forked from mahmoodlab/CLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
executable file
·188 lines (167 loc) · 8.11 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from __future__ import print_function
import argparse
import torch
import os
import pandas as pd
import wandb
from utils.utils import *
from dataset_modules.dataset_generic import Generic_MIL_Dataset
from utils.eval_utils import *
from sklearn.metrics import confusion_matrix
# Training settings
parser = argparse.ArgumentParser(description='CLAM Evaluation Script')
parser.add_argument('--data_root_dir', type=str, default=None,
help='data directory')
parser.add_argument('--results_dir', type=str, default='./results',
help='relative path to results folder, i.e. '+
'the directory containing models_exp_code relative to project root (default: ./results)')
parser.add_argument('--save_exp_code', type=str, default=None,
help='experiment code to save eval results')
parser.add_argument('--models_exp_code', type=str, default=None,
help='experiment code to load trained models (directory under results_dir containing model checkpoints')
parser.add_argument('--splits_dir', type=str, default=None,
help='splits directory, if using custom splits other than what matches the task (default: None)')
parser.add_argument('--model_size', type=str, choices=['small', 'big'], default='small',
help='size of model (default: small)')
parser.add_argument('--model_type', type=str, choices=['clam_sb', 'clam_mb', 'mil', 'dgcn', 'mi_fcn', 'dsmil', 'trans_mil'], default='clam_sb',
help='type of model (default: clam_sb)')
parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)')
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)')
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)')
parser.add_argument('--fold', type=int, default=-1, help='single fold to evaluate')
parser.add_argument('--micro_average', action='store_true', default=False,
help='use micro_average instead of macro_avearge for multiclass AUC')
parser.add_argument('--split', type=str, choices=['train', 'val', 'test', 'all'], default='test')
parser.add_argument('--log_data', action='store_true', default=False, help='log data using wandb')
parser.add_argument('--task', type=str, choices=['task_1_tumor_vs_normal', 'task_2_tumor_subtyping', 'be_he_best4_pilot', 'be_he_best4_surveillance'])
parser.add_argument('--drop_out', type=float, default=0.25, help='dropout')
parser.add_argument('--embed_dim', type=int, default=1024)
args = parser.parse_args()
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.save_dir = os.path.join('./eval_results', 'EVAL_' + str(args.save_exp_code))
args.models_dir = os.path.join(args.results_dir, str(args.models_exp_code))
os.makedirs(args.save_dir, exist_ok=True)
if args.splits_dir is None:
args.splits_dir = args.models_dir
assert os.path.isdir(args.models_dir)
assert os.path.isdir(args.splits_dir)
settings = {'task': args.task,
'split': args.split,
'save_dir': args.save_dir,
'models_dir': args.models_dir,
'model_type': args.model_type,
'drop_out': args.drop_out,
'model_size': args.model_size}
with open(args.save_dir + '/eval_experiment_{}.txt'.format(args.save_exp_code), 'w') as f:
print(settings, file=f)
f.close()
print(settings)
if args.task == 'task_1_tumor_vs_normal':
args.n_classes=2
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/tumor_vs_normal_dummy_clean.csv',
data_dir= os.path.join(args.data_root_dir, 'tumor_vs_normal_resnet_features'),
shuffle = False,
print_info = True,
label_dict = {'normal_tissue':0, 'tumor_tissue':1},
patient_strat=False,
ignore=[])
elif args.task == 'task_2_tumor_subtyping':
args.n_classes=3
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/tumor_subtyping_dummy_clean.csv',
data_dir= os.path.join(args.data_root_dir, 'tumor_subtyping_resnet_features'),
shuffle = False,
print_info = True,
label_dict = {'subtype_1':0, 'subtype_2':1, 'subtype_3':2},
patient_strat= False,
ignore=[])
elif args.task == 'be_he_delta':
args.n_classes=2
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/delta/be_he_adequate.csv',
data_dir= args.data_root_dir,
shuffle = False,
seed = args.seed,
print_info = True,
label_dict = {'N':0, 'Y':1},
patient_strat=False,
ignore=[])
elif args.task == 'be_he_best4_pilot':
args.n_classes=2
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/best4/pilot/he_be_slides.csv',
data_dir= args.data_root_dir,
shuffle = False,
print_info = True,
label_dict = {'N':0, 'E':0, 'Y':1},
patient_strat=False,
ignore=[])
elif args.task == 'be_he_best4_surveillance':
args.n_classes=2
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/best4/surveillance/he_be_slides.csv',
data_dir= args.data_root_dir,
shuffle = False,
print_info = True,
label_dict = {1:0, 2:1, 3:1},
patient_strat=False,
ignore=[])
else:
raise NotImplementedError
if args.k_start == -1:
start = 0
else:
start = args.k_start
if args.k_end == -1:
end = args.k
else:
end = args.k_end
if args.fold == -1:
folds = range(start, end)
else:
folds = range(args.fold, args.fold+1)
ckpt_paths = [os.path.join(args.models_dir, 's_{}_checkpoint.pt'.format(fold)) for fold in folds]
datasets_id = {'train': 0, 'val': 1, 'test': 2, 'all': -1}
if __name__ == "__main__":
all_results = []
all_auc = []
all_acc = []
for ckpt_idx in range(len(ckpt_paths)):
if args.log_data:
mode = 'online'
else:
mode = 'disabled'
wandb.init(
project="be_mil",
name=f"{args.save_exp_code}_{args.model_type}_{ckpt_idx}",
config={"dataset": args.task, "model": args.model_type},
group=f"{args.save_exp_code}_{args.model_type}",
mode=mode,
resume='allow'
)
if datasets_id[args.split] < 0:
split_dataset = dataset
else:
csv_path = '{}/splits_{}.csv'.format(args.splits_dir, folds[ckpt_idx])
datasets = dataset.return_splits(from_id=False, csv_path=csv_path)
split_dataset = datasets[datasets_id[args.split]]
writer = None
model, patient_results, test_error, auc, df = eval(split_dataset, args, ckpt_paths[ckpt_idx])
all_results.append(all_results)
all_auc.append(auc)
all_acc.append(1-test_error)
df.to_csv(os.path.join(args.save_dir, 'fold_{}.csv'.format(folds[ckpt_idx])), index=False)
tn, fp, fn, tp = confusion_matrix(df['Y'], df['Y_hat']).ravel()
sensitivity = tp/(tp+fn)
specificity = tn/(tn+fp)
# Log metrics to wandb
wandb.log({
f'{args.task}': folds[ckpt_idx],
f'{args.task}/auc': auc,
f'{args.task}/acc': 1-test_error,
f'{args.task}/sensitivity': sensitivity,
f'{args.task}/specificity': specificity
})
wandb.finish()
final_df = pd.DataFrame({'folds': folds, 'test_auc': all_auc, 'test_acc': all_acc})
if len(folds) != args.k:
save_name = 'summary_partial_{}_{}.csv'.format(folds[0], folds[-1])
else:
save_name = 'summary.csv'
final_df.to_csv(os.path.join(args.save_dir, save_name), index=False)