This repository has been archived by the owner on Feb 1, 2021. It is now read-only.
forked from satejsoman/prclz
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathi_topology_utils.py
364 lines (277 loc) · 14.3 KB
/
i_topology_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import typing
from typing import Union
from itertools import combinations, chain, permutations
import geopandas as gpd
from shapely.geometry import MultiPolygon, Polygon, MultiLineString, Point, LineString
from shapely.ops import cascaded_union
from shapely.wkt import loads
import pandas as pd
import numpy as np
import time
import os
import matplotlib.pyplot as plt
import sys
import argparse
from i_topology import PlanarGraph
# DEFINE GLOBAL PATHS
ROOT = "../"
DATA_PATH = os.path.join(ROOT, "data")
BLOCK_PATH = os.path.join(DATA_PATH, "blocks")
BLDGS_PATH = os.path.join(DATA_PATH, "buildings")
PARCELS_PATH = os.path.join(DATA_PATH, "parcels")
LINES_PATH = os.path.join(DATA_PATH, "lines")
COMPLEXITY_PATH = os.path.join(DATA_PATH, "complexity")
DG_BLDGS_PATH = os.path.join(DATA_PATH, "dg_buildings")
DG_PARCELS_PATH = os.path.join(DATA_PATH, "dg_parcels")
THRESHOLD_METERS = 1
WATERWAY_WEIGHT = 1e5
NATURAL_WEIGHT = 1e5
def point_to_node(point: Point):
'''
Helper function to convert shapely.Point -> Tuple
'''
return point.coords[0]
def csv_to_geo(csv_path, add_file_col=False) -> gpd.GeoDataFrame:
'''
Given a path to a block.csv file, returns as a GeoDataFrame
'''
df = pd.read_csv(csv_path, usecols=['block_id', 'geometry'])
# Block id should unique identify each block
assert df['block_id'].is_unique, "Loading {} but block_id is not unique".format(csv_path)
df.rename(columns={"geometry":"block_geom"}, inplace=True)
df['block_geom'] = df['block_geom'].apply(loads)
if add_file_col:
f = csv_path.split("/")[-1]
df['gadm_code'] = f.replace("blocks_", "").replace(".csv", "")
return gpd.GeoDataFrame(df, geometry='block_geom')
def load_geopandas_files(region: str, gadm_code: str,
gadm: str) -> (gpd.GeoDataFrame, gpd.GeoDataFrame, gpd.GeoDataFrame):
bldgs_path = os.path.join(BLDGS_PATH, region, gadm_code, "buildings_{}.geojson".format(gadm))
lines_path = os.path.join(LINES_PATH, region, gadm_code, "lines_{}.geojson".format(gadm))
parcels_path = os.path.join(PARCELS_PATH, region, gadm_code, "parcels_{}.geojson".format(gadm))
blocks_path = os.path.join(BLOCK_PATH, region, gadm_code, "blocks_{}.csv".format(gadm))
bldgs = gpd.read_file(bldgs_path)
blocks = csv_to_geo(blocks_path)
parcels = gpd.read_file(parcels_path)
return bldgs, blocks, parcels, None
def load_reblock_inputs(region: str, gadm_code: str, gadm: str):
complexity_path = os.path.join(COMPLEXITY_PATH, region, gadm_code, "complexity_{}.csv".format(gadm))
parcels_path = os.path.join(PARCELS_PATH, region, gadm_code, "parcels_{}.geojson".format(gadm))
# Load the complexity file
complexity = pd.read_csv(complexity_path)
complexity = gpd.GeoDataFrame(complexity)
complexity['geometry'] = complexity['geometry'].apply(loads)
complexity.rename(columns={'centroids_multipoint': 'buildings'}, inplace=True)
complexity.set_geometry('geometry', inplace=True)
load_fn = lambda x: [point_to_node(p) for p in loads(x)]
complexity['buildings'] = complexity['buildings'].apply(load_fn)
complexity['building_count'] = complexity['buildings'].apply(lambda x: len(x))
# Split it into two dataframes
buildings_df = complexity[['block_id', 'buildings', 'building_count']]
blocks_df = complexity[['block_id', 'geometry']]
# Now load the parcels
parcels_df = gpd.read_file(parcels_path)
return parcels_df, buildings_df, blocks_df
def load_reblock_inputs_dg(region: str, gadm_code: str, gadm: str):
# Paths
parcels_path = os.path.join(DG_PARCELS_PATH, region, gadm_code, "parcels_{}.geojson".format(gadm))
buildings_path = os.path.join(DG_BLDGS_PATH, region, gadm_code, "buildings_{}.geojson".format(gadm))
blocks_path = os.path.join(BLOCK_PATH, region, gadm_code, "blocks_{}.csv".format(gadm))
# Load the files
parcels_df = gpd.read_file(parcels_path)
buildings_df = gpd.read_file(buildings_path)
blocks_df = csv_to_geo(blocks_path)
blocks_df.rename(columns={'block_geom': 'geometry'}, inplace=True)
blocks_df = blocks_df[['geometry', 'block_id']]
blocks_df = gpd.GeoDataFrame(blocks_df, geometry='geometry')
# print("Blocks {}".format(blocks_df.columns))
# print(type(blocks_df))
# print("TESTING")
# print("Buildings {}".format(buildings_df.columns))
# Map buildings to a block
# Convert buildings to centroids
buildings_df['buildings'] = buildings_df['geometry'].centroid
