Skip to content

Latest commit

 

History

History
550 lines (369 loc) · 15.2 KB

README-GB.md

File metadata and controls

550 lines (369 loc) · 15.2 KB

Code style: black

Marie-AI

Integrate AI-powered OCR features into your applications

TODO :

  • Add new Polling method
  • prefetch
  • Flow to gateway conversion
  • Remove CRUD operations

IMPORTANT

Merge CAREFULLY with the master branch of Jina.

  • serve/runtimes/worker/request_handling.py > Added support for returning Dictionary object and not only Document
  • serve/helper.py > Default GRPC options

Installation

create folder structure

mkdir models config

Follow instructions from pytorch website

https://pytorch.org/get-started/locally/

Install required packages with pip

$ pip install -r ./requirements/requirements.txt

Install detectron2 https://github.com/conansherry/detectron2/blob/master/INSTALL.md

Build Docker Image

DOCKER_BUILDKIT=1 docker build . -t marie-icr:1.3
DOCKER_BUILDKIT=1 docker build . -f Dockerfile -t gregbugaj/marie-icr:2.4-cuda --no-cache  && docker push gregbugaj/marie-icr:2.4-cuda
docker push gregbugaj/marie-icr:2.3-cuda

DOCKER_BUILDKIT=1 docker build . -f Dockerfile -t gregbugaj/marie-icr:2.3-cuda --no-cache  && docker push gregbugaj/marie-icr:2.3-cuda
docker push gregbugaj/marie-icr:2.3-cuda

docker.io/

docker stop $(docker ps -q) docker rmi -f $(docker images -aq) docker logs marie-icr-0 -f --since 0m

docker container stop $(docker container ls -aq) && docker system prune -af --volumes

cd ~/dev/marie-ai/docker-util/ && docker container stop $(docker container ls -q --filter name='marie*') && ./update.sh && ./run-all.sh cd ~/dev/marie-ai/docker-util/ && docker container stop $(docker container ls -q --filter name='marie*') && ./update.sh && ./run-all.sh docker container stop $(docker container ls -q --filter name='marie*')

-v pwd/../cache:/opt/marie-icr/.cache:rw \

Starting in Development mode

 PYTHONPATH="$PWD" python ./marie/app.py
``

Enable encryption 

```sh
python ./app.py --enable-crypto  --tls-cert ./cert.pem

Starting in Production mode with gunicorn. Config [gunicorn]settings (https://docs.gunicorn.org/en/stable/settings.html#settings)

gunicorn -c gunicorn.conf.py wsgi:app  --log-level=debug

Activate the environment as we used PIP to install docker-compose (python -m pip install docker-compose)

    source  ~/environments/pytorch/bin/activate

Starting the Control Plane

Setting up the new docker compose

COMPOSE_VERSION=$(curl -s https://api.github.com/repos/docker/compose/releases/latest | jq -r '.tag_name')

DOCKER_CONFIG=${DOCKER_CONFIG:-$HOME/.docker}
mkdir -p $DOCKER_CONFIG/cli-plugins
curl -SL https://github.com/docker/compose/releases/download/$COMPOSE_VERSION/docker-compose-linux-x86_64 -o $DOCKER_CONFIG/cli-plugins/docker-compose
chmod +x $DOCKER_CONFIG/cli-plugins/docker-compose
ln -s ./config/.env.dev ./.env
docker compose down --volumes --remove-orphans && DOCKER_BUILDKIT=1 docker compose -f docker-compose.yml  --project-directory . up --build --remove-orphans

Start consul server

docker compose -f ./Dockerfiles/docker-compose.yml --project-directory . up consul-server  --build  --remove-orphans

Start storage

docker compose  --env-file ./config/.env -f  ./Dockerfiles/docker-compose.s3.yml -f ./Dockerfiles/docker-compose.storage.yml --project-directory . up  --build --remove-orphans

Docker

Start Marie-AI with minimal dependencies (s3, redis, consul, traefik, postgres, minio)

docker compose  --env-file ./config/.env -f ./Dockerfiles/docker-compose.yml -f ./Dockerfiles/docker-compose.s3.yml -f ./Dockerfiles/docker-compose.storage.yml --project-directory . up  --build --remove-orphans 

CPU

Building docker container

# --no-cache
DOCKER_BUILDKIT=1 docker build . -f Dockerfile -t marie-icr:2.0 --network=host --no-cache

GPU

Building GPU version of the framework requires 1.10.2+cu113.

If you encounter following error that indicates that we have a wrong version of PyTorch / Cuda

1.11.0+cu102
Using device: cuda

/opt/venv/lib/python3.8/site-packages/torch/cuda/__init__.py:145: UserWarning: 
NVIDIA GeForce RTX 3060 Laptop GPU with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 3060 Laptop GPU GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

  warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))

DOCKER_BUILDKIT=1 docker build . -f Dockerfile -t marie-icr:2.0 --network=host --no-cache
DOCKER_BUILDKIT=1 docker build . -f Dockerfile -t gregbugaj/marie-icr:2.2-cuda --no-cache && docker push gregbugaj/marie-icr:2.2-cuda


DOCKER_BUILDKIT=1 docker build . --build-arg PIP_TAG="[standard]" -f ./Dockerfiles/gpu.Dockerfile  -t marieai/marie:3.0-cuda

Inference on the gpu

Install following dependencies to ensure docker is setup for GPU processing.

https://docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html

Before continuing we need to ensure that our container is configured b

#### Test nvidia-smi with the latest official CUDA image
docker run --gpus all nvidia/cuda:11.0-base nvidia-smi
docker run --gpus all --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864  nvidia/cuda:11.0-base nvidia-smi

Overwrite the container ENTRYPOINT by using --entrypoint from command line and validate the GPU works by executing nvidia-smi

docker run -it --rm  --gpus all --entrypoint /bin/bash marieai/marie:3.0.31-cuda

Remove dangling containers

docker rmi -f $(docker images -f "dangling=true" -q)

Docker compose

Install new version of docker compose cli plugin https://docs.docker.com/compose/install/compose-plugin/#installing-compose-on-linux-systems

Start docker compose

DOCKER_BUILDKIT=1 docker-compose up

source .env.prod && docker compose down --volumes --remove-orphans && DOCKER_BUILDKIT=1 docker compose --env-file .env.prod up -d

Cleanup containers

    docker-compose down --volumes --remove-orphans

Default Ports

8500 -- Consul 5000 -- Traefik - Entrypoint 7777 -- Traefik - Dashboard

# tests/integration/psql_storage
docker-compose -f docker-compose.yml --project-directory . up  --build --remove-orphans --env-file .env.prod 

## new docker compose 
docker compose --env-file .env -f ./Dockerfiles/docker-compose.storage.yml up

Setup Redis

https://hub.docker.com/_/redis https://redis.io/docs/stack/get-started/install/docker/

  python -m pip install redis
``


