-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.list.pkl
18535 lines (18535 loc) · 337 KB
/
test.list.pkl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(lp1
ccopy_reg
_reconstructor
p2
(cBio.Medline
Record
p3
c__builtin__
dict
p4
(dp5
S'LID'
p6
S'10.1016/j.jtbi.2016.08.016 [doi] S0022-5193(16)30246-6 [pii]'
p7
sS'STAT'
p8
S'In-Data-Review'
p9
sS'DEP'
p10
S'20160811'
p11
sS'JID'
p12
S'0376342'
p13
sS'DA'
p14
S'20160924'
p15
sS'AID'
p16
(lp17
S'S0022-5193(16)30246-6 [pii]'
p18
aS'10.1016/j.jtbi.2016.08.016 [doi]'
p19
asS'FAU'
p20
(lp21
S'Taylor, Bradford P'
p22
aS'Dushoff, Jonathan'
p23
aS'Weitz, Joshua S'
p24
asS'DP'
p25
S'2016 Nov 7'
p26
sS'OWN'
p27
S'NLM'
p28
sS'PT'
p29
(lp30
S'Journal Article'
p31
asS'LA'
p32
(lp33
S'eng'
p34
asS'CRDT'
p35
(lp36
S'2016/08/16 06:00'
p37
asS'JT'
p38
S'Journal of theoretical biology'
p39
sS'PG'
p40
S'145-54'
p41
sS'TI'
p42
S'Stochasticity and the limits to confidence when estimating R0 of Ebola and other emerging infectious diseases.'
p43
sS'PL'
p44
S'England'
p45
sS'TA'
p46
S'J Theor Biol'
p47
sS'CI'
p48
(lp49
S'Copyright (c) 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.'
p50
asS'AB'
p51
S'Dynamic models - often deterministic in nature - were used to estimate the basic reproductive number, R0, of the 2014-5 Ebola virus disease (EVD) epidemic outbreak in West Africa. Estimates of R0 were then used to project the likelihood for large outbreak sizes, e.g., exceeding hundreds of thousands of cases. Yet fitting deterministic models can lead to over-confidence in the confidence intervals of the fitted R0, and, in turn, the type and scope of necessary interventions. In this manuscript we propose a hybrid stochastic-deterministic method to estimate R0 and associated confidence intervals (CIs). The core idea is that stochastic realizations of an underlying deterministic model can be used to evaluate the compatibility of candidate values of R0 with observed epidemic curves. The compatibility is based on comparing the distribution of expected epidemic growth rates with the observed epidemic growth rate given "process noise", i.e., arising due to stochastic transmission, recovery and death events. By applying our method to reported EVD case counts from Guinea, Liberia and Sierra Leone, we show that prior estimates of R0 based on deterministic fits appear to be more confident than analysis of stochastic trajectories suggests should be possible. Moving forward, we recommend including process noise among other sources of noise when estimating R0 CIs of emerging epidemics. Our hybrid procedure represents an adaptable and easy-to-implement approach for such estimation.'
p52
sS'AD'
p53
S'School of Physics, Georgia Institute of Technology, Atlanta, GA, USA. Electronic address: bradfordptaylor@gmail.com. Department of Biology and Institute for Infectious Disease Research, McMaster University, Hamilton, Canada. School of Physics, Georgia Institute of Technology, Atlanta, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. Electronic address: jsweitz@gatech.edu.'
p54
sS'VI'
p55
S'408'
p56
sS'IS'
p57
S'1095-8541 (Electronic) 0022-5193 (Linking)'
p58
sS'AU'
p59
(lp60
S'Taylor BP'
p61
aS'Dushoff J'
p62
aS'Weitz JS'
p63
asS'MHDA'
p64
S'2016/08/16 06:00'
p65
sS'PHST'
p66
(lp67
S'2016/01/20 [received]'
p68
aS'2016/07/28 [revised]'
p69
aS'2016/08/10 [accepted]'
p70
aS'2016/08/11 [aheadofprint]'
p71
asS'OTO'
p72
(lp73
S'NOTNLM'
p74
asS'EDAT'
p75
S'2016/08/16 06:00'
p76
sS'SO'
p77
S'J Theor Biol. 2016 Nov 7;408:145-54. doi: 10.1016/j.jtbi.2016.08.016. Epub 2016 Aug 11.'
