be any real number):
\begin{equation}\label{eq:normal}
C\int_{-\infty}^\infty \exp(-\frac{\alpha v_x^2}{2})\dd v_x=1
\end{equation}
We can substitute new variable and change this to Gaussian integral. So at the end we get $$C=\sqrt{\frac{\alpha}{2\pi}}$$
So our distribution functions:
\begin{align}
\label{eq:compphi}
\phi(v_x)&=\sqrt{\frac{\alpha}{2\pi}}\exp(-\frac{\alpha v_x^2}{2}) \\
\label{eq:compf}
f(v)&=\qty(\frac{\alpha}{2\pi})^{3/2}\exp(-\frac{\alpha v^2}{2})
\end{align}
To find constant $\alpha$ we will calculate the value of $\langle v_x^2\rangle$ with using equation \ref{eq:compphi} and knowing that
it's equal to $\frac{kT}{m}$ according to \textbf{Lemma} \ref{lem:1}. So:
\begin{equation}\label{eq:normalvx}
\langle v_x^2\rangle=\int_{-\infty}^\infty v_x^2\phi(v_x)\dd v_x=\sqrt{\frac{\alpha}{2\pi}}\int_{-\infty}^\infty v_x^2\exp(-\frac{\alpha v_x^2}{2})\dd v_x
\end{equation}
And this can be done with integration by parts and Gaussian integral. So overall we get:
$$\langle v_x^2\rangle=\frac{1}{\alpha}\implies\alpha=\frac{m}{kT}$$
So finally we show that $$f(v)=\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})$$
But if we want to find the actual probability distribution function, we have to multiply it by $4\pi v^2$ because of equation \ref{eq:main}
So overall:
\\
\hskip 2in \boxed{$$F(v)=4\pi v^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})$$}\hfill $\blacksquare$
\begin{lemma}\label{lem:1}
In the ideal gases the mean square of the one of the components of the velocity is equals to $\frac{kT}{m}$
\end{lemma}
\begin{proof}
We need to relate pressure to energy so that we can get equation for root mean square
velocity. Consider this scenario
\begin{figure}[h!]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
\coordinate (O) at (200,100);
\draw (200,50) -- (200,150);
\draw[->] (150,140) -- (200,100);
\draw[->] (200,100) -- (150,60);
\draw[dashed] (130,100) -- (200,100);
\draw[->] (200,100) -- (235,100) node[above]{$p$};
\draw (176.58,81.26) arc (218.66:141.3402:30);
\draw (175,95) node[anchor=south east]{$\theta$};
\draw (175,105) node[anchor=north east]{$\theta$};
\end{tikzpicture}
\caption{Molecule collides with the wall}
\label{fig:elasticcol}
\end{figure}
So the momentum change is $$\dd p=2mv\cos\theta \dd n=\dd N\frac{\dd \Omega}{4\pi}\frac{2mv^2\cos^2\theta\Delta S\Delta t}{V}$$
If we substitute formula for $\dd \Omega$ and integrate it we get $$\dd p=\dd N\frac{2mv^2 \Delta S\Delta t}{2\pi V}\underbrace{\int_0^{\pi/2}\cos^2\theta\sin\theta\dd\theta}_{1/3} \underbrace{\int_0^{2\pi}\dd \phi}_{2\pi}$$
So overall $$\dd p=\dd N \frac{mv^2 \Delta S\Delta t}{3V}$$Once again integrating this expression we get total momentum change in area $\Delta S$ with time $\Delta t$
$$\Delta p=\frac{m\Delta S\Delta t}{3V}\int_{0}^{\infty}v^2\dd N$$
The expression $\frac{1}{N}\int_{0}^{\infty}v^2\dd N$ is the mean value of square velocity. So substituting this yields
$$\Delta p=\frac{m\Delta S\Delta t}{3V}N\langle v^2\rangle=\frac{1}{3}nm\langle v^2\rangle\Delta S\Delta t$$
where $n$ is molecules per volume. This is momentum change. So if we divide it by $\Delta t$ we will get force, and again dividing by $\Delta S$ we will get the pressure.So
$$P = \frac{1}{3}nm\langle v^2\rangle=\frac{2}{3}n\left<\frac{mv^2}{2}\right>=\frac{2}{3}m\langle \veps \rangle$$
And if we compare this result with the ideal gas law we can see that $$\langle \veps \rangle=\frac{3}{2}kT$$
