-
Notifications
You must be signed in to change notification settings - Fork 0
/
helpfunc.py
395 lines (341 loc) · 17.8 KB
/
helpfunc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# -*- coding: utf-8 -*-
"""General helper functions used through the project"""
import pandas as pd
import numpy as np
import re
import json
import geopandas as gpd
import matplotlib.pyplot as plt
from collections import defaultdict
from neural import prepare_future
def clean_Fs_and_years(dataframe):
'''
Cleans columns with title Y----F and removes Y from year column titles
Input:
- dataframe (pandas dataframe): dataframe with food balance data for multiple countries
Output:
- dataframe (pandas dataframe): updated dataframe after cleaning
'''
cols_to_drop = dataframe.columns[dataframe.columns.str.endswith("F")]; #creating a list of columns to be removed
dataframe = dataframe.drop(columns=cols_to_drop);
dataframe.columns = dataframe.columns.str.replace("Y","") #rename the columns by deleting "Y" at the beginning
return dataframe
def replace_names_of_countries(dataframe, pairs):
'''
Replaces old country names for consistency across different dataframes
Inputs:
- dataframe (pandas dataframe): dataframe with food balance data for multiple countries
- pairs (list): tuples (old, new), where old is going to be replaced by new in the 'Area' part of dataframe
Output:
- dataframe (pandas dataframe): updated dataframe after replacements
'''
for pair in pairs:
dataframe['Area'] = dataframe['Area'].replace(pair[0], pair[1])
return dataframe
def obtain_supply(dataframe_balance):
'''
Obtains a dataframe with all lines relative to supply from dataframe (by selecting Item Code = 2901 and Element Code = 664) and drops unecessary data
Inputs:
- dataframe_balance (pandas dataframe): dataframe with food balance data for multiple countries
Outputs:
- dataframe_supply (pandas dataframe): dataframe with food supply data for multiple countries
'''
dataframe_supply = dataframe_balance[(dataframe_balance["Item Code"] == 2901) & (dataframe_balance["Element Code"] == 664)]
dataframe_supply = dataframe_supply.drop(columns=["Area Code","Item Code","Item","Element Code","Element", "Unit"])
return dataframe_supply
def obtain_protein(dataframe_balance):
dataframe_supply = dataframe_balance[(dataframe_balance["Item Code"] == 2901) &(dataframe_balance["Element Code"] == 674)]
dataframe_supply = dataframe_supply.drop(columns=["Area Code","Item Code","Item","Element Code","Element", "Unit"])
return dataframe_supply
def obtain_fat(dataframe_balance):
dataframe_supply = dataframe_balance[(dataframe_balance["Item Code"] == 2901) &(dataframe_balance["Element Code"] == 684)]
dataframe_supply = dataframe_supply.drop(columns=["Area Code","Item Code","Item","Element Code","Element", "Unit"])
return dataframe_supply
def merge_countries(dataframe, replacements):
'''
Merges the history of old countries to their "offspring", in order to smooth out the evolution of one country's supply over the years
Inputs:
- dataframe (pandas dataframe): dataframe with food supply data for multiple countries
- replacements (dictionary): dictionary in the form {old : news}, where old is the previous name for the country or countries listed in news
Outputs:
- clean_dataframe (pandas dataframe): dataframe with food supply data for multiple countries (after merging)
'''
clean_dataframe = dataframe.copy()
for old in replacements:
for new in replacements[old]:
clean_dataframe[new] += clean_dataframe[old]
clean_dataframe = clean_dataframe.drop(old, 1) # old country info is no longer necessary
return clean_dataframe
def single_age(age_range):
'''
Given age_range, returns a list of all individual ages in that range
Input:
- age_range(str/int/float): age range in formats "x" (single age; type int), "x-y" (multiple ages; type str) or nan (missing value; type float)
Output:
- individual_ages (int/lst): a single age (-1 if input is missing value; type int) or a list of single ages (type lst)
'''
res = None
if type(age_range) == float: # nans are the only floats in the age column
return -1
elif type(age_range) == int:
return age_range
elif re.search('\d-\d', age_range):
group = age_range.split('-')
return list(range(int(group[0]), int(group[1])+1))
elif age_range == "76 and up":
return list(range(76, 101+1))
def explode_age(dataframe):
'''
Returns a dataframe where each age_range in dataframe has been expanded across multiple rows.
