forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgfl_r101vd_fpn_mstrain_2x_coco.yml
46 lines (41 loc) · 1.16 KB
/
gfl_r101vd_fpn_mstrain_2x_coco.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/gfl_r50_fpn.yml',
'_base_/optimizer_1x.yml',
'_base_/gfl_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams
weights: output/gfl_r101vd_fpn_mstrain_2x_coco/model_final
find_unused_parameters: True
use_ema: true
ema_decay: 0.9998
ResNet:
depth: 101
variant: d
norm_type: bn
freeze_at: 0
return_idx: [1,2,3]
num_stages: 4
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.001
steps: 500
TrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[480, 1333], [512, 1333], [544, 1333], [576, 1333], [608, 1333], [640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
- RandomFlip: {prob: 0.5}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
- Gt2GFLTarget:
downsample_ratios: [8, 16, 32, 64, 128]
grid_cell_scale: 8