-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnvCuda04.cu
370 lines (309 loc) · 11.7 KB
/
nvCuda04.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
* nvortexCuda.cpp
*
* (c)2022 Mark J. Stock <markjstock@gmail.com>
*
* v0.4 use Kahan summation to improve answer
*/
#include <vector>
#include <random>
#include <chrono>
#include <cuda_runtime.h>
// compute using float or double
#define FLOAT2 float2
#define FLOAT float
// threads per block (hard coded)
#define THREADS_PER_BLOCK 256
// GPU count limit
#define MAX_GPUS 8
// Kahan summation
// use single precision for the storage and arithmetic, but accumulation acts close to double-precision
// sum.x is running sum, sum.y is compensation/error
__device__ inline void KahanSum_gpu (const FLOAT toadd, FLOAT2* const sum) {
const FLOAT y = toadd - (*sum).y;
const FLOAT t = (*sum).x + y;
(*sum).y = (t - (*sum).x) - y;
(*sum).x = t;
}
// -------------------------
// compute kernel - GPU
__global__ void nvortex_2d_nograds_gpu(
const int32_t nSrc,
const FLOAT* const __restrict__ sx,
const FLOAT* const __restrict__ sy,
const FLOAT* const __restrict__ ss,
const FLOAT* const __restrict__ sr,
const int32_t tOffset,
const FLOAT* const __restrict__ tx,
const FLOAT* const __restrict__ ty,
const FLOAT* const __restrict__ tr,
FLOAT* const __restrict__ tu,
FLOAT* const __restrict__ tv) {
// local "thread" id - this is the target particle
const int32_t i = tOffset + blockIdx.x*THREADS_PER_BLOCK + threadIdx.x;
// load sources into shared memory (or not)
__shared__ FLOAT s_sx[THREADS_PER_BLOCK];
__shared__ FLOAT s_sy[THREADS_PER_BLOCK];
__shared__ FLOAT s_ss[THREADS_PER_BLOCK];
__shared__ FLOAT s_sr[THREADS_PER_BLOCK];
// velocity accumulators for target point
FLOAT2 locu = make_float2(0.f, 0.f);
FLOAT2 locv = make_float2(0.f, 0.f);
FLOAT tr2 = tr[i]*tr[i];
// which sources do we iterate over?
const int32_t jcount = nSrc / gridDim.y;
const int32_t jstart = blockIdx.y * jcount;
for (int32_t b=0; b<jcount/THREADS_PER_BLOCK; ++b) {
__syncthreads();
const int32_t gidx = jstart + b*THREADS_PER_BLOCK + threadIdx.x;
s_sx[threadIdx.x] = sx[gidx];
s_sy[threadIdx.x] = sy[gidx];
s_ss[threadIdx.x] = ss[gidx];
s_sr[threadIdx.x] = sr[gidx];
__syncthreads();
// loop over all source points
for (int32_t j=0; j<THREADS_PER_BLOCK; ++j) {
FLOAT dx = s_sx[j] - tx[i];
FLOAT dy = s_sy[j] - ty[i];
FLOAT distsq = dx*dx + dy*dy + s_sr[j]*s_sr[j] + tr2;
// we get __fdividef(x, y) with --use_fast_math it seems
FLOAT factor = s_ss[j] / distsq;
KahanSum_gpu( dy * factor, &locu);
KahanSum_gpu(-dx * factor, &locv);
}
}
// save into device view with atomics
atomicAdd(&tu[i], (locu.x+locu.y) / (2.0f*3.1415926536f));
atomicAdd(&tv[i], (locv.x+locv.y) / (2.0f*3.1415926536f));
return;
}
// Kahan summation
// use single precision for the storage and arithmetic, but accumulation acts close to double-precision
// sum.x is running sum, sum.y is compensation/error
#pragma omp declare simd
__host__ inline void KahanSum_cpu (const FLOAT toadd, FLOAT* const sum, FLOAT* const rem) {
const FLOAT y = toadd - *rem;
const FLOAT t = *sum + y;
*rem = (t - *sum) - y;
*sum = t;
}
// -------------------------
// compute kernel - CPU
__host__ void nvortex_2d_nograds_cpu(
const int32_t nSrc,
const FLOAT* const __restrict__ sx,
const FLOAT* const __restrict__ sy,
const FLOAT* const __restrict__ ss,
const FLOAT* const __restrict__ sr,
const FLOAT tx,
const FLOAT ty,
const FLOAT tr,
FLOAT* const __restrict__ tu,
FLOAT* const __restrict__ tv) {
// velocity accumulators for target point
FLOAT locu = 0.0f;
FLOAT locv = 0.0f;
FLOAT ukah = 0.0f;
FLOAT vkah = 0.0f;
const FLOAT tr2 = tr*tr;
// loop over all source points
#pragma omp simd reduction(+:locu,locv)
for (int32_t j=0; j<nSrc; ++j) {
FLOAT dx = sx[j] - tx;
FLOAT dy = sy[j] - ty;
FLOAT distsq = dx*dx + dy*dy + sr[j]*sr[j] + tr2;
FLOAT factor = ss[j] / distsq;
// I just can't get this to simd-ize!!!
