-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathdiff_clinvar_alleles.py
68 lines (59 loc) · 2.25 KB
/
diff_clinvar_alleles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import sys
import pandas as pd
"""
Rudimentary differ for clinvar_alleles.tsv.gz
Usage: python diff_clinvar_alleles.py \
<clinvar_alleles.A.tsv.gz> \
<clinvar_alleles.B.tsv.gz>
"""
print "comparing A: {} and B: {}".format(sys.argv[1], sys.argv[2])
sep = "#" * 25
print sep
INDEX = ['chrom', 'pos', 'ref', 'alt', 'allele_id']
df_a = pd.read_csv(sys.argv[1], sep="\t", compression='gzip',
index_col=False).sort_values(INDEX).set_index(INDEX)
print "A: {} rows".format(df_a.shape[0])
df_b = pd.read_csv(sys.argv[2], sep="\t", compression='gzip',
index_col=False).sort_values(INDEX).set_index(INDEX)
print "B: {} rows".format(df_b.shape[0])
rows_a = set(df_a.index)
rows_b = set(df_b.index)
common_rows = sorted(rows_a & rows_b)
print "{} rows in common".format(len(common_rows))
rows_a_not_b = list(rows_a - rows_b)
print "{} rows in A but not B, e.g.: {}".format(
len(rows_a_not_b), ", ".join(map(str, rows_a_not_b[:5])))
rows_b_not_a = list(rows_b - rows_a)
print "{} rows in B but not A, e.g.: {}".format(
len(rows_b_not_a), ", ".join(map(str, rows_b_not_a[:5])))
print sep
cols_a = set(df_a.columns)
cols_b = set(df_b.columns)
common_columns = sorted(cols_a & cols_b)
print "{} columns in common: {}".format(
len(common_columns), ", ".join(common_columns))
print "{} columns in A but not B: {}".format(
len(cols_a - cols_b), ", ".join(sorted(cols_a - cols_b)))
print "{} columns in B but not A: {}".format(
len(cols_b - cols_a), ", ".join(sorted(cols_b - cols_a)))
print sep
df_a = df_a[common_columns].loc[common_rows]
df_b = df_b[common_columns].loc[common_rows]
for col in common_columns:
print "comparing:", col
matches = df_a[col] == df_b[col]
matches |= df_a[col].isnull() & df_b[col].isnull()
n_match = matches.sum()
n_diff = matches.shape[0] - n_match
print "{} rows match, {} are different".format(n_match, n_diff)
if n_diff:
print "example differences:"
showed = 0
for ix, is_match in matches.iteritems():
if not is_match:
print "\t{}: '{}' vs '{}'".format(
ix, df_a.loc[ix][col].values, df_b.loc[ix][col].values)
showed += 1
if showed >= 5:
break
print sep