And by the definition of kinetic energy $$\langle v^2\rangle=\frac{3kT}{m}$$ Also the velocity has components: $\langle v^2\rangle = \langle v_x^2\rangle+\langle v_y^2\rangle+\langle v_z^2\rangle$
. In this equation all three components has equal rights, so they have to be equal. Overall we get that $$\langle v_x^2\rangle=\frac{kT}{m}$$
\end{proof}
\subsection{Applying Maxwell's Distribution}
We have the probability distribution function, so we can find some values like mean velocity or most probable velocity.\\
For finding mean velocity $\langle v\rangle$ we need to integrate:
\begin{equation}\label{eq:meanv}
\int_0^\infty v^2F(v)\dd v=4\pi \qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\int_0^\infty\exp(-\frac{mv^2}{2kT})v^3\dd v
\end{equation}
So we can integrate this with substitution and integration by parts.We get:
$$\langle v\rangle=\sqrt{\frac{8kT}{\pi m}}$$
With the same method we can also find $\langle v^2 \rangle$. So integrating:
$$\langle v^2 \rangle=\int_0^\infty v^2 F(v)\dd v=\frac{3kT}{m}$$
And the root of this velocity is called root mean square velocity:$$v_{rms}=\sqrt{\frac{3kT}{m}}$$
For the most probable velocity we need to find the maximum of the $F(v)$, which can be found by taking derivative and setting equal to zero:
$$\exp(-\frac{mv^2}{2kT})\qty(2-\frac{mv^2}{kT})=0$$ From here it is obvious that $$v_{mp}=\sqrt{\frac{2kT}{m}}$$
\newpage
\subsection{Maxwell's Distribution in spherical coordinates}
We can even go further and write Maxwell's distribution not only for a sphere shell but also a tiny element on the system. It is more convenient to use
spherical coordinates in our $v$-space. Changing from cartesian to spherical:
\tdplotsetmaincoords{60}{110}
%
\pgfmathsetmacro{\rvec}{.8}
\pgfmathsetmacro{\thetavec}{30}
\pgfmathsetmacro{\phivec}{60}
%
\begin{figure}[h!]
\centering
\begin{tikzpicture}[scale=5,tdplot_main_coords]
\coordinate (O) at (0,0,0);
\draw[thick,->] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
\draw[thick,->] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
\draw[thick,->] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
\tdplotsetcoord{P}{\rvec}{\thetavec}{\phivec}
\draw[color=red,->] (O) -- (P) node[above right] {$P$};
\node (r) at (0.125,0.21651,0.5){$r$};
\draw[dashed, color=red] (O) -- (Pxy);
\draw[dashed] (P) -- (Pxy);
\draw[dashed] (Pxy) -- (Px) node[left]{$x_P$};
\draw[dashed] (Pxy) -- (Py) node[above right]{$y_P$};
\draw[dashed] (P) -- (Pz) node[above left]{$z_P$};
\tdplotdrawarc{(O)}{0.2}{0}{\phivec}{anchor=north}{$\varphi$}
\tdplotsetthetaplanecoords{\phivec}
\tdplotdrawarc[tdplot_rotated_coords]{(0,0,0)}{0.2}{0}%
{\thetavec}{anchor=south}{$\theta$}
\end{tikzpicture}
\caption{Spherical coordinate system}
\end{figure}
The little volume in the cartesian coordinates is $\dd V=\dd x\dd y\dd z$ But we want to simplify things so from basic
trigonometry it is obvious that $$x_P r\sin\theta\cos\varphi\quad y_P=r\sin\theta\sin\varphi\quad z_P=r\cos\theta$$
So tiny volume in the spherical coordinates is $$\dd V=r^2\sin\theta\dd\theta\dd r\dd\varphi$$
So Maxwell's distribution changes into(in our $v$-space $r=v$):
$$f(v)=v^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})\sin\theta\dd\theta\dd\varphi$$
So we can use this when averaging things, due to coordinates.
\newpage
\section{Problems}
\subsection{Easy problems}
\begin{problem}
Do the integrals provided in Section~\ref{sec:maxwell}.
