-
Notifications
You must be signed in to change notification settings - Fork 0
/
analysis.R
602 lines (457 loc) · 20.6 KB
/
analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
################################################################################
################################################################################
#Supplement to the paper Queiroz et al. (2020, Biotropica).
#Ecological Synthesis Lab (SintECO): https://marcomellolab.wordpress.com.
#Authors: Joel A. Queiroz, Ugo M. Diniz, Diego P. Vázquez, Zelma M. Quirino,
#Francisco A.R. Santos, Marco A.R. Mello, Isabel C. Machado.
#See README for further info:
#https://github.com/marmello77/queiroz_et_al_2020/blob/main/README.md
################################################################################
################################################################################
################################################################################
##### SET THE STAGE
################################################################################
#Set the working directory
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
#Delete all previous objects
rm(list= ls())
#Load the required packages
library(igraph)
library(bipartite)
library(Rmisc)
library(vegan)
library(gdata)
library(ggplot2)
library(gridExtra)
library(grid)
#Load some custom-made functions
source("RestNullModel.R")
source("PosteriorProb.R")
source("MyDiamond.R")
################################################################################
##### PROCESS THE NETWORK
################################################################################
#Import the network
data <- as.matrix(read.delim("data/network.txt", row.names=1))
#Inspect the network
class(data)
data
dim(data)
min(data)
max(data)
#Plot the matrix
visweb(data)
#Convert the network to igraph format
data2 <- graph_from_incidence_matrix(data, directed = F, weighted = TRUE)
#Inspect object
class(data2)
data2
E(data2)
V(data2)$name
#Inform which nodes represent which taxonomic groups
V(data2)$set[1:nrow(data)] = c("Moths", "Moths", "Bats", "Bats", "Moths", "Moths",
"Moths", "Moths", "Moths", "Bats", "Bats", "Moths",
"Moths", "Moths", "Moths", "Moths", "Moths",
"Moths", "Moths")
V(data2)$set[(nrow(data)+1):(nrow(data)+ncol(data))] = "Plants"
#Set seed
set.seed(14)
################################################################################
##### DRAW THE NETWORK
################################################################################
#Set layout
lay1 <- layout_nicely(data2)
#Set edge mode and width
E(data2)$arrow.mode = 0
E(data2)$width = E(data2)$weight/5+1
#Import "diamond" vertex shape
source("MyDiamond.R")
add_shape("diamond", clip=shapes("circle")$clip,
plot=MyDiamond)
#Set vertex shapes
V(data2)$shape = V(data2)$set
V(data2)$shape = gsub("Bats","diamond",V(data2)$shape)
V(data2)$shape = gsub("Moths","square",V(data2)$shape)
V(data2)$shape = gsub("Plants","circle",V(data2)$shape)
#Calculate DIRTLPAwb+ modularity and save the output as a data frame and a list
data.mod <- computeModules(data, method = "Beckett")
data.mod
data.modules <- module2constraints(data.mod)
data.modules
data.df <- data.frame(c(rownames(data), colnames(data)), data.modules)
data.df
colnames(data.df) <- c("vertices", "modules")
data.df
data.list <- split(data.df$vertices, data.df$modules)
data.list
##Set node and cloud colors by modularity
colors <- rainbow(length(data.list), alpha = 1.0, s = 1, v = 0.8)
V(data2)$color <- colors[data.df$modules]
clouds = colors
#Plot and export the graph
tiff(filename= "figures/network.tif", res= 300, height= 3000, width= 3100)
par(mfrow=c(1,1),mar=c(1,1,1,5))
plot(data2,
col = V(data2)$color,
mark.groups = data.list,
mark.border = "lightgrey",
mark.col = adjustcolor(clouds, alpha = 0.2),
vertex.size = 7.5,
vertex.label = V(data2)$name,
vertex.label.color = "white",
vertex.label.cex = .3,
vertex.frame.color = NA,
edge.color = adjustcolor("grey", alpha.f = .5),
edge.curved = 0.3,
edge.width = 3,
layout=lay1)
legend(x = 0.9,y = 1.0, legend = c("Bats", "Moths", "Plants"),
pch = c(18,15,19), title = "Taxon",
text.col = "gray20", title.col = "black",
box.lwd = 0, cex = 2, col = c("grey", "grey", "grey"))
par(mfrow=c(1,1))
dev.off()