p78
sS'SB'
p79
S'IM'
p80
sS'PMID'
p81
S'27524644'
p82
sS'OT'
p83
(lp84
S'Confidence intervals'
p85
aS'Demographic stochasticity'
p86
aS'Infectious diseases'
p87
asS'PST'
p88
S'ppublish'
p89
stRp90
ag2
(g3
g4
(dp91
S'STAT'
p92
S'Publisher'
p93
sS'AB'
p94
S"Despite the availability of inexpensive antimicrobial treatment, syphilis remains prevalent worldwide, affecting millions of individuals. Furthermore, syphilis infection is suspected of increasing both susceptibility to, and tendency to transmit, HIV. Development of a syphilis vaccine would be a potentially promising step towards control, but the value of dedicating resources to vaccine development should be evaluated in the context of the anticipated benefits. Here, we use a detailed mathematical model to explore the potential impact of rolling out a hypothetical syphilis vaccine on morbidity from both syphilis and HIV and compare it to the impact of expanded 'screen and treat' programmes using existing treatments. Our results suggest that an efficacious vaccine has the potential to sharply reduce syphilis prevalence under a wide range of scenarios, while expanded treatment interventions are likely to be substantially less effective. Our modelled interventions in our simulated study populations are expected to have little effect on HIV, and in some scenarios lead to small increases in HIV incidence, suggesting that interventions against syphilis should be accompanied with interventions against other sexually transmitted infections to prevent the possibility that lower morbidity or lower perceived risk from syphilis could lead to increases in other sexually transmitted diseases."
p95
sS'AD'
p96
S'School of Computational Science and Engineering,McMaster University,Hamilton,Ontario,Canada. Department of Biochemistry and Microbiology,University of Victoria,Victoria,British Columbia,Canada. Department of Pathology and Molecular Medicine,McMaster University,Hamilton,Ontario,Canada. Department of Theoretical Biology,McMaster University,Hamilton,Ontario,Canada.'
p97
sS'DEP'
p98
S'20160801'
p99
sS'IS'
p100
S'1469-4409 (Electronic) 0950-2688 (Linking)'
p101
sS'JID'
p102
S'8703737'
p103
sS'DA'
p104
S'20160801'
p105
sS'AU'
p106
(lp107
S'Champredon D'
p108
aS'Cameron CE'
p109
aS'Smieja M'
p110
aS'Dushoff J'
p111
asS'AID'
p112
(lp113
S'S0950268816001643 [pii]'
p114
aS'10.1017/S0950268816001643 [doi]'
p115
asS'FAU'
p116
(lp117
S'Champredon, D'
p118
aS'Cameron, C E'
p119
aS'Smieja, M'
p120
aS'Dushoff, J'
p121
asS'DP'
p122
S'2016 Aug 1'
p123
sS'MHDA'
p124
S'2016/08/02 06:00'
p125
sS'AUID'
p126
(lp127
S'ORCID: http://orcid.org/0000-0002-7090-8757'
p128
asS'OWN'
p129
S'NLM'
p130
sS'PT'
p131
(lp132
S'JOURNAL ARTICLE'
p133
asS'LA'
p134
(lp135
S'ENG'
p136
asS'OTO'
p137
(lp138
S'NOTNLM'
p139
asS'CRDT'
p140
(lp141
S'2016/08/02 06:00'
p142
asS'EDAT'
p143
S'2016/08/02 06:00'
p144
sS'JT'
p145
S'Epidemiology and infection'
p146
sS'LR'
p147
S'20160801'
p148
sS'PG'
p149
S'1-9'
p150
sS'TI'
p151
S'Epidemiological impact of a syphilis vaccine: a simulation study.'
p152
sS'SO'
p153
S'Epidemiol Infect. 2016 Aug 1:1-9.'
