diff --git a/content/publications/_index.md b/content/publications/_index.md index f0fd07b4..aa88aa6e 100644 --- a/content/publications/_index.md +++ b/content/publications/_index.md @@ -5,12 +5,26 @@ heroSubHeading: 'Research work and relevant papers by our team' heroBackground: 'images/susan-q-yin-2JIvboGLeho-unsplash.jpg' --- -## M²LInES research publications +## M²LInES research and other relevant publications If you are interested in understanding how M²LInES is using machine learning to improve climate models, we have developed an educational JupyterBook [Learning Machine Learning for Climate modeling with Lorenz 96](https://m2lines.github.io/L96_demo). This JupyterBook describes the key research themes in M²LInES, through the use of a simple climate model and machine learning algorithms. You can run the notebooks yourself, contribute to the development of the JupyterBook or let us know what you think on GitHub https://github.com/m2lines/L96_demo. + M²LInES funded research + ### 2024 +
+
+ Surya Dheeshjith, Adam Subel, Shubham Gupta, Alistair Adcroft, Carlos Fernandez-Granda, Julius Busecke, Laure Zanna
+ Transfer Learning for Emulating Ocean Climate Variability across CO2 forcing
+ Preprint accepted at ICML 2024 ML4ESM DOI: 10.48550/arXiv.2405.18585
+
-
+
Lorenzo Zampieri, David Clemens-Sewall, Anne Sledd, Nils Hutter, Marika Holland
Modeling the Winter Heat Conduction Through the Sea Ice System During MOSAiC
Geophysical Research Letters 2024 DOI: 10.1029/2023GL106760
@@ -53,7 +67,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
William Gregory, Ronald MacEachern, So Takao, Isobel Lawrence, Carmen Nab, Marc Deisenroth, Michel Tsamados
Scalable interpolation of satellite altimetry data with probabilistic machine learning
Nature Comms. 2024 DOI: 10.21203/rs.3.rs-4209064/v1
@@ -65,7 +79,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Adam Subel, Laure Zanna
Building Ocean Climate Emulators
ICLR 2024 Workshop: Tackling Climate Change with Machine Learning. DOI: 10.48550/arXiv.2402.04342
@@ -78,7 +92,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
William Gregory, Mitchell Bushuk, Yongfei Zhang, Alistair Adcroft, Laure Zanna
Machine Learning for Online Sea Ice Bias Correction Within Global Ice-Ocean Simulations
Geophysical Research Letters 2024. DOI: 10.1029/2023GL106776
@@ -90,7 +104,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Fabrizio Falasca, Pavel Perezhogin, Laure Zanna
Data-driven framework for dimensionality reduction and causal inference in climate fields
APS Physics Review E 2024 DOI: 10.1103/PhysRevE.109.044202
@@ -102,7 +116,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Tom Beucler, Michael Pritchard, Janni Yuval, Ankitesh Gupta, Liran Peng, Stephan Rasp, Fiaz Ahmed, Paul O’Gorman, J. David Neelin, Nicholas J. Lutsko, Pierre Gentine
Climate-Invariant Machine Learning
Science Advances 2024 DOI: 10.1126/sciadv.adj7250
@@ -116,7 +130,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Cheng Zhang, Pavel Perezhogin, Cem Gultekin, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
Implementation and Evaluation of a Machine Learned Mesoscale Eddy Parameterization Into a Numerical Ocean Circulation Model
James 2023. DOI: 10.1029/2023MS003697
@@ -128,7 +142,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Pavel Perezhogin, Cheng Zhang, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
Implementation of a data-driven equation-discovery mesoscale parameterization into an ocean model
James 2023. DOI: 10.48550/arXiv.2311.02517
@@ -140,7 +154,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Will Chapman and Judith Berner
Deterministic and stochastic tendency adjustments derivedfrom data assimilation and nudging
QJRMS 2023. DOI: 10.1002/qj.4652