Input:
- dataframe (pandas dataframe): dataframe with caloric need for each age group
Output:
- new_dataframe (pandas dataframe): dataframe with caloric need for each individual age
'''
accum = []
for i in dataframe.index:
row = dataframe.loc[i]
single = single_age(row['age'])
if single == -1: # we ignore the nan values, as their rows are empty
continue
if type(single) == int:
accum.append((single, row['input kcal']))
elif type(single) == list:
accum.extend([(x, row['input kcal']) for x in single])
return pd.DataFrame(accum, columns=dataframe.columns)
def group(age):
'''
Returns the age gruop (groups of 5 ages) to which age belongs, in accordance to population dataset.
Input:
- age (int): a single age
Output:
- age_group (str): the age group to which age belongs
'''
i = int(5*(age//5))
return "{}-{}".format(i, i+4)
def compress_ages(dataframe):
'''
Returns a new dataframe where all ages in dataframe have been grouped, by making an average of all caloric needs for each age in each group.
Input:
- dataframe (pandas dataframe): dataframe with caloric need for each individual age
Output:
- new_dataframe with caloric need for each age group
'''
accum = defaultdict(list)
for i in dataframe.index:
row = dataframe.loc[i]
g_id = group(row['age'])
if g_id == "100-104":
g_id = "100+"
accum[g_id].append(row['input kcal'])
for i in accum:
accum[i] = sum(accum[i]) / len(accum[i])
return pd.DataFrame.from_dict(accum, orient='index')
def clean_pop_df(dataframe, countries):
'''
Returns a dataframe that's been cleaned for the purposes of population analysis. This includes
dropping unecessary columns, parsing rows referring to the countries we want, as well as
multiplying the population by 1000, to obtain the population in units, instead of thousands
of units.
Inputs:
- dataframe (pandas dataframe): dataframe with information on multiple countries' population
- countries (list): a list of countries which we want to keep from dataframe
Outputs:
- new_dataframe (pandas_dataframe): dataframe with information on countries of interest population, after preprocessing for analysis
'''
new_dataframe = dataframe.copy()
#cleaning population dataset
new_dataframe.drop(columns=["Index", "Variant", "Notes", "Country code", "Type", "Parent code"], inplace=True)
new_dataframe.rename(columns={"Reference date (as of 1 July)": "year", "Region, subregion, country or area *": "country"}, inplace=True)
#keeping only interesting countries
new_dataframe = new_dataframe[new_dataframe['country'].isin(countries)]
#take into consideration the 1000 of population from the beginning now
new_dataframe = new_dataframe.apply(lambda x: x*1000 if x.name not in ['country', 'year'] else x)
#dataframe.iloc[:, 2:] = dataframe.iloc[:, 2:]*1000
return new_dataframe
def interpolate_years(dataframe, start, end):
'''
Interpolation of years' population, which are 5 years apart each, into a 1 year frequency
Inputs:
- dataframe (pandas dataframe): dataframe of population for multiple countries (years separated by multiple of 5)
- start (int): begining of interval of years where we want to interpolate (inclusive)
- end (int): end of interval of years where we want to interpolate (inclusive)
Outputs:
- dataframe_yearly (pandas dataframe): dataframe of population for multiple countries after interpolation of years
'''
# define new dataframes
coll = ['country', 'year']
pop_temp= pd.DataFrame(columns = coll)
dataframe_yearly= pd.DataFrame(columns = coll)
for country in dataframe.country.drop_duplicates():
for ages in dataframe.columns[2:]:
#take years and interpolate
x = dataframe.year.drop_duplicates()
y = dataframe[(dataframe.country==country)][ages].astype(float)
xnew = np.arange(start,end+1)
ynew = np.interp(xnew, x, y, left=None, right=None, period=None)
#rebuild dataframe
pop_temp[ages] = ynew
pop_temp["country"]=country
pop_temp["year"]=xnew
dataframe_yearly = dataframe_yearly.append(pop_temp, sort=False)
dataframe_yearly = dataframe_yearly.reset_index().drop(columns="index")
return dataframe_yearly
def obtain_total_pop(male_dataframe, female_dataframe):
'''
Accumulates both the male and female population in male/female_dataframe into a new dataframe.