p154
sS'PMID'
p155
S'27477823'
p156
sS'OT'
p157
(lp158
S'Co-infection'
p159
aS'HIV'
p160
aS'immunization'
p161
aS'mathematical modelling'
p162
aS'public health'
p163
aS'syphilis'
p164
asS'PST'
p165
S'aheadofprint'
p166
sS'TA'
p167
S'Epidemiol Infect'
p168
stRp169
ag2
(g3
g4
(dp170
S'LID'
p171
S'10.1093/aje/kwv303 [doi]'
p172
sS'STAT'
p173
S'In-Data-Review'
p174
sS'DEP'
p175
S'20160504'
p176
sS'CI'
p177
(lp178
S'(c) The Author 2016. Published by Oxford University Press on behalf of the Johns'
p179
aS'Hopkins Bloomberg School of Public Health. All rights reserved. For permissions,'
p180
aS'please e-mail: journals.permissions@oup.com.'
p181
asS'DA'
p182
S'20160702'
p183
sS'AID'
p184
(lp185
S'kwv303 [pii]'
p186
aS'10.1093/aje/kwv303 [doi]'
p187
asS'FAU'
p188
(lp189
S'Sempa, Joseph B'
p190
aS'Dushoff, Jonathan'
p191
aS'Daniels, Michael J'
p192
aS'Castelnuovo, Barbara'
p193
aS'Kiragga, Agnes N'
p194
aS'Nieuwoudt, Martin'
p195
aS'Bellan, Steven E'
p196
asS'DP'
p197
S'2016 Jul 1'
p198
sS'OWN'
p199
S'NLM'
p200
sS'PT'
p201
(lp202
S'Journal Article'
p203
asS'LA'
p204
(lp205
S'eng'
p206
asS'CRDT'
p207
(lp208
S'2016/05/19 06:00'
p209
asS'JT'
p210
S'American journal of epidemiology'
p211
sS'LR'
p212
S'20160708'
p213
sS'PG'
p214
S'67-77'
p215
sS'TI'
p216
S'Reevaluating Cumulative HIV-1 Viral Load as a Prognostic Predictor: Predicting Opportunistic Infection Incidence and Mortality in a Ugandan Cohort.'
p217
sS'IS'
p218
S'1476-6256 (Electronic) 0002-9262 (Linking)'
p219
sS'PL'
p220
S'United States'
p221
sS'TA'
p222
S'Am J Epidemiol'
p223
sS'JID'
p224
S'7910653'
p225
sS'AB'
p226
S"Recent studies have evaluated cumulative human immunodeficiency virus type 1 (HIV-1) viral load (cVL) for predicting disease outcomes, with discrepant results. We reviewed the disparate methodological approaches taken and evaluated the prognostic utility of cVL in a resource-limited setting. Using data on the Infectious Diseases Institute (Makerere University, Kampala, Uganda) cohort, who initiated antiretroviral therapy in 2004-2005 and were followed up for 9 years, we calculated patients' time-updated cVL by summing the area under their viral load curves on either a linear scale (cVL1) or a logarithmic scale (cVL2). Using Cox proportional hazards models, we evaluated both metrics as predictors of incident opportunistic infections and mortality. Among 489 patients analyzed, neither cVL measure was a statistically significant predictor of opportunistic infection risk. In contrast, cVL2 (but not cVL1) was a statistically significant predictor of mortality, with each log10 increase corresponding to a 1.63-fold (95% confidence interval: 1.02, 2.60) elevation in mortality risk when cVL2 was accumulated from baseline. However, whether cVL is predictive or not hinges on difficult choices surrounding the cVL metric and statistical model employed. Previous studies may have suffered from confounding bias due to their focus on cVL1, which strongly correlates with other variables. Further methodological development is needed to illuminate whether the inconsistent predictive utility of cVL arises from causal relationships or from statistical artifacts."
