-
Notifications
You must be signed in to change notification settings - Fork 0
/
53.maximum-subarray.java
83 lines (78 loc) · 1.47 KB
/
53.maximum-subarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* @lc app=leetcode id=53 lang=java
*
* [53] Maximum Subarray
*
* https://leetcode.com/problems/maximum-subarray/description/
*
* algorithms
* Easy (47.75%)
* Total Accepted: 1.3M
* Total Submissions: 2.8M
* Testcase Example: '[-2,1,-3,4,-1,2,1,-5,4]'
*
* Given an integer array nums, find the contiguous subarray (containing at
* least one number) which has the largest sum and return its sum.
*
*
* Example 1:
*
*
* Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
* Output: 6
* Explanation: [4,-1,2,1] has the largest sum = 6.
*
*
* Example 2:
*
*
* Input: nums = [1]
* Output: 1
*
*
* Example 3:
*
*
* Input: nums = [5,4,-1,7,8]
* Output: 23
*
*
*
* Constraints:
*
*
* 1 <= nums.length <= 3 * 10^4
* -10^5 <= nums[i] <= 10^5
*
*
*
* Follow up: If you have figured out the O(n) solution, try coding another
* solution using the divide and conquer approach, which is more subtle.
*/
class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 1) {
return nums[0];
}
int sum = nums[0];
int total = 0;
for (int i = 1 ; i < nums.length; i++){
total = total + nums[i];
}
Integer runningSum = sum;
for (int i = 1 ; i < nums.length; i++) {
if (sum + nums[i] < nums[i]) {
sum = nums[i];
} else {
sum += nums[i];
}
if(sum > runningSum) {
runningSum = sum;
}
}
if (runningSum > total) {
return runningSum;
}
return total;
}
}