```sh
docker run --name marie_redis -p 6379:6379 -d redis 

docker run --rm --name marie_redis -p 6379:6379 redis 
docker exe -it marie_redis sh

Codestyle / Formatting

black

Issues

There is a segmentation fault happening with opencv-python==4.5.4.62 switching to opencv-python==4.5.4.60 fixes the issue. connectedComponentsWithStats produces a segfault

pip install opencv-python==4.5.4.60

References

deepdoctection Lightning-AI

Implement models

Stream processing

KSQL Stream processing example KSQL

Research

table-transformer DocumentUnderstanding [DocumentAI] (https://www.microsoft.com/en-us/research/project/document-ai/)

Implement secondary box detection method. TextFuseNet Implement DocFormer: End-to-End Transformer for Document Understanding DocFormer_End-to-End_Transforme

Install fairseq from source, the release version is missing convert_namespace_to_omegaconf

git clone https://github.com/pytorch/fairseq.git
cd fairseq
pip install -r requirements.txt
python setup.py build develop

https://github.com/ShannonAI/service-streamer https://github.com/NVIDIA/apex https://github.com/pytorch/fairseq https://discuss.pytorch.org/t/cnn-fp16-slower-than-fp32-on-tesla-p100/12146/7 https://discuss.pytorch.org/t/torch-cuda-amp-inferencing-slower-than-normal/123684

Fix issue

AttributeError: module 'distutils' has no attribute 'version'
python3 -m pip install setuptools==59.5.0

ImageMagic 6 policy

/etc/ImageMagick-6/policy.xml

manualy convert burst tiff to single tiff

convert *.tif -set filename:f "%[t]_%[fx:t+1]" +adjoin "%[filename:f].tif"

Download assets locally

Load gpt2 dictionary from https://layoutlm.blob.core.windows.net/trocr/dictionaries/gpt2_with_mask.dict.txt

Models to implement

https://github.com/ibm-aur-nlp/PubLayNet

DocFormer: End-to-End Transformer for Document Understanding

Credits

This application uses Open Source components. You can find the source code of their open source projects along with license information in the NOTICE. We acknowledge and are grateful to these developers for their contributions to open source.