buildings_df.set_geometry('buildings', inplace=True)
# We want to map each building to a given block to then map the buildings to a parcel
buildings_df = gpd.sjoin(buildings_df[['buildings', 'osm_id']], blocks_df, how='left', op='within')
buildings_df = buildings_df[['buildings', 'block_id']].groupby('block_id').agg(list)
buildings_df['building_count'] = buildings_df['buildings'].apply(lambda x: len(x))
buildings_df.reset_index(inplace=True)
return parcels_df, buildings_df, blocks_df
def prepare_parcels(bldgs: gpd.GeoDataFrame, blocks: gpd.GeoDataFrame,
parcels: gpd.GeoDataFrame) -> pd.DataFrame:
'''
For a single GADM, this script (1) creates the PlanarGraph associated
with each respective parcel and (2) maps all buildings to their corresponding
parcel. The buildings are converted to centroids and then to Node types so
they can just be added to the PlanarGraph
'''
# Convert buildings to centroids
bldgs['centroids'] = bldgs['geometry'].centroid
bldgs.set_geometry('centroids', inplace=True)
# We want to map each building to a given block to then map the buildings to a parcel
bldgs = gpd.sjoin(bldgs, blocks, how='left', op='within')
bldgs.drop(columns=['index_right'], inplace=True)
# Now, join the parcels with the buildings
parcels = parcels.merge(bldgs[['block_id', 'centroids']], how='left', on='block_id')
parcels.rename(columns={'geometry':'parcel_geometry', 'centroids':'buildings'}, inplace=True)
# Now collapse on the block and clean
parcels = parcels.groupby('block_id').agg(list)
parcels['parcel_geometry'] = parcels['parcel_geometry'].apply(lambda x: x[0])
parcels['buildings'] = parcels['buildings'].apply(lambda x: [] if x==[np.nan] else x)
# Checks
assert blocks.shape[0] == parcels.shape[0] # We should maintain block count
parcels['buildings_count'] = parcels['buildings'].apply(lambda x: len(x))
#assert parcels['buildings_count'].sum() == bldgs.shape[0] # We should maintain bldgs count
parcels.reset_index(inplace=True)
# Now, create the graph for each parcel
parcels['planar_graph'] = parcels['parcel_geometry'].apply(PlanarGraph.multilinestring_to_planar_graph)
# And convert the buildings from shapely.Points -> topology.Nodes
parcels['buildings'] = parcels['buildings'].apply(lambda x: [point_to_node(p) for p in x])
return parcels
def edge_list_from_linestrings(lines_df):
'''
Extract the geometry from
'''
all_edges = []
lines_df_geom = lines_df.geometry
for l in lines_df_geom:
l_graph = PlanarGraph.linestring_to_planar_graph(l, False)
l_graph_edges = l_graph.es
all_edges.extend(l_graph_edges)
return all_edges
def check_block_parcel_consistent(block: MultiPolygon, parcel: MultiLineString):
block_coords = block.exterior.coords
parcel_coords = list(chain.from_iterable(l.coords for l in parcel))
for block_coord in block_coord:
assert block_coord in parcel_coords
def update_edge_types(parcel_graph: PlanarGraph, block_polygon: Polygon, check=False, lines_pgraph=None):
block_coords_list = list(block_polygon.exterior.coords)
coords = set(block_coords_list)
rv = (None, None)
missing = None
total = None
# Option to verify that each point in the block is in fact in the parcel
if check:
parcel_coords = set(v['name'] for v in parcel_graph.vs)
total = 0
is_in = 0
for coord in coords:
is_in = is_in+1 if coord in parcel_coords else is_in
total += 1
missing = total-is_in
#print("{} of {} block coords are NOT in the parcel coords".format(missing, total))
# Get list of coord_tuples from the polygon
assert block_coords_list[0] == block_coords_list[-1], "Not a complete linear ring for polygon"
# Loop over the block coords (as define an edge) and update the corresponding edge type in the graph accordingly
# NOTE: every block coord will be within the parcel graph vertices
for i, n0 in enumerate(block_coords_list):
if i==0:
continue
else:
n1 = block_coords_list[i-1]
u_list = parcel_graph.vs.select(name_eq=n0)
v_list = parcel_graph.vs.select(name_eq=n1)
if len(u_list) > 0 and len(v_list) > 0:
u = u_list[0]
v = v_list[0]
path_idxs = parcel_graph.get_shortest_paths(u, v, weights='weight', output='epath')[0]
# the coords u and v from the block are
if lines_pgraph is None:
parcel_graph.es[path_idxs]['edge_type'] = 'highway'
else:
ft_type = get_feature_type_from_lines(lines_pgraph, n0, n1 )
parcel_graph.es[path_idxs]['edge_type'] = 'new'
# Now view our new graph
parcel_df = convert_to_gpd(parcel_graph)
print("\n\n changing to {}".format(ft_type))