p227
sS'IP'
p228
S'1'
sS'PMCR'
p229
(lp230
S'2017/07/01 00:00'
p231
asS'PMC'
p232
S'PMC4929240'
p233
sS'AU'
p234
(lp235
S'Sempa JB'
p236
aS'Dushoff J'
p237
aS'Daniels MJ'
p238
aS'Castelnuovo B'
p239
aS'Kiragga AN'
p240
aS'Nieuwoudt M'
p241
aS'Bellan SE'
p242
asS'VI'
p243
S'184'
p244
sS'MHDA'
p245
S'2016/05/18 06:00'
p246
sS'PHST'
p247
(lp248
S'2015/04/23 [received]'
p249
aS'2015/10/29 [accepted]'
p250
aS'2016/05/04 [aheadofprint]'
p251
asS'OTO'
p252
(lp253
S'NOTNLM'
p254
asS'OID'
p255
(lp256
S'NLM: PMC4929240 [Available on 07/01/17]'
p257
asS'EDAT'
p258
S'2016/05/18 06:00'
p259
sS'SO'
p260
S'Am J Epidemiol. 2016 Jul 1;184(1):67-77. doi: 10.1093/aje/kwv303. Epub 2016 May 4.'
p261
sS'SB'
p262
S'IM'
p263
sS'PMID'
p264
S'27188943'
p265
sS'OT'
p266
(lp267
S'Cox proportional hazards models'
p268
aS'HIV'
p269
aS'Martingale residuals'
p270
aS'human immunodeficiency virus'
p271
aS'mortality'
p272
aS'opportunistic infections'
p273
aS'viral load'
p274
aS'viremia copy-years'
p275
asS'PST'
p276
S'ppublish'
p277
stRp278
ag2
(g3
g4
(dp279
S'LID'
p280
S'10.4049/jimmunol.1502343 [doi]'
p281
sS'STAT'
p282
S'In-Data-Review'
p283
sS'DEP'
p284
S'20160513'
p285
sS'CI'
p286
(lp287
S'Copyright (c) 2016 by The American Association of Immunologists, Inc.'
p288
asS'DA'
p289
S'20160604'
p290
sS'AID'
p291
(lp292
S'jimmunol.1502343 [pii]'
p293
aS'10.4049/jimmunol.1502343 [doi]'
p294
asS'FAU'
p295
(lp296
S'Ndifon, Wilfred'
p297
aS'Dushoff, Jonathan'
p298
asS'DP'
p299
S'2016 Jun 15'
p300
sS'OWN'
p301
S'NLM'
p302
sS'PT'
p303
(lp304
S'Journal Article'
p305
asS'LA'
p306
(lp307
S'eng'
p308
asS'CRDT'
p309
(lp310
S'2016/05/17 06:00'
p311
asS'JT'
p312
S'Journal of immunology (Baltimore, Md. : 1950)'
p313
sS'PG'
p314
S'4999-5004'
p315
sS'TI'
p316
S'The Hayflick Limit May Determine the Effective Clonal Diversity of Naive T Cells.'
p317
sS'PL'
p318
S'United States'
p319
sS'TA'
p320
S'J Immunol'
p321
sS'JID'
p322
S'2985117R'
p323
sS'AB'
p324
S'Having a large number of sufficiently abundant T cell clones is important for adequate protection against diseases. However, as shown in this paper and elsewhere, between young adulthood and >70 y of age the effective clonal diversity of naive CD4/CD8 T cells found in human blood declines by a factor of >10. (Effective clonal diversity accounts for both the number and the abundance of T cell clones.) The causes of this observation are incompletely understood. A previous study proposed that it might result from the emergence of certain rare, replication-enhancing mutations in T cells. In this paper, we propose an even simpler explanation: that it results from the loss of T cells that have attained replicative senescence (i.e., the Hayflick limit). Stochastic numerical simulations of naive T cell population dynamics, based on experimental parameters, show that the rate of homeostatic T cell proliferation increases after the age of approximately 60 y because naive T cells collectively approach replicative senescence. This leads to a sharp decline of effective clonal diversity after approximately 70 y, in agreement with empirical data. A mathematical analysis predicts that, without an increase in the naive T cell proliferation rate, this decline will occur >50 yr later than empirically observed. These results are consistent with a model in which exhaustion of the proliferative capacity of naive T cells causes a sharp decline of their effective clonal diversity and imply that therapeutic potentiation of thymopoiesis might either prevent or reverse this outcome.'
