Skip to content

A collection of mathematical models with experimental data in the PEtab format as benchmark problems in order to evaluate new and existing methodologies for data-based modelling

License

Notifications You must be signed in to change notification settings

mariesieger/Benchmark-Models-PEtab

 
 

Repository files navigation

Benchmark-Models-PEtab

A collection of mathematical models with experimental data in the PEtab format as benchmark problems in order to evaluate new and existing methodologies for data-based modelling. The publication for the introduction and analysis of the benchmark problem collection is available at https://academic.oup.com/bioinformatics/article/35/17/3073/5280731.

Contributions to the collection are very welcome. Please see CONTRIBUTING.md for more details.

Overview

PEtab Problem ID Conditions Estimated Parameters Events Possible Discontinuities Preequilibration Postequilibration Measurements Observables Noise distribution(s) Objective prior distribution(s) Species References SBML4Humans
Alkan_SciSignal2018 73 56 0 0 0 1733 12 normal 36 [1] [1]
Armistead_CellDeathDis2024 2 14 0 0 0 58 4 normal 4 [1] [1]
Bachmann_MSB2011 36 113 0 0 0 541 20 normal; log10-normal parameterScaleNormal 25 [1] [1]
Beer_MolBioSystems2014 19 72 0 0 0 27132 2 normal 4 [1] [1]
Bertozzi_PNAS2020 2 8 0 0 0 22 2 normal 3 [1] [1]
Blasi_CellSystems2016 1 9 0 0 1 252 15 log-normal 16 [1] [1]
Boehm_JProteomeRes2014 1 9 0 0 0 48 3 normal 8 [1] [1]
Borghans_BiophysChem1997 1 23 0 0 0 111 1 log10-normal 3 [1] [1]
Brannmark_JBC2010 8 22 0 1 0 43 3 normal 9 [1] [1]
Bruno_JExpBot2016 6 13 0 0 0 77 5 normal 7 [1] [1]
Chen_MSB2009 4 155 0 0 0 120 3 normal 500 [1] [1]
Crauste_CellSystems2017 1 12 0 0 0 21 4 normal 5 [1] [1]
Elowitz_Nature2000 1 21 0 0 0 58 1 log10-normal 8 [1] [1]
Fiedler_BMCSystBiol2016 3 22 0 0 0 72 2 normal 6 [1] [1]
Froehlich_CellSystems2018 9169 4231 0 0 9169 9169 1 normal 1396 [1] [1]
Fujita_SciSignal2010 6 19 0 0 0 144 3 normal 9 [1] [1]
Giordano_Nature2020 1 50 0 0 0 313 7 normal 13 [1] [1]
Isensee_JCB2018 123 46 0 1 0 687 3 normal parameterScaleNormal 25 [1] [1]
Lang_PLOSComputBiol2024 1 294 0 0 0 9600 16 normal laplace; uniform 124 [1] [1]
Laske_PLOSComputBiol2019 3 13 0 0 0 42 13 normal; log-normal 41 [1] [2] [3] [1]
Lucarelli_CellSystems2018 16 84 0 0 0 1755 65 normal; log10-normal 33 [1] [1]
Okuonghae_ChaosSolitonsFractals2020 1 16 0 0 0 92 2 normal 9 [1] [1]
Oliveira_NatCommun2021 1 12 0 0 0 120 2 normal 9 [1] [1]
Perelson_Science1996 1 3 0 0 0 16 1 log10-normal 4 [1] [1]
Rahman_MBS2016 1 9 0 0 0 23 1 normal 7 [1] [1]
Raia_CancerResearch2011 4 39 0 0 0 205 8 normal 14 [1] [1]
Raimundez_PCB2020 170 136 0 4 0 627 79 normal parameterScaleNormal; laplace 22 [1] [1]
SalazarCavazos_MBoC2020 4 6 0 0 0 18 3 normal 75 [1] [1]
Schwen_PONE2014 19 30 0 0 0 286 4 log10-normal parameterScaleNormal 11 [1] [1]
Smith_BMCSystBiol2013 35 25 3 0 0 62 9 normal 133 [1] [1]
Sneyd_PNAS2002 9 15 0 0 0 135 1 normal 6 [1] [1]
Weber_BMC2015 2 36 0 1 0 135 8 normal 7 [1] [1]
Zhao_QuantBiol2020 7 28 0 0 0 82 1 normal 5 [1] [1]
Zheng_PNAS2012 1 46 0 1 0 60 15 normal 15 [1] [1]

License

Any original content in this repository may be used under the terms of the BSD-3-Clause license. Different terms may apply to models and datasets, for which we refer the user to the original publications that are referenced in the respective SBML files.

Installation

See INSTALL.md.

How to Cite

Please cite the benchmark collection by citing:

  1. the PEtab paper, which first introduced this collection in a peer-reviewed publication: https://doi.org/10.1371/journal.pcbi.1008646
  2. the Zenodo repository, where you can cite specific versions of the files: https://doi.org/10.5281/zenodo.8155057

Example BibTeX (customize the Zenodo year and version to match your version):

@misc{petab_benchmark_collection,
  author       = {The PEtab Benchmark Collection contributors},
  title        = {{The PEtab Benchmark Collection of parameter estimation problems}},
  year         = 2024,
  publisher    = {Zenodo},
  version      = {2024.10.15},
  doi          = {10.5281/zenodo.8155057},
  url          = {https://doi.org/10.5281/zenodo.8155057}
}

@article{petab,
    doi = {10.1371/journal.pcbi.1008646},
    author = {Schmiester, Leonard AND Schälte, Yannik AND Bergmann, Frank T. AND Camba, Tacio AND Dudkin, Erika AND Egert, Janine AND Fröhlich, Fabian AND Fuhrmann, Lara AND Hauber, Adrian L. AND Kemmer, Svenja AND Lakrisenko, Polina AND Loos, Carolin AND Merkt, Simon AND Müller, Wolfgang AND Pathirana, Dilan AND Raimúndez, Elba AND Refisch, Lukas AND Rosenblatt, Marcus AND Stapor, Paul L. AND Städter, Philipp AND Wang, Dantong AND Wieland, Franz-Georg AND Banga, Julio R. AND Timmer, Jens AND Villaverde, Alejandro F. AND Sahle, Sven AND Kreutz, Clemens AND Hasenauer, Jan AND Weindl, Daniel},
    journal = {PLOS Computational Biology},
    publisher = {Public Library of Science},
    title = {PEtab—Interoperable specification of parameter estimation problems in systems biology},
    year = {2021},
    month = {01},
    volume = {17},
    url = {https://doi.org/10.1371/journal.pcbi.1008646},
    pages = {1-10},
    abstract = {Reproducibility and reusability of the results of data-based modeling studies are essential. Yet, there has been—so far—no broadly supported format for the specification of parameter estimation problems in systems biology. Here, we introduce PEtab, a format which facilitates the specification of parameter estimation problems using Systems Biology Markup Language (SBML) models and a set of tab-separated value files describing the observation model and experimental data as well as parameters to be estimated. We already implemented PEtab support into eight well-established model simulation and parameter estimation toolboxes with hundreds of users in total. We provide a Python library for validation and modification of a PEtab problem and currently 20 example parameter estimation problems based on recent studies.},
    number = {1},
}

References

The model collection has been used in multiple publications.

If you used the benchmark problems in your work and your publication is missing, please let us know via a new GitHub issue.

About

A collection of mathematical models with experimental data in the PEtab format as benchmark problems in order to evaluate new and existing methodologies for data-based modelling

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 88.1%
  • TeX 10.5%
  • Shell 1.4%