\end{problem}
From now on, you can use following integrals:
\begin{align}
\label{eq:int0}
I_0=\int_0^\infty e^{-ax^2}=\frac12\sqrt{\frac{\pi}{a}}\\
\label{eq:int1}
I_1=\int_0^\infty xe^{-ax^2}=\frac{1}{2a}\\
\label{eq:int2}
I_2=\int_0^\infty x^2e^{-ax^2}=\frac{1}{4}\sqrt{\frac{\pi}{a^3}}\\
\label{eq:int3}
I_3=\int_0^\infty x^3e^{-ax^2}=\frac{1}{2a^2}\\
\label{eq:int4}
I_4=\int_0^\infty x^4e^{-ax^2}=\frac{3}{8}\sqrt{\frac{\pi}{a^5}}\\
\label{eq:int5}
I_5=\int_0^\infty x^5e^{-ax^2}=\frac{1}{a^3}
\end{align}
\begin{problem}
Show that for any ideal gas the product of mean velocity and the mean inverse velocity is:
$$\langle v\rangle\left<\frac{1}{v}\right> =\frac{4}{\pi}$$
\end{problem}
\begin{problem}
If the formula for Maxwell's distribution in terms of kinetic energy $E$ is given as:
$$F(E)\dd E = a E^{b}\exp(-\frac{E}{kT})\dd E$$ Find the constants $a$ and $b$.
\end{problem}
\begin{problem}
We can also define the distribution in terms of the De-Broglie wavelength:
$$\lambda=\frac{h}{mv}$$
where $h$ is Planck constant. Suppose that it is given as
$$F(\lambda)\dd\lambda=a\lambda^{-b}\exp(-\frac{c}{\lambda^2})\dd \lambda$$
then find constants $a$, $b$ and $c$.
\end{problem}
\subsection{Intermediate problems}
\begin{problem}
One mole of ideal gas kept in the vessel. Temperature of the gas is kept constant equal to $T$.
Gas concentration in the vessel is $n$. Estimate the number of molecules $N_c$ colliging with the flat wall of
container per unit area $S$ during period of time $\Delta t$.
\\
\emph{Hint: First try a simplified problem then try to generalize your result.}
\end{problem}
\begin{problem}
Using Maxwell's distribution calculate pressure of $P$ of ideal gas with concentration $n$ and temperature $T$.
\end{problem}
\subsection{Harder problems}
\begin{problem}
An ideal monoatomic gas is leaking from thermally insulated vessel into vacuum through a tiny hole
,which is much smaller than the mean free path of gas. Assuming Maxwell's velocity distribution for the atoms, calculate the parameter $\gamma$, which is defined as the ratio
between average kinetic energy of molecules of gas outside the vessel to average energy oh the gas inside the
vessel: $$\gamma=\frac{\langle E_{\text{outside}}\rangle}{\langle E_{\text{inside}}\rangle}$$
Assume that none of the atoms flow back.
\end{problem}
\begin{problem}
A thermally insulated vessel with thin walls has a small hole at one of its sides. This vessel was initially empty at the vacuum.
A thin beam of molecules moving with equal velocities $v_0$ is directed at the hole of the vessel
in a direction perpendicular to the surface of the hole.
(The arrows show gas molecules.)
\begin{center}
\tikzset{every picture/.style={line width=0.75pt}}
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
\draw (100,100) -- (100,20) -- (300,20) -- (300,220) -- (100,220) -- (100,120) -- (110,120) -- (110,210) -- (290,210) -- (290,30) -- (110,30) -- (110,100) -- cycle;
\draw[<-] (100,105) -- (50,105) node[above right]{$v_0$};
\draw[->] (50,110) -- (100,110);
\draw[->] (50,115) -- (100,115);
\filldraw[black] (159,38) circle (2pt);
\draw[->] (159,38) -- (208,186);
\filldraw[black] (250,113) circle (2pt);
\draw[->] (250,113) -- (201,117);
\filldraw[black] (137,48) circle (2pt);
\draw[->] (137,48) -- (154,142);
\filldraw[black] (113,194) circle (2pt);
\draw[->] (113,194) -- (249,110);
\filldraw[black] (256,195) circle (2pt);
\draw[->] (256,195) -- (139,102);
\filldraw[black] (126,118) circle (2pt);
\draw[->] (126,118) -- (125,150);
\filldraw[black] (197,92) circle (2pt);
\draw[->] (197,92) -- (273,45);
\end{tikzpicture}
\end{center}
Determine the temperature of the gas $T$ inside the vessel after a long period of time. Molar mass of the gas is $\mu$.