p325
sS'AD'
p326
S'African Institute for Mathematical Sciences, Muizenberg 7945, Cape Town, South Africa; African Institute for Mathematical Sciences, Legon, Accra, Ghana; Stellenbosch University, Matieland 7602, Stellenbosch, South Africa; and wndifon@aims.ac.za. Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.'
p327
sS'AUID'
p328
(lp329
S'ORCID: http://orcid.org/0000-0003-0506-4794'
p330
asS'IP'
p331
S'12'
p332
sS'IS'
p333
S'1550-6606 (Electronic) 0022-1767 (Linking)'
p334
sS'AU'
p335
(lp336
S'Ndifon W'
p337
aS'Dushoff J'
p338
asS'VI'
p339
S'196'
p340
sS'MHDA'
p341
S'2016/05/18 06:00'
p342
sS'PHST'
p343
(lp344
S'2015/11/04 [received]'
p345
aS'2016/04/18 [accepted]'
p346
aS'2016/05/13 [aheadofprint]'
p347
asS'EDAT'
p348
S'2016/05/18 06:00'
p349
sS'SO'
p350
S'J Immunol. 2016 Jun 15;196(12):4999-5004. doi: 10.4049/jimmunol.1502343. Epub 2016 May 13.'
p351
sS'SB'
p352
S'AIM IM'
p353
sS'PMID'
p354
S'27183600'
p355
sS'PST'
p356
S'ppublish'
p357
stRp358
ag2
(g3
g4
(dp359
S'LID'
p360
S'10.1098/rsif.2015.0666 [doi] 20150666 [pii]'
p361
sS'STAT'
p362
S'In-Process'
p363
sS'JT'
p364
S'Journal of the Royal Society, Interface / the Royal Society'
p365
sS'CI'
p366
(lp367
S'(c) 2016 The Author(s).'
p368
asS'DA'
p369
S'20160225'
p370
sS'AID'
p371
(lp372
S'rsif.2015.0666 [pii]'
p373
aS'10.1098/rsif.2015.0666 [doi]'
p374
asS'FAU'
p375
(lp376
S'Miller, Ezer'
p377
aS'Dushoff, Jonathan'
p378
aS'Huppert, Amit'
p379
asS'DP'
p380
S'2016 Feb'
p381
sS'OWN'
p382
S'NLM'
p383
sS'PT'
p384
(lp385
S'Journal Article'
p386
aS"Research Support, Non-U.S. Gov't"
p387
asS'LA'
p388
(lp389
S'eng'
p390
asS'CRDT'
p391
(lp392
S'2016/02/26 06:00'
p393
asS'LR'
p394
S'20160319'
p395
sS'PG'
p396
S'20150666'
p397
sS'TI'
p398
S'The risk of incomplete personal protection coverage in vector-borne disease.'
p399
sS'IS'
p400
S'1742-5662 (Electronic) 1742-5662 (Linking)'
p401
sS'PL'
p402
S'England'
p403
sS'TA'
p404
S'J R Soc Interface'
p405
sS'JID'
p406
S'101217269'
p407
sS'AB'
p408
S'Personal protection (PP) techniques, such as insecticide-treated nets, repellents and medications, include some of the most important and commonest ways used today to protect individuals from vector-borne infectious diseases. In this study, we explore the possibility that a PP intervention with partial coverage may have the counterintuitive effect of increasing disease burden at the population level, by increasing the biting intensity on the unprotected portion of the population. To this end, we have developed a dynamic model which incorporates parameters that describe the potential effects of PP on vector searching and biting behaviour and calculated its basic reproductive rate, R0. R0 is a well-established threshold of disease risk; the higher R0 is above unity, the stronger the disease onset intensity. When R0 is below unity, the disease is typically unable to persist. The model analysis revealed that partial coverage with popular PP techniques can realistically lead to a substantial increase in the reproductive number. An increase in R0 implies an increase in disease burden and difficulties in eradication efforts within certain parameter regimes. Our findings therefore stress the importance of studying vector behavioural patterns in response to PP interventions for future mitigation of vector-borne diseases.'
