-
Notifications
You must be signed in to change notification settings - Fork 21
/
painters.py
356 lines (277 loc) · 11.1 KB
/
painters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from keras.models import Sequential
from keras.preprocessing import image
from keras.layers import Dropout, Flatten, Dense
from keras import applications
from keras.utils.np_utils import to_categorical
from keras import applications
from keras.applications.imagenet_utils import preprocess_input
from imagenet_utils import decode_predictions
import math, cv2
folder_train = './train_toy_3/'
folder_test = './test_toy_3/'
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=0.15,
width_shift_range=0.2,
height_shift_range=0.2,
rescale = 1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.callbacks import EarlyStopping, Callback
K.image_data_format() # this means that "backend": "tensorflow". Channels are RGB
from keras import applications
from keras.utils.np_utils import to_categorical
import math, cv2
## Defining the new size of the image
img_width, img_height = 120,120
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
print('Theano Backend')
else:
input_shape = (img_width, img_height, 3)
print('TensorFlow Backend')
input_shape
nb_train_samples = 0
for p in range(len(os.listdir(os.path.abspath(folder_train)))):
nb_train_samples += len(os.listdir(os.path.abspath(folder_train) +'/'+ os.listdir(
os.path.abspath(folder_train))[p]))
nb_train_samples
nb_test_samples = 0
for p in range(len(os.listdir(os.path.abspath(folder_test)))):
nb_test_samples += len(os.listdir(os.path.abspath(folder_test) +'/'+ os.listdir(
os.path.abspath(folder_test))[p]))
train_data_dir = os.path.abspath(folder_train) # folder containing training set already subdivided
validation_data_dir = os.path.abspath(folder_test) # folder containing test set already subdivided
nb_train_samples = nb_train_samples
nb_validation_samples = nb_test_samples
epochs = 100
batch_size = 16 # batch_size = 16
num_classes = len(os.listdir(os.path.abspath(folder_train)))
print('The painters are',os.listdir(os.path.abspath(folder_train)))
### Class for early stopping
# rdcolema
class EarlyStoppingByLossVal(Callback):
"""Custom class to set a val loss target for early stopping"""
def __init__(self, monitor='val_loss', value=0.45, verbose=0):
super(Callback, self).__init__()
self.monitor = monitor
self.value = value
self.verbose = verbose
def on_epoch_end(self, epoch, logs={}):
current = logs.get(self.monitor)
if current is None:
warnings.warn("Early stopping requires %s available!" % self.monitor, RuntimeWarning)
if current < self.value:
if self.verbose > 0:
print("Epoch %05d: early stopping THR" % epoch)
self.model.stop_training = True
early_stopping = EarlyStopping(monitor='val_loss', patience=10, mode='auto') #
top_model_weights_path = 'bottleneck_fc_model.h5'
### Creating InceptionV3 model
from keras.applications.inception_v3 import InceptionV3
model = applications.InceptionV3(include_top=False, weights='imagenet')
applications.InceptionV3(include_top=False, weights='imagenet').summary()
type(applications.InceptionV3(include_top=False, weights='imagenet').summary())
### Training and running images on InceptionV3
datagen = ImageDataGenerator(rescale=1. / 255)
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
nb_train_samples = len(generator.filenames)
num_classes = len(generator.class_indices)
predict_size_train = int(math.ceil(nb_train_samples / batch_size))
print('Number of training samples:',nb_train_samples)
print('Number of classes:',num_classes)
bottleneck_features_train = model.predict_generator(generator, predict_size_train) # these are numpy arrays
bottleneck_features_train[0].shape
bottleneck_features_train.shape
np.save('bottleneck_features_train.npy', bottleneck_features_train)
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
nb_validation_samples = len(generator.filenames)
predict_size_validation = int(math.ceil(nb_validation_samples / batch_size))
print('Number of testing samples:',nb_validation_samples)
bottleneck_features_validation = model.predict_generator(
generator, predict_size_validation)
np.save('bottleneck_features_validation.npy', bottleneck_features_validation)
### Training the fully-connected network (the top-model)
datagen_top = ImageDataGenerator(rescale=1./255)
generator_top = datagen_top.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False)