@@ -152,7 +166,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Christian Pedersen, Laure Zanna, Joan Bruna, Pavel Perezhogin
Reliable coarse-grained turbulent simulations through combined offline learning and neural emulation
ICML 2023 Workshop on Synergy of Scientific and Machine Learning Modeling DOI: 10.48550/arXiv.2307.13144
@@ -164,7 +178,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Emily Newsom, Laure Zanna, Jonathan Gregory
Background Pycnocline depth constrains Future Ocean Heat Uptake Efficiency
AGU Geophysical Research Letters 2023. DOI: 10.1029/2023GL105673
@@ -176,7 +190,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Sara Shamekh and Pierre Gentine
Learning Atmospheric Boundary Layer Turbulence
JAMES 2023. DOI: 10.22541/essoar.168748456.60017486/v1
@@ -188,7 +202,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Aakash Sane, Brandon G. Reichl, Alistair Adcroft, Laure Zanna
Parameterizing vertical mixing coefficients in the Ocean
Surface Boundary Layer using Neural Networks
@@ -201,7 +215,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Sungduk Yu, ..., Michael S. Pritchard
ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid
multi-scale climate simulators
@@ -214,7 +228,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Karan Jakhar, Yifei Guan, Rambod Mojgani, Ashesh Chattopadhyay, Pedram Hassanzadeh, Laure Zanna
Learning Closed-form Equations for Subgrid-scale Closures from High-fidelity Data: Promises and Challenges.
ESS Open Archive. 2023. DOI: 10.22541/essoar.168677212.21341231/v1
@@ -226,7 +240,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Gustau Camps-Valls, Andreas Gerhardus, Urmi Ninad, Gherardo Varando, Georg Martius,
Emili Balaguer-Ballester, Ricardo Vinuesa, Emiliano Diaz, Laure Zanna, Jakob Runge
Discovering Causal Relations and Equations from Data.
@@ -239,7 +253,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Rei Chemke and Janni Yuval
Human-induced weakening of the Northern Hemisphere tropical circulation
Nature. 2023. DOI: 10.1038/s41586-023-05903-1
@@ -251,7 +265,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
William Gregory, Mitchell Bushuk, Alistair Adcroft, Yongfei Zhang, Laure Zanna
Deep learning of systematic sea ice model errors from data assimilation increments
JAMES 2023. DOI: 10.1029/2023MS003757
@@ -264,7 +278,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Janni Yuval and Paul A. O’Gorman
Neural-Network Parameterization of Subgrid Momentum Transport in the Atmosphere
JAMES 2023. DOI: 10.1029/2023MS003606
@@ -276,7 +290,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Karl Otness, Laure Zanna, Joan Bruna
Data-driven multiscale modeling of subgrid parameterizations in climate models
Preprint accepted at ICLR Workshop on Climate Change AI. 2023. DOI: 10.48550/arXiv.2303.17496
@@ -288,7 +302,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Fabrizio Falasca, Andrew Brettin, Laure Zanna, Stephen M. Griffies, Jianjun Yin, Ming Zhao
Exploring the non-stationarity of coastal sea level probability distributions
EDS. volume 2 2023. DOI: 10.1017/eds.2023.10
@@ -300,7 +314,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Pavel Perezhogin, Laure Zanna, Carlos Fernandez-Granda
Generative data-driven approaches for stochastic subgrid parameterizations in an idealized ocean model
JAMES. 2023. DOI: 10.1029/2023MS003681
@@ -312,7 +326,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Pavel Perezhogin, Andrey Glazunov
Subgrid Parameterizations of Ocean Mesoscale Eddies Based on Germano Decomposition
JAMES. 2023. DOI: 10.1029/2023MS003771
@@ -325,7 +339,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Cheng Zhang, Pavel Perezhogin, Cem Gultekin, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