\end{problem}
\subsection{Hardest Problems}
Try these problems:
\begin{itemize}
\item 2020 OPhO Invitational Round Problem 7
\item 2002 APhO Problem 3
\item 2015 APhO Problem 2(b)
\item 2019 APhO Problem 2B
\end{itemize}
\section{Solutions}
\begin{sol}
\begin{enumerate}
\item So first integral is equation~\ref{eq:normal}. To do that we just need to substitute $u^2=\frac{\alpha v^2}{2}$ and $\dd u=\dd v\sqrt{\frac{\alpha}{2}}$. So integral becomes
$$C\sqrt{\frac{2}{\alpha}} \int_{-\infty}^{\infty}e^{-u^2}\dd u=1.$$ And this is Gaussian integral which is equals to $\sqrt{\pi}$. So constant is
$$\sqrt{\frac{\alpha}{2\pi}}$$
\item Second integral is equation~\ref{eq:normalvx}.$$\langle v^2\rangle =\sqrt{\frac{\alpha}{2\pi}}\int_{-\infty}^\infty v_x^2\exp(-\frac{\alpha v_x^2}{2})\dd v_x$$
This can be doable using integration by parts. So we want to differentiate $v_x$ and integrate other part
\begin{center}
\begin{tabular}{ c c c }
& D & I\\
$+$ & $v_x$& $v_xe^{-\frac{\alpha v_x^2}{2}}$\\
$-$ & $1$ & $-\frac{1}{\alpha}e^{-\frac{\alpha v_x^2}{2}}$
\end{tabular}
\end{center}
So integral becomes $$-\frac{v_x}{2\alpha}e^{-\frac{\alpha v_x^2}{2}}\eval_{-\infty}^\infty+\frac{1}{2\alpha}\int_{-\infty}^\infty e^{-\frac{\alpha v_x^2}{2}}\dd v_x$$
First term vanishes because of exponential. Second term is same as integral 1. So overall doing same steps we get
$$\langle v_x^2\rangle=\sqrt{\frac{\alpha}{2\pi}}\sqrt{\frac{2\pi}{\alpha^3}}=\frac{1}{\alpha} $$
\item Third integral is equation~\ref{eq:meanv}. We can use same method for this.but this time we will different $v^2$.
So
\begin{center}
\begin{tabular}{ c c c }
& D & I\\
$+$&$v^2$& $v\exp(-\frac{mv^2}{2kT})$\\
$-$&$2v$&$-\frac{kT}{m}\exp(-\frac{mv^2}{2kT})$
\end{tabular}
\end{center}
The same as integral two first term vanishes because of exponential and we left with
$$\int_0^\infty\frac{kT}{m}2v\exp(-\frac{mv^2}{kT})\dd v$$
So if we substitute $u=\frac{mv^2}{kT}$ we get $\int_0^\infty2\qty(\frac{kT}{m})^2e^{-u}\dd u=2\qty(\frac{kT}{m})^2$
Overall $$\langle v\rangle=4\pi \qty(\frac{m}{2\pi kT})^{\frac{3}{2}}2\qty(\frac{kT}{m})^2=\sqrt{\frac{8kT}{\pi m}}$$
\end{enumerate}
\end{sol}
\begin{sol}
For this problem we just need to find $\left<\frac{1}{v}\right>$ So by the definition
$$\left<\frac{1}{v}\right>=\int_0^\infty\frac{f(v)}{v}\dd v=4\pi\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\int_0^\infty v\exp(-\frac{mv^2}{2kT})\dd v$$
using provided integral \ref{eq:int1} we get that $$\left<\frac{1}{v}\right>=4\pi\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\frac{kT}{m}=\sqrt{\frac{2m}{\pi kT}}$$
And $\langle v \rangle=\sqrt{\frac{8kT}{\pi m}}$ is known so if we multiply them we get $\frac{4}{\pi}$
\end{sol}
\begin{sol}
Original Maxwell's distribution is
$$f(v)\dd v=4\pi v^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})\dd v$$
For transformation we must have $$F(E)\dd E=f(v)\dd v\implies F(E)\dd E=f(v)\frac{\dd v}{\dd E}\dd E$$
We can find its derivative by the definition $E=\frac{mv^2}{2}\implies \dv{E}{v}=mv$ So $F(E)\dd E$ is
\begin{align*}&F(E)\dd E=4\pi v^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})\qty(\frac{1}{mv})\dd E=\\
