-
Notifications
You must be signed in to change notification settings - Fork 1
/
envs.py
executable file
·52 lines (43 loc) · 1.6 KB
/
envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import gym
from gym.spaces.box import Box
from baselines import bench
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
try:
import pybullet_envs
import roboschool
except ImportError:
pass
def make_env(env_id, seed, rank, log_dir):
def _thunk():
print("<_________________",env_id,"__________________>")
env = gym.make(env_id)
is_atari = hasattr(gym.envs, 'atari') and isinstance(env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
if is_atari:
env = make_atari(env_id)
env.seed(seed + rank)
#print(log_dir)
if log_dir is not None:
PATH = log_dir+env_id+'/'+env_id+'_'+str(seed)+"/"+env_id+'/'
if not(os.path.exists(PATH)):
os.makedirs(PATH,0o777)
env = bench.Monitor(env, os.path.join(PATH, str(rank)))
if is_atari:
env = wrap_deepmind(env)
# If the input has shape (W,H,3), wrap for PyTorch convolutions
obs_shape = env.observation_space.shape
if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
env = WrapPyTorch(env)
return env
return _thunk
class WrapPyTorch(gym.ObservationWrapper):
def __init__(self, env=None):
super(WrapPyTorch, self).__init__(env)
obs_shape = self.observation_space.shape
self.observation_space = Box(
self.observation_space.low[0,0,0],
self.observation_space.high[0,0,0],
[obs_shape[2], obs_shape[1], obs_shape[0]]
)
def _observation(self, observation):
return observation.transpose(2, 0, 1)