Skip to content

Commit

Permalink
phase portrait type plots for fbopt
Browse files Browse the repository at this point in the history
  • Loading branch information
agisga committed Oct 10, 2023
1 parent c81165f commit 4e49f89
Showing 1 changed file with 63 additions and 0 deletions.
63 changes: 63 additions & 0 deletions domainlab/utils/generate_fbopt_phase_portrait.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import glob
import os

import matplotlib.pyplot as plt
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator


# FIXME: maybe adjust the output path where the png is saved
output_dir = "../.."

def get_xy_from_event_file(event_file, tf_size_guidance=None):
if tf_size_guidance is None:
# settings for which/how much data is loaded from the tensorboard event files
tf_size_guidance = {
'compressedHistograms': 0,
'images': 0,
'scalars': 1e10, # keep unlimited number
'histograms': 0
}
# load event file
event = EventAccumulator(event_file, tf_size_guidance)
event.Reload()
# extract the reg/dyn0 values
y_event = event.Scalars('x-axis=task vs y-axis=reg/dyn0')
y = [s.value for s in y_event]
x_int = [s.step for s in y_event] # the .step data are saved as ints in tensorboard, so we will re-extact from 'task'
# extract the corresponding 'task' values
x_event = event.Scalars('task')
x = [s.value for s in x_event]
# sanity check:
for i in range(len(x)):
assert int(x[i]) == x_int[i]
return x, y

def phase_portrain_combined(event_files, colors):
plt.figure()

for event_i in range(len(event_files)):
x, y = get_xy_from_event_file(event_files[event_i])

assert len(x) == len(y)
for i in range(len(x)-1):
plt.arrow(x[i], y[i], (x[i+1]-x[i]), (y[i+1]-y[i]),
head_width=0.2, head_length=0.2, length_includes_head=True,
fc=colors[event_i], ec=colors[event_i], alpha=0.4)

plt.plot(x[0], y[0], 'ko')
plt.scatter(x, y, s=1, c='black')

plt.xlabel("task")
plt.ylabel("reg/dyn0")
plt.title("x-axis=task vs y-axis=reg/dyn0")

plt.savefig(os.path.join(output_dir, 'phase_portrain_combined.png'), dpi=300)


if __name__ == "__main__":
event_files = glob.glob("../../runs/*/events*")
print("Using the following tensorboard event files:\n{}".format("\n".join(event_files)))
cmap = plt.get_cmap('tab10') # Choose a colormap
colors = [cmap(i) for i in range(len(event_files))] # Different colors for the different runs
phase_portrain_combined(event_files, colors)

0 comments on commit 4e49f89

Please sign in to comment.