Kill hanged docker

ps auxw | grep $(docker container ls | grep containername | awk '{print $1}') | awk '{print $2}'
kill -9 12345678

Resources

https://mmocr.readthedocs.io/en/latest/datasets/det.html#funsd https://github.com/alibaba/EasyNLP?ref=stackshare https://huggingface.co/spaces/rajistics/receipt_extractor/blob/main/app.py https://github.com/UBIAI/layoutlmv3FineTuning/blob/master/Layoutlmv3_inference/inference_handler.py https://powerusers.microsoft.com/t5/AI-Builder/bd-p/AIBuilder

GOOD CODE REFERENCES:

RAY https://github.com/ray-project/ray HAYSTACK https://github.com/deepset-ai/haystack/tree/main
docile : https://github.com/rossumai/docile/blob/ffc139e8e37505121c4b49243011ceed18653650/baselines/NER/docile_inference_NER_multilabel_layoutLMv3.py QURATOR https://github.com/qurator-spk/eynollah DAGSTER dagster

https://hevodata.com/signup/?step=email

https://www.marktechpost.com/2022/11/01/a-new-mlops-system-called-alaas-active-learning-as-a-service-adopts-the-philosophy-of-machine-learning-as-service-and-implements-a-server-client-architecture/ https://github.com/ocrmypdf/OCRmyPDF

Datastore

https://github.com/allenai/datastore https://truss.baseten.co/reference/structure

GRPC

https://docs.microsoft.com/en-us/aspnet/core/grpc/test-tools?view=aspnetcore-6.0

Grafana

https://medium.com/swlh/easy-grafana-and-docker-compose-setup-d0f6f9fcec13

Spark

https://data-flair.training/blogs/spark-rdd-tutorial/

Docs

https://outerbounds.com/ https://docs.dyte.io/guides/integrating-with-webhooks

TODO:

  • Create volumes for
    • Torch /home/app-svc/.cache/
    • Marie /opt/marie-icr/.cache/

Kafka - Prioritization

https://www.confluent.io/blog/prioritize-messages-in-kafka/

https://engineeringfordatascience.com/posts/pre_commit_yaml/

CVAT Resources

Auto annotation tool

https://github.com/opencv/cvat/projects/16 cvat-ai/cvat#2280

Colab notebooks

platform

https://deci.ai/platform/ https://github.com/onepanelio/onepanel

Executors / Flow

https://github.com/jina-ai/dalle-flow https://github.com/jina-ai/clip-as-service

Update NVIDA Drivers

sudo apt purge nvidia-driver-465 sudo apt autoremove -y sudo apt autoclean sudo apt install nvidia-driver-525 -f

Autogluon

https://github.com/autogluon/autogluon/

TensorRT Notes

Installing TensorRT from source

git submodule init

git submodule update

cmake .. -DTENSORRT_ROOT=/home/gbugaj/dev/3rdparty/TensorRT-8.6.0.12 && make -j

~/dev/3rdparty/onnx/onnx-tensorrt$ python3 setup.py install

configure Docker container

Install TensorRT

python3 -m pip install --upgrade tensorrt

pip install --ugrade onnx-tensorrt

Load-balancer

https://www.educative.io/answers/what-is-the-least-connections-load-balancing-technique

LayoutLMV3

https://github.com/Ritvik19/Implemented-Data-Science/blob/main/LayoutLMv2-Document-Classification.ipynb https://github.com/ahmedrasheed3995/DocumentClassification https://www.mlexpert.io/machine-learning/tutorials/document-classification-with-layoutlmv3#easyocr https://github.com/AjaxMultiCommentary/ajmc/blob/0389fc6cd53514d4c988baafe2831e0623a03b37/ajmc/olr/layoutlm/layoutlm.py#L20

LayoutLMV3 - ONNX

https://github.com/fioresxcat/VAT_245/tree/fa526ac7e2ce9bb392ca66bd86305d69caee7a86

Table Transformer and Table Detection

https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Table%20Transformer/Using_Table_Transformer_for_table_detection_and_table_structure_recognition.ipynb

IDEAS

dedoc https://github.com/ispras/dedoc/blob/master/dedoc/structure_constructors/abstract_structure_constructor.py

PDF-Extract-Kit https://github.com/opendatalab/PDF-Extract-Kit?tab=readme-ov-file

https://cloud.google.com/document-ai

LLaMA2 turning https://blog.ovhcloud.com/fine-tuning-llama-2-models-using-a-single-gpu-qlora-and-ai-notebooks/

ACT Testing

act -P ubuntu-20.04=catthehacker/ubuntu:act-20.04  -j build-and-push-latest-docs --secret-file act.secrets -e event.json -W .github/workflows/force-docs-build.yml --insecure-secrets

event.json

{
    "inputs": {
        "release_token": "ghp_ABC",
        "SOME_VALUE": "ABC"
    }
}

act.secrets

MARIE_CORE_RELEASE_TOKEN=ghp_ABC

Pydantic

pydantic                                     1.10.15
pydantic_core                                2.10.1

Rewriting history

  git filter-repo --mailmap mailmap --force

Pydantic upgrade

Upgrade pydantic to the latest version

pip install pydantic --force-reinstall

Upgrade FastAPI to the latest version or version above 0.100.2 to fix the issue with pydantic

pip install fastapi --force-reinstall

Install bump-pydantic and run it via bump.sh script to convert all pydantic models to the latest version

pip install bump-pydantic
./bump.sh

To patch JINA AI apply changes from the commits.