################################################################################
##### NETWORK LEVEL ANALYSIS (TOPOLOGY)
################################################################################
#Set the number of permutations to be used in all null model analyses
#Here we set a low value just for testing the script. In our paper we've set it
# to 1,000.
permutations <- 10
#Generate randomized matrices
nulls <- nullmodel(data, N=permutations, method="vaznull")
##### MODULARITY
#Calculate modularity (DIRT_LPA+) for the original network
Mod <- computeModules(data, method = "Beckett")
Mod@likelihood
#Extract module membership
Part <- bipartite::module2constraints(Mod)
row.Part <- Part[1:nrow(data)]
col.Part <- Part[(nrow(data)+1):(nrow(data)+ncol(data))]
#Calculate metric for the randomized networks
nullmod <- sapply(nulls, computeModules, method = "Beckett")
modnull <- sapply(nullmod, function(x) x@likelihood)
(Mod@likelihood - mean(modnull))/sd(modnull) # Z value
Mod.sig <- sum(modnull>(Mod@likelihood)) / length(modnull) # p value
Mod.sig
#Plot the observed value against the distribution of randomized values
plot(density(modnull), main="Observed vs. randomized",
xlim=c(min((Mod@likelihood), min(modnull)),
max((Mod@likelihood), max(modnull))))
abline(v=Mod@likelihood, col="red", lwd=2, xlab="")
Mod@likelihood #observed
mean(modnull) #randomized mean
sd(modnull) #randomized SD
(Mod@likelihood - mean(modnull))/sd(modnull) # Z-value
sum(modnull>(Mod@likelihood)) / length(modnull) #randomized > observed
sum(modnull<(Mod@likelihood)) / length(modnull) #randomized < observed
##### SPECIALIZATION
#Calculate metric for the original network
Spec <- networklevel(data, index="H2")
class(Spec)
#Calculate metric for the randomized networks
randomized.Spec <- unlist(sapply(nulls, networklevel, index="H2"))
(Spec - mean(randomized.Spec))/sd(randomized.Spec) # Z value
Spec.sig <- sum(randomized.Spec>Spec)/length(randomized.Spec) # p value
Spec.sig
#Plot the observed value against the distribution of randomized values
plot(density(randomized.Spec), main="Observed vs. randomized",
xlim=c(min((Spec), min(randomized.Spec)),
max((Spec), max(randomized.Spec))))
abline(v=Spec, col="red", lwd=2, xlab="")
Spec #observed
mean(randomized.Spec) #randomized mean
sd(randomized.Spec) #randomized SD
(Spec - mean(randomized.Spec))/sd(randomized.Spec) # Z-value
sum(randomized.Spec>(Spec)) / length(randomized.Spec) #randomized > observed
sum(randomized.Spec<(Spec)) / length(randomized.Spec) #randomized < observed
##### NESTEDNESS
#Calculate metric for the original network
Nest <- networklevel(data, index="weighted NODF")
#Calculate metric for the randomized networks
randomized.Nest <- unlist(sapply(nulls, networklevel, index="weighted NODF"))
(Nest - mean(randomized.Nest))/sd(randomized.Nest) # Z value
Nest.sig <- sum(randomized.Nest>Nest)/length(randomized.Nest) # p value
Nest.sig
#Plot the observed value against the distribution of randomized values
plot(density(randomized.Nest), main="Observed vs. randomized",
xlim=c(min((Nest), min(randomized.Nest)),
max((Nest), max(randomized.Nest))))
abline(v=Nest, col="red", lwd=2, xlab="")
Nest #observed
mean(randomized.Nest) #randomized mean
sd(randomized.Nest) #randomized SD
(Nest - mean(randomized.Nest))/sd(randomized.Nest) # Z-value
sum(randomized.Nest>(Nest)) / length(randomized.Nest) #randomized > observed
sum(randomized.Nest<(Nest)) / length(randomized.Nest) #randomized < observed
##### COMPOUND TOPOLOGY
#Calculate the desired nestedness metric (here WNODA) for the original network.
obs.com <- unlist(bipartite::nest.smdm(x = data,
constraints = Part, #Input the modular structured recovered from step 2
weighted = T, #By considering the edge weights, you are choosing WNODA
decreasing = "abund"))
#Check the scores
obs.com
#Calculate constrained interaction probabilities considering the network's modular structure
Pij <- PosteriorProb(M = data,
R.partitions = row.Part, #Input the modular structured recovered from step 2
C.partitions = col.Part, #Input the modular structured recovered from step 2
Prior.Pij = "degreeprob", #Choose the null model
Conditional.level = "modules") #Choose the kind of constraints
#Check what those probabilities look like
Pij
dim(Pij)
#Generate randomized networks with the null model of your choice, considering the interaction probabilities calculated before.
