forked from JasonKessler/scattertext
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_custom_topic_model.py
50 lines (40 loc) · 1.61 KB
/
demo_custom_topic_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import scattertext as st
topic_model = {
'money': ['money', 'bank', 'banks', 'finances', 'financial', 'loan', 'dollars', 'income'],
'jobs': ['jobs', 'workers', 'labor', 'employment', 'worker', 'employee', 'job'],
'patriotic': ['america', 'country', 'flag', 'americans', 'patriotism', 'patriotic'],
'family': ['mother', 'father', 'mom', 'dad', 'sister', 'brother', 'grandfather', 'grandmother', 'son', 'daughter']
}
convention_df = st.SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df['text'].apply(st.whitespace_nlp_with_sentences)
)
topic_feature_builder = st.FeatsFromTopicModel(topic_model)
topic_corpus = st.CorpusFromParsedDocuments(
convention_df,
category_col='party',
parsed_col='parse',
feats_from_spacy_doc=topic_feature_builder
).build()
print(topic_corpus._X.shape, topic_corpus._mX.shape, )
topic_corpus = st.CorpusFromPandas(
convention_df,
category_col='party',
text_col='text',
nlp=st.whitespace_nlp_with_sentences,
feats_from_spacy_doc=topic_feature_builder
).build()
print(topic_corpus._X.shape, topic_corpus._mX.shape, )
html = st.produce_scattertext_explorer(
topic_corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
width_in_pixels=1000,
metadata=convention_df['speaker'],
use_non_text_features=True,
use_full_doc=True,
pmi_threshold_coefficient=0,
topic_model_term_lists=topic_feature_builder.get_top_model_term_lists()
)
open('./demo_custom_topic_model.html', 'wb').write(html.encode('utf-8'))
print('Open ./demo_custom_topic_model.html in Chrome or Firefox.')