forked from zjfheart/Friendly-Adversarial-Training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFAT_for_MART.py
250 lines (221 loc) · 11 KB
/
FAT_for_MART.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import matplotlib.pyplot as plt
import os
import argparse
import torchvision
import torch.optim as optim
from torchvision import transforms
import datetime
from models import *
from earlystop import earlystop
import numpy as np
import attack_generator as attack
from utils import Logger
from torchvision.datasets import STL10
from torch.utils.data import DataLoader
parser = argparse.ArgumentParser(description='PyTorch Friendly Adversarial Training for MART')
parser.add_argument('--epochs', type=int, default=120, metavar='N', help='number of epochs to train')
parser.add_argument('--weight_decay', '--wd', default=2e-4, type=float, metavar='W')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum')
parser.add_argument('--epsilon', type=float, default=0.031, help='perturbation bound')
parser.add_argument('--num_steps', type=int, default=10, help='maximum perturbation step K')
parser.add_argument('--step_size', type=float, default=0.007, help='step size')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument('--net', type=str, default="WRN",help="decide which network to use,choose from smallcnn,resnet18,WRN")
parser.add_argument('--tau', type=int, default=0, help='step tau')
parser.add_argument('--beta',type=float,default=6.0,help='regularization parameter')
parser.add_argument('--dataset', type=str, default="cifar10", help="choose from cifar10,svhn caltech101")
parser.add_argument('--rand_init', type=bool, default=True, help="whether to initialize adversarial sample with random noise")
parser.add_argument('--omega', type=float, default=0.0, help="random sample parameter")
parser.add_argument('--dynamictau', type=bool, default=True, help='whether to use dynamic tau')
parser.add_argument('--depth', type=int, default=34, help='WRN depth')
parser.add_argument('--width_factor', type=int, default=10, help='WRN width factor')
parser.add_argument('--drop_rate', type=float, default=0.0, help='WRN drop rate')
parser.add_argument('--out_dir',type=str,default='./FAT_for_MART_results',help='dir of output')
parser.add_argument('--resume', type=str, default='', help='whether to resume training, default: None')
args = parser.parse_args()
# settings
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
out_dir = args.out_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
def MART_loss(adv_logits, natural_logits, target, beta):
# Based on the repo MART https://github.com/YisenWang/MART
kl = nn.KLDivLoss(reduction='none')
batch_size = len(target)
adv_probs = F.softmax(adv_logits, dim=1)
tmp1 = torch.argsort(adv_probs, dim=1)[:, -2:]
new_y = torch.where(tmp1[:, -1] == target, tmp1[:, -2], tmp1[:, -1])
loss_adv = F.cross_entropy(adv_logits, target) + F.nll_loss(torch.log(1.0001 - adv_probs + 1e-12), new_y)
nat_probs = F.softmax(natural_logits, dim=1)
true_probs = torch.gather(nat_probs, 1, (target.unsqueeze(1)).long()).squeeze()
loss_robust = (1.0 / batch_size) * torch.sum(
torch.sum(kl(torch.log(adv_probs + 1e-12), nat_probs), dim=1) * (1.0000001 - true_probs))
loss = loss_adv + float(beta) * loss_robust
return loss
def train(model, train_loader, optimizer, tau):
starttime = datetime.datetime.now()
loss_sum = 0
bp_count = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.cuda(), target.cuda()
# Get friendly adversarial training data via early-stopped PGD
output_adv, output_target, output_natural, count = earlystop(model, data, target, step_size=args.step_size,
epsilon=args.epsilon, perturb_steps=args.num_steps,
tau=tau, randominit_type="normal_distribution_randominit", loss_fn='cent', rand_init=args.rand_init,
omega=args.omega)
bp_count += count
model.train()
optimizer.zero_grad()
adv_logits = model(output_adv)
natural_logits = model(output_natural)
# calculate MART adversarial training loss
loss = MART_loss(adv_logits, natural_logits, output_target, args.beta)
loss_sum += loss.item()
loss.backward()
optimizer.step()
bp_count_avg = bp_count / len(train_loader.dataset)
endtime = datetime.datetime.now()
time = (endtime - starttime).seconds
return time, loss_sum, bp_count_avg
def adjust_tau(epoch, dynamictau):
tau = args.tau
if dynamictau:
if epoch <= 20:
tau = 0
elif epoch <= 40:
tau = 1
elif epoch <= 60:
tau = 2
elif epoch <= 80:
tau = 3