//{
FLOAT y = dy * factor - ukah;
FLOAT t = locu + y;
ukah = (t - locu) - y;
locu = t;
//}
//{
y = -dx * factor - vkah;
t = locv + y;
vkah = (t - locv) - y;
locv = t;
//}
//KahanSum_cpu( dy * factor, &locu, &ukah);
//KahanSum_cpu(-dx * factor, &locv, &vkah);
//locu += dy * factor;
//locv -= dx * factor;
}
// save into device view
// use atomics?!?
*tu = (locu+ukah) / (2.0f*3.1415926536f);
*tv = (locv+vkah) / (2.0f*3.1415926536f);
return;
}
// not really alignment, just minimum block sizes
__host__ int32_t buffer(const int32_t _n, const int32_t _align) {
// 63,64 returns 1; 64,64 returns 1; 65,64 returns 2
return _align*(1+(_n-1)/_align);
}
// main program
static void usage() {
fprintf(stderr, "Usage: nvCuda04 [-n=<number>]\n");
exit(1);
}
int main(int argc, char **argv) {
// number of particles/points
int32_t npart = 400000;
if (argc > 1) {
if (strncmp(argv[1], "-n=", 3) == 0) {
int num = atoi(argv[1] + 3);
if (num < 1) usage();
npart = num;
}
}
printf( "performing 2D vortex Biot-Savart on %d points\n", npart);
// number of GPUs present
int32_t ngpus = 1;
cudaGetDeviceCount(&ngpus);
//ngpus = 1; // Force 1 GPU
// number of cuda streams to break work into
int32_t nstreams = std::min(MAX_GPUS, ngpus);
printf( " ngpus ( %d ) and nstreams ( %d )\n", ngpus, nstreams);
// we parallelize targets over GPUs/streams
const int32_t ntargperstrm = buffer(npart/nstreams, THREADS_PER_BLOCK*nstreams);
const int32_t ntargpad = ntargperstrm * nstreams;
printf( " ntargperstrm ( %d ) and ntargpad ( %d )\n", ntargperstrm, ntargpad);
// and on each GPU, we parallelize over THREADS_PER_BLOCK targets and nsrcblocks source blocks
// number of blocks source-wise (break summations over sources into this many chunks)
const int32_t nsrcblocks = 32;
// set stream sizes
const int32_t nsrcpad = buffer(npart, THREADS_PER_BLOCK*nsrcblocks);
const int32_t nsrcperblock = nsrcpad / nsrcblocks;
printf( " nsrcperblock ( %d ) and nsrcpad ( %d )\n", nsrcperblock, nsrcpad);
// define the host arrays (for now, sources and targets are the same)
const int32_t npad = std::max(ntargpad,nsrcpad);
std::vector<FLOAT> hsx(npad), hsy(npad), hss(npad), hsr(npad), htu(npad), htv(npad);
const FLOAT thisstrmag = 1.0 / std::sqrt(npart);
const FLOAT thisrad = (2./3.) / std::sqrt(npart);
//std::random_device dev;
//std::mt19937 rng(dev());
std::mt19937 rng(1234);
std::uniform_real_distribution<FLOAT> xrand(0.0,1.0);
for (int32_t i = 0; i < npart; ++i) hsx[i] = xrand(rng);
for (int32_t i = npart; i < npad; ++i) hsx[i] = 0.0;
for (int32_t i = 0; i < npart; ++i) hsy[i] = xrand(rng);
for (int32_t i = npart; i < npad; ++i) hsy[i] = 0.0;
for (int32_t i = 0; i < npart; ++i) hss[i] = thisstrmag * (2.0*xrand(rng)-1.0);
for (int32_t i = npart; i < npad; ++i) hss[i] = 0.0;
for (int32_t i = 0; i < npart; ++i) hsr[i] = thisrad;
for (int32_t i = npart; i < npad; ++i) hsr[i] = thisrad;
for (int32_t i = 0; i < npad; ++i) htu[i] = 0.0;
for (int32_t i = 0; i < npad; ++i) htv[i] = 0.0;
// -------------------------
// do a CPU version
auto start = std::chrono::system_clock::now();
#pragma omp parallel for
for (int32_t i=0; i<npart; ++i) {
nvortex_2d_nograds_cpu(npart, hsx.data(),hsy.data(),hss.data(),hsr.data(), hsx[i],hsy[i],hsr[i], &htu[i],&htv[i]);
}
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end-start;
double time = elapsed_seconds.count();
printf( " host total time( %g s ) and flops( %g GFlop/s )\n", time, 1.e-9 * (double)npart*(5+19*(double)npart)/time);
printf( " results ( %g %g %g %g %g %g)\n", htu[0], htv[0], htu[1], htv[1], htu[npart-1], htv[npart-1]);
// copy the results into temp vectors
std::vector<FLOAT> htu_cpu(htu);
