forked from tj-kim/FedEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiment_savefreq.py
182 lines (147 loc) · 5.68 KB
/
run_experiment_savefreq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""Run Experiment
This script allows to run one federated learning experiment; the experiment name, the method and the
number of clients/tasks should be precised along side with the hyper-parameters of the experiment.
The results of the experiment (i.e., training logs) are written to ./logs/ folder.
This file can also be imported as a module and contains the following function:
* run_experiment - runs one experiments given its arguments
"""
from utils.utils import *
from utils.constants import *
from utils.args import *
from torch.utils.tensorboard import SummaryWriter
def init_clients(args_, root_path, logs_root):
"""
initialize clients from data folders
:param args_:
:param root_path: path to directory containing data folders
:param logs_root: path to logs root
:return: List[Client]
"""
print("===> Building data iterators..")
train_iterators, val_iterators, test_iterators =\
get_loaders(
type_=LOADER_TYPE[args_.experiment],
root_path=root_path,
batch_size=args_.bz,
is_validation=args_.validation
)
print("===> Initializing clients..")
clients_ = []
for task_id, (train_iterator, val_iterator, test_iterator) in \
enumerate(tqdm(zip(train_iterators, val_iterators, test_iterators), total=len(train_iterators))):
if train_iterator is None or test_iterator is None:
continue
learners_ensemble =\
get_learners_ensemble(
n_learners=args_.n_learners,
name=args_.experiment,
device=args_.device,
optimizer_name=args_.optimizer,
scheduler_name=args_.lr_scheduler,
initial_lr=args_.lr,
input_dim=args_.input_dimension,
output_dim=args_.output_dimension,
n_rounds=args_.n_rounds,
seed=args_.seed,
mu=args_.mu
)
logs_path = os.path.join(logs_root, "task_{}".format(task_id))
os.makedirs(logs_path, exist_ok=True)
logger = SummaryWriter(logs_path)
client = get_client(
client_type=CLIENT_TYPE[args_.method],
learners_ensemble=learners_ensemble,
q=args_.q,
train_iterator=train_iterator,
val_iterator=val_iterator,
test_iterator=test_iterator,
logger=logger,
local_steps=args_.local_steps,
tune_locally=args_.locally_tune_clients
)
clients_.append(client)
return clients_
def run_experiment(args_):
torch.manual_seed(args_.seed)
data_dir = get_data_dir(args_.experiment)
if "logs_root" in args_:
logs_root = args_.logs_root
else:
logs_root = os.path.join("logs", args_to_string(args_))
print("==> Clients initialization..")
clients = init_clients(
args_,
root_path=os.path.join(data_dir, "train"),
logs_root=os.path.join(logs_root, "train")
)
print("==> Test Clients initialization..")
test_clients = init_clients(
args_,
root_path=os.path.join(data_dir, "test"),
logs_root=os.path.join(logs_root, "test")
)
logs_path = os.path.join(logs_root, "train", "global")
os.makedirs(logs_path, exist_ok=True)
global_train_logger = SummaryWriter(logs_path)
logs_path = os.path.join(logs_root, "test", "global")
os.makedirs(logs_path, exist_ok=True)
global_test_logger = SummaryWriter(logs_path)
global_learners_ensemble = \
get_learners_ensemble(
n_learners=args_.n_learners,
name=args_.experiment,
device=args_.device,
optimizer_name=args_.optimizer,
scheduler_name=args_.lr_scheduler,
initial_lr=args_.lr,
input_dim=args_.input_dimension,
output_dim=args_.output_dimension,
n_rounds=args_.n_rounds,
seed=args_.seed,
mu=args_.mu
)
if args_.decentralized:
aggregator_type = 'decentralized'
else:
aggregator_type = AGGREGATOR_TYPE[args_.method]
aggregator =\
get_aggregator(
aggregator_type=aggregator_type,
clients=clients,
global_learners_ensemble=global_learners_ensemble,
lr_lambda=args_.lr_lambda,
lr=args_.lr,
q=args_.q,
mu=args_.mu,
communication_probability=args_.communication_probability,
sampling_rate=args_.sampling_rate,
log_freq=args_.log_freq,
global_train_logger=global_train_logger,
global_test_logger=global_test_logger,
test_clients=test_clients,
verbose=args_.verbose,
seed=args_.seed
)
print("Training..")
pbar = tqdm(total=args_.n_rounds)
current_round = 0
while current_round <= args_.n_rounds:
aggregator.mix()
# Save more often the intermediate NN
if current_round% args_.save_freq == 0:
if "save_path" in args_:
save_root = os.path.join(args_.save_path)
os.makedirs(save_root, exist_ok=True)
aggregator.save_state_intermed(save_root, current_round)
if aggregator.c_round != current_round:
pbar.update(1)
current_round = aggregator.c_round
if "save_path" in args_:
save_root = os.path.join(args_.save_path)
os.makedirs(save_root, exist_ok=True)
aggregator.save_state(save_root)
if __name__ == "__main__":
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args = parse_args()
run_experiment(args)