plot_types(parcel_df)
plt.show()
parcel_graph.es[path_idxs]['edge_type'] = ft_type
parcel_graph.es.select(edge_type_eq='highway')['weight'] = 0
parcel_graph.es.select(edge_type_eq='waterway')['weight'] = WATERWAY_WEIGHT
parcel_graph.es.select(edge_type_eq='natural')['weight'] = NATURAL_WEIGHT
rv = (missing, total)
return rv
###########################################################################################
###########################################################################################
# NOTE: this section is all code used to recover the feature type (i.e. waterway, road, natural)
# contained within OSM but not contained within the block files
def convert_to_gpd(g):
if 'edge_type' not in g.es.attributes():
g.es['edge_type'] = None
edge_geom = [LineString(g.edge_to_coords(e)) for e in g.es]
edge_types = g.es['edge_type']
df = pd.DataFrame(data={'geometry':edge_geom, 'edge_type': edge_types})
return gpd.GeoDataFrame(df)
def plot_types(g):
edge_color_map = {'new': 'red', None: 'orange', 'waterway': 'blue',
'highway': 'black', 'natural': 'green', 'gadm_boundary': 'orange'}
ax = g[g['edge_type'].isna()].plot(color='red')
for t in g.edge_type.unique():
d = g[g['edge_type'] == t]
if d.shape[0] > 0:
d.plot(ax=ax, color=edge_color_map[t])
def create_lines_graph(lines: gpd.GeoDataFrame) -> PlanarGraph:
'''
Create a PlanarGraph based on a lines GeoDataFrame. The graph will
have a feature_type attribute for the edges
'''
b_waterway = ((lines['highway']=="") & (lines['natural']=="")) | (lines['waterway'].notna())
b_highway = ((lines['waterway']=="") & (lines['natural']=="")) | (lines['highway'].notna())
b_natural = ((lines['highway']=="") & (lines['waterway']=="")) | (lines['natural'].notna())
lines['feature_type'] = None
lines.loc[b_waterway,'feature_type']='waterway'
lines.loc[b_highway,'feature_type']='highway'
lines.loc[b_natural,'feature_type']='natural'
assert np.all(lines['feature_type'].notna())
pgraph = PlanarGraph()
for index, row in lines[['feature_type','geometry']].iterrows():
ft = row['feature_type']
coords_list = list(row['geometry'].coords)
for i, coords in enumerate(coords_list):
if i == 0:
continue
else:
pgraph.add_edge(coords, coords_list[i-1], feature_type=ft)
return pgraph
def get_feature_type_from_lines(lines_pgraph: PlanarGraph, coords0, coords1 ) -> str:
# edge0_ft = lines_pgraph.add_node_to_closest_edge(coords0, get_edge=True)['feature_type']
# edge1_ft = lines_pgraph.add_node_to_closest_edge(coords1, get_edge=True)['feature_type']
edge0, dist0 = lines_pgraph.add_node_to_closest_edge(coords0, get_edge=True)
edge1, dist1 = lines_pgraph.add_node_to_closest_edge(coords1, get_edge=True)
# If our 'closest edge' is in fact relatively far from any line, then the block point
# is actually probably from the GADM boundary
edge0_ft = 'gadm_boundary' if dist0 > THRESHOLD_METERS else edge0['feature_type']
edge1_ft = 'gadm_boundary' if dist1 > THRESHOLD_METERS else edge1['feature_type']
if edge0_ft != edge1_ft:
print("block coords are different types --> coord0 = {} | coord1 = {}".format(edge0_ft, edge1_ft))
if 'highway' in (edge0_ft, edge1_ft):
return 'highway'
else:
return 'natural'
else:
return edge0_ft
###########################################################################################
###########################################################################################
if __name__ == "__main__":
BLOCKS = '../data/blocks/Africa/KEN'
LINES = BLOCKS.replace("DJI", "KEN").replace("blocks", "lines")
gadm = 'KEN.30.10.1_1'
lines = gpd.read_file(os.path.join(LINES, 'lines_{}.geojson'.format(gadm)))
blocks = csv_to_geo(os.path.join(BLOCKS, 'blocks_{}.csv'.format(gadm)))
b_waterway = ((lines['highway']=="") & (lines['natural']=="")) | (lines['waterway'].notna())
b_highway = ((lines['waterway']=="") & (lines['natural']=="")) | (lines['highway'].notna())
b_natural = ((lines['highway']=="") & (lines['waterway']=="")) | (lines['natural'].notna())
lines['feature_type'] = None
lines.loc[b_waterway,'feature_type']='waterway'
lines.loc[b_highway,'feature_type']='highway'
lines.loc[b_natural,'feature_type']='natural'
assert np.all(lines_df['feature_type'].notna())
fig, ax = plt.subplots(1,2)
blocks.plot(alpha=0.2, color='black', ax=ax[0])
colors = {'waterway':'blue', 'highway':'red', 'natural':'green'}
for f in ['waterway', 'highway', 'natural']:
d = lines[lines['feature_type']==f]
if d.shape[0] > 0:
d.plot(color=colors[f], ax=ax[1])