Implementation and Evaluation of a Machine Learned Mesoscale Eddy Parameterization into a
Numerical Ocean Circulation Model
JAMES 2023. DOI: 10.1029/2023MS003697
@@ -337,7 +351,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Qiyu Xiao, Dhruv Balwada, C. Spencer Jones, Mario Herrero-Gonzalez, K. Shafer Smith, Ryan Abernathey
Reconstruction of Surface Kinematics from Sea Surface Height Using Neural Networks
JAMES. 2023. DOI: 10.1029/2022MS003258
@@ -349,7 +363,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Takaya Uchida, Dhruv Balwada, Quentin Jamet, William K. Dewar, Bruno Deremble,
Thierry Penduff, Julien Le Sommer
Cautionary tales from the mesoscale eddy transport tensor
@@ -362,7 +376,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Adam Subel, Yifei Guan, Ashesh Chattopadhyay, Pedram Hassanzadeh
Explaining the physics of transfer learning in data-driven turbulence modeling
PNAS NEXUS 2023. DOI: 10.1093/pnasnexus/pgad015
@@ -374,7 +388,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Lorenzo Zampieri, Gabriele Arduini, Marika Holland, Sarah Keeley, Kristian S. Mogensen,
Matthew D. Shupe, Steffen Tietsche
A Machine Learning Correction Model of the Winter Clear-Sky Temperature Bias over the Arctic Sea Ice in Atmospheric Reanalyses
@@ -387,7 +401,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Lei Chen and Joan Bruna
On Gradient Descent Convergence beyond the Edge of Stability
ICLR 2023 DOI: 10.5555/3618408.3618580
@@ -403,7 +417,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Andrew Ross, Ziwei Li, Pavel Perezhogin, Carlos Fernandez-Granda, Laure Zanna
Benchmarking of machine learning ocean subgrid parameterizations in an idealized model
JAMES. 2022. DOI: 10.1029/2022MS003258
@@ -415,7 +429,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Joan Bruna, Benjamin Peherstorfer, Eric Vanden-Eijnden
Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations
Journal of Computational Physics DOI: 10.1016/j.jcp.2023.112588
@@ -427,7 +441,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Peidong Wang, Janni Yuval, Paul A. O'Gorman
Non-local parameterization of atmospheric subgrid processes with neural networks
JAMES 2022. DOI: 10.1029/2022MS002984
@@ -439,7 +453,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Sara Shamekh, Kara D Lamb, Yu Huang, Pierre Gentine
Implicit learning of convective organization explains precipitation stochasticity
In review. 2022. DOI: 10.1002/essoar.10512517.1
@@ -451,7 +465,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Hannah Christensen and Laure Zanna
Parametrization in Weather and Climate Models
Oxford Research Encyclopedia of Climate Science. 2022. DOI: 10.1093/acrefore/9780190228620.013.826
@@ -463,7 +477,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Sheng Liu, Aakash Kaku, Haoxiang Huang, Laure Zanna, Weicheng Zhu, Narges Razavian,
Matan Leibovich, Sreyas Mohan, Boyang Yu, Jonathan Niles-Weed, Carlos Fernandez-Granda
Deep Probability Estimation
@@ -476,7 +490,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Nora Loose, Ryan Abernathey, Ian Grooms, Julius Busecke, Arthur Guillaumin,
Elizabeth Yankovsky, Gustavo Marques, Jacob Steinberg, Andrew Slavin Ross, Hemant Khatri,
Scott Bachman, Laure Zanna, Paige Martin
@@ -490,7 +504,7 @@ If you are interested in understanding how M²LInES is using machine learning to
-
+
Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, Redouane Lguensat
A posteriori learning for quasi-geostrophic turbulence parametrization
JAMES. 2022. DOI: 10.1029/2022MS003124
diff --git a/static/images/publications/dsga_2024.png b/static/images/publications/dsga_2024.png
new file mode 100644
index 00000000..9fac1074
Binary files /dev/null and b/static/images/publications/dsga_2024.png differ