Input:
- male_dataframe (pandas dataframe): dataframe of male population for multiple countries
- female_dataframe (pandas dataframe): dataframe of female population for multiple countries
Output:
- pop_total (pandas dataframe): dataframe of total population for multiple countries
'''
# sum dataframes
pop_total = male_dataframe.copy()
pop_total.iloc[:, 2:] = male_dataframe.iloc[:, 2:] + female_dataframe.iloc[:, 2:]
sum_ind = pop_total.columns[2:]
# sum over group ages
pop_total['Population'] = pop_total[sum_ind].sum(axis=1)
pop_total.drop(columns=sum_ind, inplace=True)
return pop_total
def reshape_pop_dataframe(dataframe):
'''
Reshape a population dataframe to be similar in format to other datasets used, in other to allow comparisons of the two.
Input:
- dataframe (pandas dataframe): dataframe with population information for multiple countries
Output:
- reshaped_dataframe (pandas daframe): reshaped dataframe with population information for multiple countries
'''
# We sort values by year, we group them by country and we tranpose the values in columns Population.
# In the function lambda we reset the index. The unstack() allows to return a new dataframe with
# a new level of columns.
years = list(dataframe.year.drop_duplicates().sort_values())
dataframe = dataframe.sort_values('year').groupby("country")['Population'].apply(lambda df: df.reset_index(drop=True)).unstack()
dataframe.columns = years
dataframe.index.name = 'Country'
return dataframe
def get_calories_need(dataframe, need):
'''
Returns a dataframe with caloric needs per country.
Inputs:
- dataframe (pandas dataframe): dataframe with population information for multiple countries (refers to one gender)
- need (pandas dataframe): dataframe with caloric need information per age group (refers to one gender)
Output:
- cal_demand (pandas dataframe): dataframe with caloric needs for each country, each year and per age group (refers to one gender)
'''
df_mult = dataframe.drop(columns=["country", "year"]) # used only for multiply function
cal_demand = df_mult.multiply(need.squeeze()) # squeeze adapts the dimension of the dataframe
cal_demand.insert(0,"country",dataframe.country)
cal_demand.insert(1,"year",dataframe.year)
return cal_demand
def obtain_total_cal_need(male_dataframe, female_dataframe):
'''
Returns the sum of caloric needs for both male and female populations, obtaining the full population
caloric needs in each country.
Inputs:
- male_dataframe (pandas dataframe): dataframe with caloric needs for male population in multiple countries
- female_dataframe (pandas dataframe): dataframe with caloric needs for female population in multiple countries
Output:
- total_cal_demand (pandas dataframe): dataframe with caloric needs for each country, each year and per age group
'''
# computing calory demand in each country in each year per age group (kcal/day)
total_cal_demand = male_dataframe.copy()
sum_ind = total_cal_demand.columns[2:]
total_cal_demand[sum_ind] = total_cal_demand[sum_ind] + female_dataframe[sum_ind]
# computing calory demand in each country in each year (kcal/day)
sum_ind = total_cal_demand.columns[2:]
total_cal_demand['Calories'] = total_cal_demand[sum_ind].sum(axis=1)
total_cal_demand.drop(columns=sum_ind, inplace=True)
# computing calory demand in each country in each year (kcal/year)
total_cal_demand['Calories'] = total_cal_demand['Calories']*365
return total_cal_demand
def reshape_calories_df(cal_dafaframe):
'''
Reshape a calories dataframe to be similar in format to other datasets used, in other to allow comparisons of the two.