p409
sS'AD'
p410
S'The Biostatistics Unit, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel ezermiller@gmail.com. Department of Biology, McMaster University, Hamilton, Ontario, Canada. The Biostatistics Unit, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.'
p411
sS'IP'
p412
S'115'
p413
sS'PMCR'
p414
(lp415
S'2017/02/01 00:00'
p416
asS'PMC'
p417
S'PMC4780561'
p418
sS'AU'
p419
(lp420
S'Miller E'
p421
aS'Dushoff J'
p422
aS'Huppert A'
p423
asS'VI'
p424
S'13'
p425
sS'MHDA'
p426
S'2016/02/26 06:00'
p427
sS'OTO'
p428
(lp429
S'NOTNLM'
p430
asS'OID'
p431
(lp432
S'NLM: PMC4780561 [Available on 02/01/17]'
p433
asS'EDAT'
p434
S'2016/02/26 06:00'
p435
sS'SO'
p436
S'J R Soc Interface. 2016 Feb;13(115):20150666. doi: 10.1098/rsif.2015.0666.'
p437
sS'SB'
p438
S'IM'
p439
sS'PMID'
p440
S'26911486'
p441
sS'OT'
p442
(lp443
S'bednets'
p444
aS'disease transmission'
p445
aS'insect repellents'
p446
aS'insecticide-treated nets'
p447
aS'vector ecology'
p448
aS'vector-borne infectious diseases'
p449
asS'PST'
p450
S'ppublish'
p451
stRp452
ag2
(g3
g4
(dp453
S'LID'
p454
S'10.1016/j.jtbi.2016.01.022 [doi] S0022-5193(16)00055-2 [pii]'
p455
sS'STAT'
p456
S'In-Process'
p457
sS'DEP'
p458
S'20160215'
p459
sS'JID'
p460
S'0376342'
p461
sS'DA'
p462
S'20160411'
p463
sS'AID'
p464
(lp465
S'S0022-5193(16)00055-2 [pii]'
p466
aS'10.1016/j.jtbi.2016.01.022 [doi]'
p467
asS'FAU'
p468
(lp469
S'Keegan, Lindsay T'
p470
aS'Dushoff, Jonathan'
p471
asS'DP'
p472
S'2016 May 21'
p473
sS'OWN'
p474
S'NLM'
p475
sS'PT'
p476
(lp477
S'Journal Article'
p478
asS'LA'
p479
(lp480
S'eng'
p481
asS'CRDT'
p482
(lp483
S'2016/02/20 06:00'
p484
asS'JT'
p485
S'Journal of theoretical biology'
p486
sS'PG'
p487
S'1-12'
p488
sS'TI'
p489
S'Estimating finite-population reproductive numbers in heterogeneous populations.'
p490
sS'PL'
p491
S'England'
p492
sS'TA'
p493
S'J Theor Biol'
p494
sS'CI'
p495
(lp496
S'Copyright (c) 2016 Elsevier Ltd. All rights reserved.'
p497
asS'AB'
p498
S'The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate "finite-population reproductive numbers" with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0.'
p499
sS'AD'
p500
S'615 North Wolfe St, The Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA. Electronic address: keeganlt@mcmaster.ca. 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada.'
p501
sS'VI'
p502
S'397'
p503
sS'IS'
p504
S'1095-8541 (Electronic) 0022-5193 (Linking)'
p505
sS'AU'
p506
(lp507
S'Keegan LT'
p508
aS'Dushoff J'
p509
asS'MHDA'
p510
S'2016/02/20 06:00'
p511
sS'PHST'
p512
(lp513
S'2015/07/21 [received]'
p514
aS'2016/01/13 [revised]'
p515
aS'2016/01/16 [accepted]'
p516
aS'2016/02/15 [aheadofprint]'
p517
asS'OTO'
p518
(lp519
S'NOTNLM'
p520
asS'EDAT'
p521
S'2016/02/20 06:00'
p522
sS'SO'
p523
S'J Theor Biol. 2016 May 21;397:1-12. doi: 10.1016/j.jtbi.2016.01.022. Epub 2016 Feb 15.'
p524
sS'SB'
p525
S'IM'
p526
sS'PMID'