std::vector<FLOAT> htv_cpu(htv);
// -------------------------
// do the GPU version
// set device pointers, too
FLOAT *dsx[MAX_GPUS], *dsy[MAX_GPUS], *dss[MAX_GPUS], *dsr[MAX_GPUS];
FLOAT *dtx[MAX_GPUS], *dty[MAX_GPUS], *dtr[MAX_GPUS];
FLOAT *dtu[MAX_GPUS], *dtv[MAX_GPUS];
cudaStream_t stream[MAX_GPUS];
// allocate space for all sources, part of targets
const int32_t srcsize = nsrcpad*sizeof(FLOAT);
const int32_t trgsize = ntargperstrm*sizeof(FLOAT);
for (int32_t i=0; i<nstreams; ++i) {
cudaSetDevice(i);
cudaStreamCreate(&stream[i]);
cudaMalloc (&dsx[i], srcsize);
cudaMalloc (&dsy[i], srcsize);
cudaMalloc (&dss[i], srcsize);
cudaMalloc (&dsr[i], srcsize);
cudaMalloc (&dtu[i], trgsize);
cudaMalloc (&dtv[i], trgsize);
}
// to be fair, we start timer after allocation but before transfer
start = std::chrono::system_clock::now();
// now perform the data movement and setting
for (int32_t i=0; i<nstreams; ++i) {
cudaSetDevice(i);
// move the data
cudaMemcpyAsync (dsx[i], hsx.data(), srcsize, cudaMemcpyHostToDevice, stream[i]);
cudaMemcpyAsync (dsy[i], hsy.data(), srcsize, cudaMemcpyHostToDevice, stream[i]);
cudaMemcpyAsync (dss[i], hss.data(), srcsize, cudaMemcpyHostToDevice, stream[i]);
cudaMemcpyAsync (dsr[i], hsr.data(), srcsize, cudaMemcpyHostToDevice, stream[i]);
cudaMemsetAsync (dtu[i], 0, trgsize, stream[i]);
cudaMemsetAsync (dtv[i], 0, trgsize, stream[i]);
// now we need to be careful to point to the part of the source arrays that hold
// just this GPUs set of target particles
dtx[i] = dsx[i] + i*ntargperstrm;
dty[i] = dsy[i] + i*ntargperstrm;
dtr[i] = dsr[i] + i*ntargperstrm;
// check
auto memerr = cudaGetLastError();
if (memerr != cudaSuccess) {
fprintf(stderr, "Failed to upload data (other): %s!\n", cudaGetErrorString(memerr));
exit(EXIT_FAILURE);
}
}
const dim3 blocksz(THREADS_PER_BLOCK, 1, 1);
const dim3 gridsz(ntargperstrm/THREADS_PER_BLOCK, nsrcblocks, 1);
for (int32_t i=0; i<nstreams; ++i) {
// launch the kernel
cudaSetDevice(i);
nvortex_2d_nograds_gpu<<<gridsz,blocksz,0,stream[i]>>>(nsrcpad, dsx[i],dsy[i],dss[i],dsr[i],
0,dtx[i],dty[i],dtr[i],dtu[i],dtv[i]);
// check
auto err = cudaGetLastError();
if (err != cudaSuccess) {
fprintf(stderr, "Failed to launch kernel (%d): %s!\n", i, cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
}
for (int32_t i=0; i<nstreams; ++i) {
// pull data back down
cudaMemcpyAsync (htu.data() + i*ntargperstrm, dtu[i], trgsize, cudaMemcpyDeviceToHost, stream[i]);
cudaMemcpyAsync (htv.data() + i*ntargperstrm, dtv[i], trgsize, cudaMemcpyDeviceToHost, stream[i]);
}
// join streams
for (int32_t i=0; i<nstreams; ++i) {
cudaStreamSynchronize(stream[i]);
}
//cudaDeviceSynchronize();
// time and report
end = std::chrono::system_clock::now();
elapsed_seconds = end-start;
time = elapsed_seconds.count();
printf( " device total time( %g s ) and flops( %g GFlop/s )\n", time, 1.e-9 * (double)npart*(5+19*(double)npart)/time);
printf( " results ( %g %g %g %g %g %g)\n", htu[0], htv[0], htu[1], htv[1], htu[npart-1], htv[npart-1]);
// free resources, after timer
for (int32_t i=0; i<nstreams; ++i) {
cudaFree(dsx[i]);
cudaFree(dsy[i]);
cudaFree(dss[i]);
cudaFree(dsr[i]);
cudaFree(dtu[i]);
cudaFree(dtv[i]);
cudaStreamDestroy(stream[i]);
}
// compare results
FLOAT errsum = 0.0;
FLOAT errmax = 0.0;
for (int32_t i=0; i<npart; ++i) {
const FLOAT thiserr = std::pow(htu[i]-htu_cpu[i], 2) + std::pow(htv[i]-htv_cpu[i], 2);
errsum += thiserr;
if ((FLOAT)std::sqrt(thiserr) > errmax) {
errmax = (FLOAT)std::sqrt(thiserr);
//printf( " err at %d is %g\n", i, errmax);
}
}
printf( " total host-device error ( %g ) max error ( %g )\n", std::sqrt(errsum/npart), errmax);
}