Skip to content

Latest commit

 

History

History
270 lines (157 loc) · 6.26 KB

DetAnnoTools_en.md

File metadata and controls

270 lines (157 loc) · 6.26 KB

简体中文 | English

Object Detection Annotation Tools

Concents

LabelMe

LabelImg

Instruction of LabelMe

Installation

Please refer to The github of LabelMe for installation details.

Ubuntu
sudo apt-get install labelme

# or
sudo pip3 install labelme

# or install standalone executable from:
# https://github.com/wkentaro/labelme/releases
macOS
brew install pyqt  # maybe pyqt5
pip install labelme

# or
brew install wkentaro/labelme/labelme  # command line interface
# brew install --cask wkentaro/labelme/labelme  # app

# or install standalone executable/app from:
# https://github.com/wkentaro/labelme/releases

We recommend installing by Anoncanda.

conda create –name=labelme python=3
conda activate labelme
pip install pyqt5
pip install labelme

Annotation of Images in LabelMe

After starting labelme, select an image or an folder with images.

Select create polygons in the formula bar. Draw an annotation area as shown in the following GIF. You can right-click on the image to select different shape. When finished, press the Enter/Return key, then fill the corresponding label in the popup box, such as, people.

Click the save button in the formula bar,it will generate an annotation file in json.

Annotation Format of LabelMe

Export Format of LabelMe

#generate an annotation file
png/jpeg/jpg-->labelme-->json

Summary of Format Conversion

#convert annotation file to VOC dataset format
json-->labelme2voc.py-->VOC dataset

#convert annotation file to COCO dataset format
json-->labelme2coco.py-->COCO dataset

Annotation file(json)—>VOC Dataset

Use this script labelme2voc.py in command line.

python labelme2voc.py data_annotated(annotation folder) data_dataset_voc(output folder) --labels labels.txt

Then, it will generate following contents:

# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/Annotations
#   - data_dataset_voc/AnnotationsVisualization

Annotation file(json)—>COCO Dataset

Convert the data annotated by LabelMe to COCO dataset by the script x2coco.py provided by PaddleDetection.

python tools/x2coco.py \
                --dataset_type labelme \
                --json_input_dir ./labelme_annos/ \
                --image_input_dir ./labelme_imgs/ \
                --output_dir ./cocome/ \
                --train_proportion 0.8 \
                --val_proportion 0.2 \
                --test_proportion 0.0

After the user dataset is converted to COCO data, the directory structure is as follows (Try to avoid use Chinese for the path name in case of errors caused by Chinese coding problems):

dataset/xxx/
├── annotations
│   ├── train.json  # Annotation file of coco data
│   ├── valid.json  # Annotation file of coco data
├── images
│   ├── xxx1.jpg
│   ├── xxx2.jpg
│   ├── xxx3.jpg
│   |   ...
...

Instruction

Installation of LabelImg

Please refer to The github of LabelImg for installation details.

Ubuntu
sudo apt-get install pyqt5-dev-tools
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
macOS
brew install qt  # Install qt-5.x.x by Homebrew
brew install libxml2

or using pip

pip3 install pyqt5 lxml # Install qt and lxml by pip

make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

We recommend installing by Anoncanda.

Download and go to the folder of labelImg

conda install pyqt=5
conda install -c anaconda lxml
pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Installation Notes

Use python scripts to startup LabelImg: python labelImg.py <IMAGE_PATH>

Annotation of images in LabelImg

After the startup of LabelImg, select an image or a folder with images.

Select Create RectBox in the formula bar. Draw an annotation area as shown in the following GIF. When finished, select corresponding label in the popup box. Then save the annotated file in three forms: VOC/YOLO/CreateML.

Annotation Format of LabelImg

Export Format of LabelImg

#generate annotation files
png/jpeg/jpg-->labelImg-->xml/txt/json

Notes of Format Conversion

PaddleDetection supports the format of VOC or COCO. The annotation file generated by LabelImg needs to be converted by VOC or COCO. You can refer to PrepareDataSet.