forked from JasonKessler/scattertext
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_moral_foundations.py
33 lines (30 loc) · 1.67 KB
/
demo_moral_foundations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import scattertext as st
convention_df = st.SampleCorpora.ConventionData2012.get_data()
moral_foundations_feats = st.FeatsFromMoralFoundationsDictionary()
corpus = st.CorpusFromPandas(convention_df,
category_col='party',
text_col='text',
nlp=st.whitespace_nlp_with_sentences,
feats_from_spacy_doc=moral_foundations_feats).build()
cohens_d_scorer = st.CohensD(corpus).use_metadata()
term_scorer = cohens_d_scorer.set_categories('democrat', ['republican'])
mfd_df = term_scorer.get_score_df()
print(mfd_df.head())
mfd_df.to_csv('demo_moral_foundations.csv')
print('See demo_moral_foundations.csv for the output.')
html = st.produce_frequency_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
metadata=convention_df['speaker'],
use_non_text_features=True,
use_full_doc=True,
term_scorer=st.CohensD(corpus).use_metadata(),
grey_threshold=0,
width_in_pixels=1000,
topic_model_term_lists=moral_foundations_feats.get_top_model_term_lists(),
metadata_descriptions=moral_foundations_feats.get_definitions())
fn = 'demo_moral_foundations.html'
with open(fn, 'wb') as out:
out.write(html.encode('utf-8'))
print('Open ./%s in Chrome.' % (fn))