-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconvert_labelme_tfs.py
135 lines (119 loc) · 5.12 KB
/
convert_labelme_tfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import sys
from pathlib import Path
from typing import List
import numpy as np
from sahi.utils.coco import Coco, CocoAnnotation, CocoCategory, CocoImage
from sahi.utils.file import list_files_recursively, load_json, save_json
from tqdm import tqdm
class labelme2coco:
def __init__(self):
raise RuntimeError(
"Use labelme2coco.convert() or labelme2coco.get_coco_from_labelme_folder() instead."
)
def get_coco_from_labelme_folder(
labelme_folder: str, coco_category_list: List = None, skip_labels: List[str] = []
) -> Coco:
"""
Args:
labelme_folder: folder that contains labelme annotations and image files
coco_category_list: start from a predefined coco cateory list
"""
# get json list
_, abs_json_path_list = list_files_recursively(labelme_folder, contains=[".json"])
labelme_json_list = abs_json_path_list
labelme_json_list.sort()
# init coco object
coco = Coco()
coco.add_category(CocoCategory(id=1, name="stop"))
coco.add_category(CocoCategory(id=2, name="left"))
coco.add_category(CocoCategory(id=3, name="right"))
coco.add_category(CocoCategory(id=4, name="straight"))
coco.add_category(CocoCategory(id=5, name="no_left"))
coco.add_category(CocoCategory(id=6, name="no_right"))
coco.add_category(CocoCategory(id=7, name="speed_limit_50"))
coco.add_category(CocoCategory(id=8, name="no_parking_or_waiting"))
if coco_category_list is not None:
coco.add_categories_from_coco_category_list(coco_category_list)
if len(skip_labels) > 0:
print(f"Will skip the following annotated labels: {skip_labels}")
# parse labelme annotations
category_ind = 0
for json_path in tqdm(
labelme_json_list, "Converting labelme annotations to COCO format"
):
data = load_json(json_path)
# get image size
image_path = str(Path(labelme_folder) / data["imagePath"])
# use the image sizes provided by labelme (they already account for
# things such as EXIF orientation)
width = data["imageWidth"]
height = data["imageHeight"]
# init coco image
coco_image = CocoImage(file_name=data["imagePath"], height=height, width=width)
# iterate over annotations
for shape in data["shapes"]:
# set category name and id
category_name = shape["label"]
if category_name in skip_labels:
continue
category_id = None
for (
coco_category_id,
coco_category_name,
) in coco.category_mapping.items():
if category_name == coco_category_name:
category_id = coco_category_id
break
# add category if not present
# if category_id is None:
# category_id = category_ind
# coco.add_category(CocoCategory(id=category_id, name=category_name))
# category_ind += 1
# skip if category_id is None
if category_id is None:
continue
# circles and lines to segmentation
if shape["shape_type"] == "circle":
(cx,cy), (x1,y1) = shape["points"]
r = np.linalg.norm(np.array([x1-cx,y1-cy]))
angles = np.linspace(0,2*np.pi,50*(int(r)+1))
x = cx + r * np.cos(angles)
y = cy + r * np.sin(angles)
points = np.rint(np.append(x,y).reshape(-1,2,order='F'))
_, index = np.unique(points, return_index=True, axis=0)
shape["points"] = points[np.sort(index)]
shape["shape_type"] = "polygon"
elif shape["shape_type"] == "line":
(x1,y1), (x2,y2) = shape["points"]
shape["points"] = [x1,y1,x2,y2,x2+1e-3,y2+1e-3,x1+1e-3,y1+1e-3]
shape["shape_type"] = "polygon"
# parse bbox/segmentation
if shape["shape_type"] == "rectangle":
x1 = shape["points"][0][0]
y1 = shape["points"][0][1]
x2 = shape["points"][1][0]
y2 = shape["points"][1][1]
coco_annotation = CocoAnnotation(
bbox=[x1, y1, x2 - x1, y2 - y1],
category_id=category_id,
category_name=category_name,
)
elif shape["shape_type"] == "polygon":
segmentation = [np.asarray(shape["points"]).flatten().tolist()]
coco_annotation = CocoAnnotation(
segmentation=segmentation,
category_id=category_id,
category_name=category_name,
)
else:
raise NotImplementedError(
f'shape_type={shape["shape_type"]} not supported.'
)
coco_image.add_annotation(coco_annotation)
coco.add_image(coco_image)
return coco
if __name__ == "__main__":
input_folder = sys.argv[1] # test
output_file = sys.argv[2] # test.json
coco = get_coco_from_labelme_folder(input_folder)
save_json(coco.json, output_file)