forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppyoloe_plus_crn_m_80e_sku110k.yml
127 lines (110 loc) · 2.73 KB
/
ppyoloe_plus_crn_m_80e_sku110k.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
_BASE_: [
'./_base_/sku110k.yml',
'../../runtime.yml'
]
log_iter: 10
snapshot_epoch: 20
weights: output/ppyoloe_plus_crn_s_80e_coco/model_final
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_m_obj365_pretrained.pdparams
depth_mult: 0.67
width_mult: 0.75
# arch
architecture: YOLOv3
norm_type: sync_bn
use_ema: true
ema_decay: 0.9998
custom_black_list: ['reduce_mean']
YOLOv3:
backbone: CSPResNet
neck: CustomCSPPAN
yolo_head: PPYOLOEHead
post_process: ~
CSPResNet:
layers: [3, 6, 6, 3]
channels: [64, 128, 256, 512, 1024]
return_idx: [1, 2, 3]
use_large_stem: True
use_alpha: True
CustomCSPPAN:
out_channels: [768, 384, 192]
stage_num: 1
block_num: 3
act: 'swish'
spp: true
use_alpha: True
PPYOLOEHead:
fpn_strides: [32, 16, 8]
grid_cell_scale: 5.0
grid_cell_offset: 0.5
static_assigner_epoch: -1
use_varifocal_loss: True
loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5}
static_assigner:
name: ATSSAssigner
topk: 9
assigner:
name: TaskAlignedAssigner
topk: 13
alpha: 1.0
beta: 6.0
nms:
name: MultiClassNMS
nms_top_k: 3000
keep_top_k: 1000
score_threshold: 0.01
nms_threshold: 0.7
# reader
worker_num: 8
eval_height: &eval_height 960
eval_width: &eval_width 960
eval_size: &eval_size [*eval_height, *eval_width]
TrainReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [3000, 1800], keep_ratio: True, interp: 2}
- RandomDistort: {}
- RandomCrop: {}
- RandomFlip: {}
batch_transforms:
- BatchRandomResize: {target_size: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1056, 1088, 1120, 1152], random_size: True, random_interp: True, keep_ratio: False}
- NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
- Permute: {}
- PadGT: {}
batch_size: 8
shuffle: true
drop_last: true
use_shared_memory: true
collate_batch: true
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: *eval_size, keep_ratio: False, interp: 2}
- NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
- Permute: {}
batch_size: 2
TestReader:
inputs_def:
image_shape: [3, *eval_height, *eval_width]
sample_transforms:
- Decode: {}
- Resize: {target_size: *eval_size, keep_ratio: False, interp: 2}
- NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
- Permute: {}
batch_size: 1
# optimizer
epoch: 80
LearningRate:
base_lr: 0.004
schedulers:
- !CosineDecay
max_epochs: 96
- !LinearWarmup
start_factor: 0.
epochs: 5
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2