nb_train_samples = len(generator_top.filenames)
num_classes = len(generator_top.class_indices)
train_data = np.load('bottleneck_features_train.npy')
## Converting training data into vectors of categories:
train_labels = generator_top.classes
print('Classes before dummification:',train_labels)
train_labels = to_categorical(train_labels, num_classes=num_classes)
print('Classes after dummification:\n\n',train_labels)
## Again repeating the process with the validation data:
generator_top = datagen_top.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
nb_validation_samples = len(generator_top.filenames)
validation_data = np.load('bottleneck_features_validation.npy')
validation_labels = generator_top.classes
validation_labels = to_categorical(validation_labels, num_classes=num_classes)
### Building the small FL model using bottleneck features as input
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
# model.add(Dense(1024, activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(16, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(8, activation='relu')) # Not valid for minimum = 500
model.add(Dropout(0.5))
# model.add(Dense(4, activation='relu')) # Not valid for minimum = 500
# model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='sigmoid'))
model.compile(optimizer='Adam',
loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
(eval_loss, eval_accuracy) = model.evaluate(
validation_data, validation_labels,
batch_size=batch_size, verbose=1)
print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))
print("[INFO] Loss: {}".format(eval_loss))
train_data.shape[1:]
plt.figure(1)
# summarize history for accuracy
plt.subplot(211)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
#pylab.ylim([0.4,0.68])
plt.legend(['train', 'test'], loc='upper left')
### Plotting the loss history
import pylab
plt.subplot(212)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
pylab.xlim([0,60])
# pylab.ylim([0,1000])
plt.show()
import matplotlib.pyplot as plt
import pylab
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
fig = plt.figure()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Classification Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
pylab.xlim([0,60])
plt.legend(['Test', 'Validation'], loc='upper right')
fig.savefig('loss.png')
plt.show();
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
fig = plt.figure()
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.plot(figsize=(15,15))
plt.title('Classification Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
pylab.xlim([0,100])
plt.legend(['Test', 'Validation', 'Success Metric'], loc='lower right')
fig.savefig('acc.png')
plt.show();
### Predictions
os.listdir(os.path.abspath('train_toy_3/Pierre-Auguste_Renoir))
image_path = os.path.abspath('test_toy_3/Pierre-Auguste_Renoir/91485.jpg')
orig = cv2.imread(image_path)
image = load_img(image_path, target_size=(120,120))
image
image = img_to_array(image)
image
image = image / 255.
image = np.expand_dims(image, axis=0)
image
# build the VGG16 network
#model = applications.VGG16(include_top=False, weights='imagenet')
model = applications.InceptionV3(include_top=False, weights='imagenet')
# get the bottleneck prediction from the pre-trained VGG16 model
bottleneck_prediction = model.predict(image)
# build top model
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
# model.add(Dense(1024, activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(16, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(8, activation='relu')) # Not valid for minimum = 500
model.add(Dropout(0.5))
# model.add(Dense(4, activation='relu')) # Not valid for minimum = 500
# model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='sigmoid'))
model.load_weights(top_model_weights_path)
# use the bottleneck prediction on the top model to get the final classification
class_predicted = model.predict_classes(bottleneck_prediction)
inID = class_predicted[0]
class_dictionary = generator_top.class_indices
inv_map = {v: k for k, v in class_dictionary.items()}
label = inv_map[inID]
# get the prediction label
print("Image ID: {}, Label: {}".format(inID, label))
# display the predictions with the image
cv2.putText(orig, "Predicted: {}".format(label), (10, 30), cv2.FONT_HERSHEY_PLAIN, 1.5, (43, 99, 255), 2)
cv2.imshow("Classification", orig)
cv2.waitKey(0)
cv2.destroyAllWindows()