Skip to content

Latest commit

 

History

History
209 lines (163 loc) · 5.76 KB

README.rst

File metadata and controls

209 lines (163 loc) · 5.76 KB
https://hitsofcode.com/github/manncodes/xeno

Xeno:Deep learning library from Scratch.

Scalable deep learning library built from scratch. Purely based on NumPy.

Currently in build phase

Descriptions

Xeno is:

  1. Based on pure Numpy/Python.
  2. Just a midnight curiosity forming real shape.
  3. Supports linear stacking of layers.

Features

Xeno contains following dee learning features, currently:

  • Activations
    • Sigmoid
    • Tanh
    • ReLU
    • Linear
    • Softmax
    • Elliot
    • SymmetricElliot
    • SoftPlus
    • SoftSign
  • Initializations
    • Zero
    • One
    • Uniform
    • Normal
    • LecunUniform
    • GlorotUniform
    • GlorotNormal
    • HeNormal
    • HeUniform
    • Orthogonal
  • Layers
    • Linear
    • Dense
    • Convolution
    • Softmax
    • Dropout
    • Embedding
    • BatchNormal
    • MeanPooling
    • MaxPooling
    • SimpleRNN
    • GRU
    • LSTM
    • Flatten
    • DimShuffle
  • Objectives
    • Objectives
    • MeanSquaredError
    • HellingerDistance
    • BinaryCrossEntropy
    • SoftmaxCategoricalCrossEntropy
  • Optimizers
    • SGD
    • Momentum
    • NesterovMomentum
    • Adagrad
    • RMSprop
    • Adadelta
    • Adam
    • Adamax

One simple code example:

import numpy as np
from sklearn.datasets import load_digits
import xeno

# prepare
xeno.utils.random.set_seed(1234)

# data
digits = load_digits()
X_train = digits.data
X_train /= np.max(X_train)
Y_train = digits.target
n_classes = np.unique(Y_train).size

# model
model = xeno.model.Model()
model.add(xeno.layers.Dense(n_out=500, n_in=64, activation=xeno.activations.ReLU()))
model.add(xeno.layers.Dense(n_out=n_classes, activation=xeno.activations.Softmax()))
model.compile(loss=xeno.objectives.SCCE(), optimizer=xeno.optimizers.SGD(lr=0.005))

# train
model.fit(X_train, xeno.utils.data.one_hot(Y_train), max_iter=150, validation_split=0.1)

Another example of an LSTM sentence classifier in xeno:

import os

import numpy as np

import xeno


def prepare_data(nb_seq=20):
    all_xs = []
    all_ys = []
    all_words = set()
    all_labels = set()

    # get all words and labels
    with open(os.path.join(os.path.dirname(__file__), 'data/trec/TREC_10.label')) as fin:
        for line in fin:
            words = line.strip().split()
            y = words[0].split(':')[0]
            xs = words[1:]
            all_xs.append(xs)
            all_ys.append(y)

            for word in words:
                all_words.add(word)
            all_labels.add(y)

    word2idx = {w: i for i, w in enumerate(sorted(all_words))}
    label2idx = {label: i for i, label in enumerate(sorted(all_labels))}

    # get index words and labels
    all_idx_xs = []
    for sen in all_xs:
        idx_x = [word2idx[word] for word in sen[:nb_seq]]
        idx_x = [0] * (nb_seq - len(idx_x)) + idx_x
        all_idx_xs.append(idx_x)
    all_idx_xs = np.array(all_idx_xs, dtype='int32')

    all_idx_ys = xeno.utils.data.one_hot(
        np.array([label2idx[label] for label in all_ys], dtype='int32'))

    return all_idx_xs, all_idx_ys, len(word2idx), len(label2idx)


def main(max_iter):
    nb_batch = 30
    nb_seq = 20

    xs, ys, x_size, y_size = prepare_data(nb_seq)

    net = xeno.Model()
    net.add(xeno.layers.Embedding(nb_batch=nb_batch, nb_seq=nb_seq,
                                  n_out=200, input_size=x_size,
                                  static=True))
    net.add(xeno.layers.BatchLSTM(n_out=400, return_sequence=True))
    net.add(xeno.layers.BatchLSTM(n_out=200, return_sequence=True))
    net.add(xeno.layers.MeanPooling((nb_seq, 1)))
    net.add(xeno.layers.Flatten())
    net.add(xeno.layers.Softmax(n_out=y_size))
    net.compile(loss='scce', optimizer=xeno.optimizers.SGD(lr=0.005))
    net.fit(xs, ys, batch_size=nb_batch, validation_split=0.1, max_iter=max_iter)


def main2(max_iter):
    nb_batch = 30
    nb_seq = 20

    xs, ys, x_size, y_size = prepare_data(nb_seq)

    net = xeno.Model()
    net.add(xeno.layers.Embedding(nb_batch=nb_batch, nb_seq=nb_seq,
                                  n_out=200, input_size=x_size,
                                  static=False))
    net.add(xeno.layers.BatchLSTM(n_out=400, return_sequence=True))
    net.add(xeno.layers.BatchLSTM(n_out=200, return_sequence=True))
    net.add(xeno.layers.MeanPooling((nb_seq, 1)))
    net.add(xeno.layers.Flatten())
    net.add(xeno.layers.Softmax(n_out=y_size))
    net.compile(loss='scce', optimizer=xeno.optimizers.RMSprop())
    net.fit(xs, ys, batch_size=nb_batch, validation_split=0.1, max_iter=max_iter)


if __name__ == '__main__':
    main2(100)