nulls.com <- RestNullModel(M = data,
Pij.Prob = Pij, #Recover the probabilities calculated in the previous command
Numbernulls = permutations, #This step may take long, so start experimenting with low values
Print.null = T,
allow.degeneration = F, #Choose whether you allow orphan rows and columns to be removed or not
return.nonrm.species = F,
connectance = T, byarea = T,
R.partitions = row.Part,
C.partitions = col.Part)
#Calculate the nestedness within and between modules
rest.nest <- nest.smdm(data, constraints = Part,
weighted = T,
decreasing = "abund",
sort = T)
unlist(rest.nest)
null.com <- sapply(nulls.com,
function(x) bipartite::nest.smdm(x = x,
constraints = Part,
weighted = T,
decreasing = "abund"))
WNODA.null.com <- unlist(null.com[3,])
WNODAsm.null.com <- unlist(null.com[8,])
WNODAdm.null.com <- unlist(null.com[9,])
#Plot the observed nestedness value against the distribution of randomized values
par(mfrow = c(1,3))
plot(density(WNODA.null.com), xlim=c(min(obs.com[3], min(WNODA.null.com)),
max(obs.com[3], max(WNODA.null.com))),
main="observed vs. randomized", xlab = "WNODA matrix")
abline(v=obs.com[3], col="red", lwd=2)
plot(density(WNODAsm.null.com), xlim=c(min(obs.com[8], min(WNODAsm.null.com)),
max(obs.com[8], max(WNODAsm.null.com))),
main="observed vs. randomized", xlab = "WNODAsm matrix")
abline(v=obs.com[8], col="red", lwd=2)
plot(density(WNODAdm.null.com), xlim=c(min(obs.com[9], min(WNODAdm.null.com)),
max(obs.com[9], max(WNODAdm.null.com))),
main="observed vs. randomized", xlab = "WNODAdm matrix")
abline(v=obs.com[9], col="red", lwd=2)
par(mfrow = c(1,1))
#Estimate the p-values
#Nestedness in th entire network
praw.WNODA <- sum(WNODA.null.com>obs.com[3]) / length(WNODA.null.com)
p.WNODA <- ifelse(praw.WNODA > 0.5, 1- praw.WNODA, praw.WNODA) # P-value
p.WNODA
#Nestedness within the modules
praw.WNODAsm <- sum(WNODAsm.null.com>obs.com[8]) / length(WNODAsm.null.com)
p.WNODAsm <- ifelse(praw.WNODAsm > 0.5, 1- praw.WNODAsm, praw.WNODAsm) # P-value
p.WNODAsm
#Nestedness between the modules
praw.WNODAdm <- sum(WNODAdm.null.com>obs.com[9]) / length(WNODAdm.null.com)
p.WNODAdm <- ifelse(praw.WNODAdm > 0.5, 1- praw.WNODAdm, praw.WNODAdm) # P-value
p.WNODAdm
##### PLOT THE COMPOUND TOPOLOGY
par(mfrow = c(1,1))
#Sort the matrix in a way that facilitates visualizing the compound topology
data.comp <- bipartite::sortmatrix(matrix = data, topology = "compound",
sort_by = "weights",
row_partitions = row.Part,
col_partitions = col.Part)
#Assign colors for the modules
modcol <- rainbow((length(unique(Part))), alpha=1, s = 1, v = 1)
#Plot the matrix
png("figures/compound.png", width = 3000, height = 3000, res = 300)
plotmatrix(data.comp$matrix,
row_partitions = data.comp$row_partitions,
col_partitions = data.comp$col_partitions,
border = T,
binary = F,
modules_colors = modcol,
within_color = modcol,
between_color = "lightgrey")
dev.off()
##### EXPORT A SUMMARY OF THE TOPOLOGICAL RESULTS
sink(file = "results/results_topology.txt")
paste("Topological analysis of the nocturnal pollination network")
paste("Queiroz et al. 2020, Biotropica")
cat("\n")
paste("The network has", nrow(data), "rows and", ncol(data), "columns.")
cat("\n")
paste("The network's specialization (H2) is", round(Spec, 2),",", "P =", round(Spec.sig, 2))
cat("\n")
paste("The network's modularity (DIRT_LPA+) is", round(Mod@likelihood, 2), ",", "P =", round(Mod.sig, 2), ",", "and it contains", length(unique(Part)),"modules.")