Input:
- total_cal_dataframe (pandas dataframe): dataframe with caloric need information for multiple countries
Output:
- reshaped_dataframe (pandas daframe): reshaped dataframe with caloric need information for multiple countries
'''
years = list(cal_dafaframe.year.drop_duplicates().sort_values())
cal_dafaframe = cal_dafaframe.sort_values('year').groupby("country")['Calories'].apply(lambda df: df.reset_index(drop=True)).unstack()
cal_dafaframe.columns = years
cal_dafaframe.index.name = 'Country'
return cal_dafaframe
def obtain_difference(pop_dataframe, supply_dataframe, total_cal_demand):
'''
Returns the difference between supply and demand in caloric need for a specific zone of the world
Inputs:
- pop_dataframe (pandas dataframe): dataframe with population data for multiple countries
- supply_dataframe (pandas dataframe): dataframe with information about food supply for multiple countries
- total_cal_demand (pandas dataframe): dataframe with information about total caloric demand for multiple countries
Outputs:
- cal_difference (pandas dataframe): dataframe with difference between available supply and actual demand (of calories) for multiple countries
'''
# transform supply unit to kcal/person/day
supply_dataframe_cpy = supply_dataframe.transpose()
supply_dataframe_cpy = supply_dataframe_cpy*365
pop_to_mult = pop_dataframe.copy()
supply_to_mult = supply_dataframe_cpy.copy()
supply_final = pop_to_mult.multiply(supply_to_mult)
supply_final = supply_final.dropna(axis=1, how="all")
# calculate the difference
cal_difference = (supply_final - total_cal_demand)/365
cal_difference = cal_difference.div(pop_to_mult).dropna(axis=1, how="all")
cal_difference = cal_difference.dropna(axis=0, how="all")
return cal_difference
def save_map_data(geojson, country_kv, dataframe, path_data, path_ticks, bins=6, year_start = 1961, year_end = 2020, all_same=True):
'''
Save the map data to be used for datastory
Inputs:
- geojson (geopandas dataframe): geojson with shape for the interested countries
- country_kv (Pandas dataframe): countries to retain from the world. Make sure keys (codes) are from json and values (names) match your dataframe
- dataframe (pandas dataframe): dataframe containing the values to plot in the choropleth for each country
- path_data (string): where to save the data in geojson format
- path_ticks (string): where to save the ticks to be used in each map version
- bins (int or list, default = 6): integer representing the number of bins to use in the legend or list directly representing which bins use (not pass min and max)
'''
# saving the datas in the geojson
save_data = geojson.merge(country_kv, left_on="id", right_on="codes")
for year in range(year_start, year_end+1):
save_data = save_data.merge(dataframe.T[year].to_frame(), left_on="names", right_index=True)
save_data = save_data.drop(columns=["codes", "names"])
for col in save_data.columns[3:]:
save_data[col] = save_data[col].astype("float")
save_data.columns = save_data.columns.astype(str)
for year in range(year_start, year_end+1):
to_save = save_data[["id", "name", "geometry", str(year)]].copy().rename(columns={str(year):"val"})
to_save["year"] = year*np.ones(to_save.index.size)
to_save.to_file(path_data.format(year), driver="GeoJSON")
min_abs = min(save_data.min(axis=1))
max_abs = max(save_data.max(axis=1))
ticks_years = dict()
if isinstance(bins, int):
# saving ticks
for year in range(year_start, year_end+1):
if (all_same):
min_val = min_abs
max_val = max_abs
else:
min_val = min(save_data[str(year)])
max_val = max(save_data[str(year)])
increment = (max_val-min_val)/bins
ticks = []
ticks.append(min_val)
for i in range(1, bins):
ticks.append(ticks[i-1]+increment)
ticks.append(max_val)
ticks_years[str(year)] = list(np.rint(ticks))
with open(path_ticks, 'w') as fp:
json.dump(ticks_years, fp)
else:
for year in range(year_start, year_end+1):
min_val = min(save_data[str(year)])
max_val = max(save_data[str(year)])
ticks = []
ticks.append(min_val)
ticks+=bins
ticks.append(max_val)
ticks_years[str(year)] = list(np.rint(ticks))
with open(path_ticks, 'w') as fp:
json.dump(ticks_years, fp)