&=\frac{2}{\sqrt{\pi}(kT)^{3/2}}\sqrt{E}\exp(-\frac{E}{kT})\dd E\end{align*}
Or $$a=\frac{2}{\sqrt{\pi}(kT)^{3/2}}\quad b=\frac12$$
\end{sol}
\begin{sol}
New deBroglie wavelength distribution should satisfy the condition
$$f(v)\dd v=-F(\lambda)\dd \lambda\implies -f(v)\dv{v}{\lambda}\dd \lambda$$
By definition $\dv{\lambda}{v}=-\frac{h}{mv^2}$
Combining equations and replacing parameter $v=\frac{h}{m\lambda}$ yields
$$F(\lambda)\dd \lambda=\sqrt{\frac{2}{\pi}}\frac{h^3}{\lambda^4(mkT)^{3/2}}\exp(-\frac{h^2}{2mkT\lambda^2})\dd \lambda$$
or $$a=\sqrt{\frac{2}{\pi}}\frac{h^3}{(mkT)^{3/2}}\quad b=4\quad c=\frac{h^2}{2mkT}$$
\end{sol}
\begin{sol}
Like hint says lets first look at simplified problem. Lets assume all the molecules from origin move with velocity $v$ in cylindrical shape and to one direction $\theta$ with the normal of the wall
\textbf{Stage 1}\\
Then during time interval $\Delta t$ only molecules with height $v\Delta t$ can strike to the wall.The number of molecules can strike will be
$$N_1=n\Delta V=nv\Delta tS\cos\theta$$
Where $S\cos\theta$ is the cross sectional area of that beam.
\textbf{Stage 2}\\
Now lets average this with Maxwell's distribution. The range of velocity is $[0;\infty]$ the polar angle $[0;2\pi]$ the azimithual angle is $[0;\frac{\pi}{2}]$. Now
\begin{align*}
&N_c = \sum nSv\cos\theta\Delta \qty(v^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})\sin\theta\dd\theta\dd\varphi\dd v)\\
&=nS\Delta t\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\int_0^\infty v^3\exp(-\frac{mv^2}{2kT})\dd v\int_0^{\pi/2}\cos\theta\sin\theta\dd\theta\int_0^{2\pi}\dd\varphi
\end{align*}
Using provided integral \ref{eq:int3}
$$N_c=nS\Delta t\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\cdot\qty(\frac12 \frac{(2kT)^2}{m^2})\frac{1}{2}\cdot 2\pi$$
So canceling out terms we get an accurate estimation for number of collisions for ideal gas with temperature $T$ is
$$N_c=n\sqrt{\frac{kT}{2\pi m}}S\Delta t$$
\end{sol}
\begin{sol}
So we can consider the scenario in the figure \ref{fig:elasticcol} for simplified problem.
So we know that the pressure will be $P=2mnv^2\cos^2\theta$ from proof the lemma \ref{lem:1}.
Let's average it with Maxwell's distribution.
\begin{align*}
&P=\sum 2mnv^2\cos^2\theta\cdot\qty(v^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})\sin\theta\dd\theta\dd\varphi\dd v)\\
&=2mn\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\int_0^\infty v^4\exp(-\frac{mv^2}{2kT})\dd v\int_0^{\pi/2}\cos^2\theta\sin\theta\dd\theta\int_0^{2\pi}\dd\varphi
\end{align*}
Here we can use the integral \ref{eq:int4} and get the result:
$$P=2mn\qty(\frac{m}{2\pi kT})^{3/2}\cdot\qty(\frac{3\sqrt{\pi}}{8}\qty(\frac{5kT}{m})^{5/2})\cdot\frac{1}{3}2\pi=nkT$$
\end{sol}
\begin{sol}
Average kinetic energy inside of container is $$\langle E_{\text{inside}}\rangle=\frac{3}{2}kT$$ according to lemma \ref{lem:1} or you can calculate it by
$$\langle E_{\text{inside}}\rangle=\int_0^\infty\frac{mv^2}{2}f(v)\dd v$$
For the outside of vessel we can calculate it like other problems. Consider a simple scenario with all the molecules with the same velocity they are mocing in same direction.