else:
tau = 4
return tau
def adjust_learning_rate(optimizer, epoch):
"""decrease the learning rate"""
lr = args.lr
if epoch >= 60:
lr = args.lr * 0.1
if epoch >= 90:
lr = args.lr * 0.01
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_checkpoint(state, checkpoint=out_dir, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
# setup data loader
if args.dataset == "STL10":
transform_train = transforms.Compose([
transforms.Resize((32, 32)), # Resize images to 32x32 pixels
transforms.ToTensor(), # Convert images to tensors (0-1 range)
transforms.Normalize( # Normalize the images (mean and std)
mean=[0.5, 0.5, 0.5], # These values are precomputed for STL-10
std=[0.5, 0.5, 0.5]
)
])
transform_test = transform_train
else:
# setup data loader
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
print('==> Load Test Data')
if args.dataset == "cifar10":
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
if args.dataset == "svhn":
trainset = torchvision.datasets.SVHN(root='./data', split='train', download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.SVHN(root='./data', split='test', download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
if args.dataset == "caltech101":
trainset = torchvision.datasets.Caltech101(root='./data', download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.Caltech101(root='./data', download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
if args.dataset == "STL10":
# Load the STL-10 dataset (specify root directory where data is located)
train_dataset = STL10(root='./data', split='train', transform=transform_train, download=True)
test_dataset = STL10(root='./data', split='test', transform=transform_test, download=True)
# Create DataLoader objects for training and testing
train_loader = torch.utils.data.DataLoader(train_dataset, 128, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_dataset, 128, shuffle=False, num_workers=2)
print('==> Load Model')
if args.net == "smallcnn":
model = SmallCNN().cuda()
net = "smallcnn"
if args.net == "resnet18":
model = ResNet18().cuda()
net = "resnet18"
if args.net == "WRN":
model = Wide_ResNet(depth=args.depth, num_classes=10, widen_factor=args.width_factor, dropRate=args.drop_rate).cuda()
net = "WRN{}-{}-dropout{}".format(args.depth, args.width_factor, args.drop_rate)
model = torch.nn.DataParallel(model)
print(net)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
start_epoch = 0
# Resume
title = 'FAT for MART train'
if args.resume:
# resume directly point to checkpoint.pth.tar e.g., --resume='./out-dir/checkpoint.pth.tar'
print ('==> Friendly Adversarial Training for MART Resuming from checkpoint ..')
print(args.resume)
assert os.path.isfile(args.resume)
out_dir = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger_test = Logger(os.path.join(out_dir, 'log_results.txt'), title=title, resume=True)
else:
print('==> Friendly Adversarial Training for MART')
logger_test = Logger(os.path.join(out_dir, 'log_results.txt'), title=title)
logger_test.set_names(['Epoch', 'Natural Test Acc', 'FGSM Acc', 'PGD20 Acc', 'CW Acc'])
test_nat_acc = 0
fgsm_acc = 0
test_pgd20_acc = 0
cw_acc = 0
for epoch in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch + 1)
train_time, train_loss, bp_count_avg = train(model, train_loader, optimizer, adjust_tau(epoch + 1, args.dynamictau))
## Evalutions the same as TRADES.
loss, test_nat_acc = attack.eval_clean(model, test_loader)
loss, fgsm_acc = attack.eval_robust(model, test_loader, perturb_steps=1, epsilon=0.031, step_size=0.031,loss_fn="cent", category="Madry",rand_init=True)
loss, test_pgd20_acc = attack.eval_robust(model,test_loader, perturb_steps=20, epsilon=0.031, step_size=0.003,loss_fn="cent",category="Madry",rand_init=True)
loss, cw_acc = attack.eval_robust(model,test_loader, perturb_steps=30, epsilon=0.031, step_size=0.003,loss_fn="cw",category="Madry",rand_init=True)
print(
'Epoch: [%d | %d] | Train Time: %.2f s | BP Average: %.2f | Natural Test Acc %.2f | FGSM Test Acc %.2f | PGD20 Test Acc %.2f | CW Test Acc %.2f |\n' % (
epoch + 1,
args.epochs,
train_time,
bp_count_avg,
test_nat_acc,
fgsm_acc,
test_pgd20_acc,
cw_acc)
)
logger_test.append([epoch + 1, test_nat_acc, fgsm_acc, test_pgd20_acc, cw_acc])
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'bp_avg': bp_count_avg,
'test_nat_acc': test_nat_acc,
'test_pgd20_acc': test_pgd20_acc,
'optimizer': optimizer.state_dict(),
})
logger_test.plot()
plt.show()