cat("\n")
paste("The network's nestedness (WNODF) is", round(Nest/100, 2),",", "P =", round(Nest.sig, 2))
cat("\n")
paste("The network shows the following scores of nestedness (WNODA):")
cat("\n")
paste("Entire network =", round(rest.nest$WNODAmatrix/100, 2), ",", "P =", round(p.WNODA, 2))
cat("\n")
paste("Between the modules =", round(rest.nest$WNODA_DM_matrix/100, 2), ",", "P =", round(p.WNODAdm, 2))
cat("\n")
paste("Within the modules =", round(rest.nest$WNODA_SM_matrix/100, 2), ",", "P =", round(p.WNODAsm, 2))
cat("\n")
sink(file = NULL, )
################################################################################
##### SPECIES LEVEL ANALYSIS (CENTRALITY)
################################################################################
# Specialization (d')
d <- specieslevel(data,index="d")
dplants <- d$`higher level`
write.csv(dplants, "results/dplants.csv") # writing a separate csv file
# Betweenness centrality (BC)
BC <- specieslevel(data, index="betweenness")
BCplants <- BC$higher
write.csv(BCplants, "results/BCplants.csv") # writing a separate csv file
# Normalized degree (nk)
ND <-ND(data, normalised=T)
NDplants <- ND$higher
write.csv(NDplants, "results/NDplants.csv") # writing a separate csv file
##### Plot centrality metrics by syndrome
#Import data
plants <- read.xls("data/plants.xlsx", h=T) # reading compiled spreadsheet with species & metrics classified by guild
# Change reference level for GLMs
ord <- ordered(plants$Guild, levels = c("sphin", "chiro", "other"))
#Plot and export the panel
tiff(filename="figures/centrality.tif", res = 300, width = 4000, height = 3000)
theme_set(theme_gray(base_size = 24))
pd <- ggplot(plants, aes(x=ord, y=d, fill=Guild)) +
ylab("d'")+ xlab("")+ ylim(0, 0.8) +
scale_fill_manual(values=c("darkolivegreen1", "sandybrown", "orchid1"))+
geom_boxplot(width=0.5, color="black") +
theme_classic() +
theme(panel.border = element_rect(colour = "black", fill=NA, size=.5) ,
axis.title.y = element_text(color="black", face ="italic", size =23),
axis.text= element_text(color="black", size=19),
legend.position = "none") +
geom_text(x="other", y=0.8, label="A", size = 10)
pnk <- ggplot(plants, aes(x=ord, y=nk, fill=Guild)) +
ylab("nk")+ xlab("")+ ylim(0, 1.1) +
scale_fill_manual(values=c("darkolivegreen1", "sandybrown", "orchid1"))+
geom_boxplot(width=0.5, color="black") +
theme_classic() +
theme(panel.border = element_rect(colour = "black", fill=NA, size=.5) ,
axis.title.y = element_text(color="black", face ="italic", size =23),
axis.text= element_text(color="black", size=19),
legend.position = "none") +
geom_text(x="other", y=1.1, label="B", size = 10)
pBC <- ggplot(plants, aes(x=ord, y=bc, fill=Guild)) +
ylab("BC")+ xlab("")+ ylim(0, 0.15) +
scale_fill_manual(values=c("darkolivegreen1", "sandybrown", "orchid1"))+
geom_boxplot(width=0.5, color="black") +
theme_classic() +
theme(panel.border = element_rect(colour = "black", fill=NA, size=.5) ,
axis.title.y = element_text(color="black", face ="italic", size =23),
axis.text= element_text(color="black", size=19),
legend.position = "none") +
geom_text(x="other", y=0.15, label="C", size = 10)
grid.arrange(pd, pnk, pBC,
ncol=3,
vp=viewport(width=1.0, height=0.9))
dev.off()
##### Run GLMs to compare centrality scores
table(plants$Guild)
plants$Guild <- factor(plants$Guild, ordered = FALSE)
plants$Guild <- relevel(plants$Guild, ref="chiro") #changing reference level for GLMs
plants$Guild <- relevel(plants$Guild, ref="sphin")
plants$Guild <- relevel(plants$Guild, ref="other")
# d'
glmd <- glm(plants$d ~ plants$Guild, family=quasibinomial("logit"))
summary(glmd)
glm_d <- anova(glmd, test = "Chisq")
glm_d
## BC
glmbc <- glm(plants$bc ~ plants$Guild, family=quasibinomial("logit"))
summary(glmbc)
glm_bc <- anova(glmbc, test = "Chisq")
glm_bc