In this case the number of molecules that go outside will be $$N_{\text{out}}=nvS\cos\theta\Delta t$$
Now let's average this energy and number of molecules with Maxwell's distribution. We have derived number of molecules before. It is
$$N_{\text{out}}=n\sqrt{\frac{kT}{2\pi m}}S\Delta t$$
So applying similar approach for $E_{\text{out}}$
\begin{align*}
&E_{\text{out}}=\sum \frac{mv^2}{2}nvS\cos\theta\Delta t\qty(u^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})\sin\theta\dd\theta\dd\varphi\dd v)\\
&=\frac{mnS\Delta t}{2}\qty(\frac{m}{2\pi kT})^{3/2}\int_0^\infty v^5\exp(-\frac{mv^2}{2kT})\dd v\int_0^{\pi/2}\cos\theta\sin\theta\dd\theta\int_0^{2\pi}\dd\varphi
\end{align*}
Using the integral \ref{eq:int5} yields
$$E_{\text{out}}=nS\Delta t2kT\sqrt{\frac{kT}{2\pi m}}$$
The avarage energy of molecules in the outside will be $$\langle E_{\text{outside}}\rangle=\frac{E_{\text{out}}}{N_{\text{out}}}$$
So dividing energy to number of molecules we get $$\langle E_{\text{out}}\rangle=2kT$$
Our final result is $$\frac{\langle E_{\text{outside}}\rangle}{\langle E_{\text{inside}}\rangle}=\frac{4}{3}$$
\end{sol}
\begin{sol}
In the equlibrium state the number of molecules and the energy of the molecules carry should be equal for going in and going out.
$$N_{\text{in}}=N_{\text{out}}\qquad E_{\text{in}} =E_{\text{out}}$$
If area of the hole is $S$, then number of molecules that goes in within the time $\Delta t$ is
$$N_{\text{in}} =n_0v_0S\Delta t$$
Where $n_0$ is concentration of the beam.
We have derived the number of atoms that collides with certain area.So number of atoms leaving the vessel
will be $$N_{\text{out}} = n\sqrt{\frac{kT}{2\pi m}}S\Delta t$$
Combining these equations yields $$n_0v_0=n\sqrt{\frac{kT}{2\pi m}}$$ Now coming to the energy, the energy that goes in is
$$E_{\text{in}}=N_{\text{n}}\frac{mv_0^2}{2}$$ And in order to find $E_{\text{out}}$ we need to average the energy of one molecule with the Maxwell's distribution. So
\begin{align*}
&E_{\text{out}} = \sum\frac{mv^2}{2}nvS\cos\theta\Delta t\qty(u^2\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})\sin\theta\dd\theta\dd\varphi\dd v)\\
&=\frac{mnS\Delta t}{2}\qty(\frac{m}{2\pi kT})^{\frac{3}{2}}\int_0^\infty v^5\exp(-\frac{mv^2}{2kT})\dd v\int_0^{\pi/2}\cos\theta\sin\theta\dd\theta\int_0^{2\pi}\dd\varphi
\end{align*}
Therefore,$$E_{\text{out}} = nS\Delta t 2kT\sqrt{\frac{kT}{2\pi m}}$$
Combining energies:
$$\frac{n_0mv_0^2}{2}=2nkT\sqrt{\frac{kT}{2\pi m}}$$
Dividing to equations yields $$T=\frac{mv_0^2}{4k}=\frac{\mu v_0^2}{4R}$$
\end{sol}
\noindent Note
\noindent For the solution of OPhO problem 7 check \href{https://artofproblemsolving.com/community/c1222116_opho_invitational_round}{this} Aops forum
\end{document}