## nk
glmnk <- glm(plants$nk ~ plants$Guild, family=quasibinomial("logit"))
summary(glmnk)
glm_k <- anova(glmnk, test = "Chisq")
glm_k
#Export the results
sink(file = "results/results_centrality.txt")
paste("Comparison of centrality by syndrome")
paste("Queiroz et al. 2020, Biotropica")
cat("\n")
paste(capture.output(glmd))
paste(capture.output(glm_d))
cat("\n")
paste(capture.output(glmbc))
paste(capture.output(glm_bc))
cat("\n")
paste(capture.output(glmnk))
paste(capture.output(glm_k))
sink(file = NULL, )
################################################################################
##### MORPHOMETRIC ANALYSIS
################################################################################
##### Import morphology data
morph_plants<-read.xls("data/morph_pla.xlsx", h=T)
morph_pol <- read.xls("data/morph_pol.xlsx", h=T)
str(morph_plants)
str(morph_pol)
morph_plants$module <- factor(morph_plants$module, ordered = FALSE)
morph_pol$module <- factor(morph_pol$module, ordered = FALSE)
# Change reference level for GLMs
morph_plants$module <- relevel(morph_plants$module, ref="bat")
morph_pol$module <- relevel(morph_pol$module, ref="hawk1")
##### Run GLMs to compare modules
# Pollinator tongues
glm_pol <- glm(morph_pol$length_pol~morph_pol$module, family=gaussian())
summary(glm_pol)
anova(glm_pol, test = "Chisq")
# Floral width (w) and length (l)
glm_pla_l <- glm(morph_plants$length_pla~morph_plants$module, family=gaussian())
glm_pla_w <- glm(morph_plants$width_pla~morph_plants$module, family=gaussian())
summary(glm_pla_l)
anova(glm_pla_l, test = "Chisq")
summary(glm_pla_w)
anova(glm_pla_w, test = "Chisq")
### Plot
ggmorph<-read.xls("data/morph_graph.xlsx",h=T)
tiff("figures/morph.tiff", width = 24, height = 10, units = "cm", res = 300)
ggplot(ggmorph, aes(x=module, y=measure, fill=variable)) +
ylab("Measure (mm)")+ xlab("Modules")+ ylim(0, 150) +
scale_fill_manual(values=c("slateblue", "goldenrod1", "coral1"))+
geom_boxplot(width=0.5, color="black", position = position_dodge(width=0.5)) +
theme_classic() +
theme(panel.border = element_rect(colour = "black", fill=NA, size=.5) ,
axis.title.y = element_text(color="black", size =20),
axis.title.x = element_text(color="black", size =20),
axis.text= element_text(color="black", size=19), legend.position = "none")
dev.off()
################################################################################
##### SAMPLING COMPLETENESS ANALYSIS
################################################################################
# Loading interaction data for Chao1 estimator
sampbat<- read.xls("data/sampbat.xlsx", h=T)
estimateR(sampbat, index =c("chao"))
str(sampbat)
samphawk <- read.xls("data/samphawk.xlsx", h=T)
estimateR(samphawk, index =c("chao"))
str(samphawk)
# Loading interaction data for rarefaction curve drawing
sampling_bats <- read.xls("data/sampling_bats.xlsx", h=T)
curve_bat<- specaccum(sampling_bats, method="rarefaction")
sampling_hawkmoths <- read.xls("data/sampling_hawkmoths.xlsx", h=T)
curve_hawk<- specaccum(sampling_hawkmoths, method="rarefaction")
# Plot curves
tiff("figures/sampling.tiff", width = 20, height = 20, units = "cm", res = 600)
par(mfrow=c(1,2))
plot(curve_hawk, ci.type = "poly", xvar = "individuals", ci.lty=0, ylab = NA,
xlab = NA,
ci.col=rgb(0.7, 0, 0.2, 0.3), ylim=c(0,30))
abline(h=22.2, lty=1, col=rgb(0.7, 0, 0.2, 0.3), lwd=2.5)
abline(h=(22.2+0.6195203), lty=3, col=rgb(0.7, 0, 0.2, 0.3), lwd=2)
abline(h=(22.2-0.6195203), lty=3, col=rgb(0.7, 0, 0.2, 0.3), lwd=2)
plot(curve_bat, ci.type = "poly", xvar = "individuals", ci.lty=0,
ci.col=rgb(0, 0, 0.5, 0.3), ylim=c(0,30), ylab=NA, xlab=NA)
abline(h=14, lty=1, col=rgb(0, 0, 0.5, 0.3), lwd=2.5)
abline(h=(14-2.283481), lty=3, col=rgb(0, 0, 0.5, 0.3), lwd=2)
abline(h=(14+2.283481), lty=3, col=rgb(0, 0, 0.5, 0.3), lwd=2)
dev.off()