-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e06217b
commit 644df3b
Showing
1 changed file
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
# %% [markdown] | ||
# Soil Properties, Types and Fitting | ||
|
||
# Since MODFLOW-USG uses both Brooks-Corey and van Genuchten. We need to | ||
# transform known van Genuchten soil types to Brooks-Corey parameters | ||
|
||
from itertools import chain | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
import pedon as pe | ||
|
||
def flip(items: list, ncol: int): | ||
return chain(*[items[i::ncol] for i in range(ncol)]) | ||
|
||
from pedon._params import pPanday | ||
# %% | ||
# Define Soil Names | ||
soilnames = [ | ||
'Sand', | ||
'Loamy Sand', | ||
'Sandy Loam', | ||
'Loam', | ||
'Silt', | ||
'Silt Loam', | ||
'Sandy Clay Loam', | ||
'Clay Loam', | ||
'Silty Clay Loam', | ||
'Sandy Clay', | ||
'Silty Clay', | ||
'Clay', | ||
] | ||
# %% | ||
# fit brooks on van genuchten and plot | ||
plotting = True | ||
|
||
df = pd.DataFrame( | ||
index=pd.MultiIndex.from_product([soilnames, ["Genuchten-Mualem", "Genuchten-BC-Mualem", "Genuchten-BC-Burdine"]]), columns=np.unique(np.append(list(pe.Panday.__dict__["__annotations__"].keys()), list(pe.Genuchten.__dict__["__annotations__"].keys()))), dtype=float | ||
) | ||
|
||
for sn in soilnames: | ||
soilms = [] | ||
soil = pe.Soil(sn).from_name(pe.Genuchten, source="HYDRUS") | ||
soilm = getattr(soil, "model") | ||
soilms.append(soilm) | ||
h = np.logspace(-4, 6, num=11) | ||
k = soilm.k(h) | ||
theta = soilm.theta(h) | ||
soil_usg = pe.SoilSample(h=h, k=k, theta=theta) | ||
soilm_usg = [] | ||
for c in [1.0, 2.0]: | ||
pbounds = pd.DataFrame( | ||
data={ | ||
"p_ini": { | ||
"k_s": getattr(soilm, "k_s"), | ||
# "theta_r": getattr(soilm, "theta_r"), | ||
# "theta_s": getattr(soilm, "theta_s"), | ||
"theta_r": pPanday.at["theta_r", "p_ini"], | ||
"theta_s": pPanday.at["theta_s", "p_ini"], | ||
"alpha": pPanday.at["alpha", "p_ini"], | ||
"beta": pPanday.at["beta", "p_ini"], | ||
"brook": 10.0, | ||
"c": c, | ||
}, | ||
"p_min": { | ||
"k_s": getattr(soilm, "k_s") - 1e-10, | ||
# "theta_r": getattr(soilm, "theta_r") - 1e-10, | ||
# "theta_s": getattr(soilm, "theta_s") - 1e-10, | ||
"theta_r": pPanday.at["theta_r", "p_min"], | ||
"theta_s": pPanday.at["theta_s", "p_min"], | ||
"alpha": pPanday.at["alpha", "p_min"], | ||
"beta": pPanday.at["beta", "p_min"], | ||
"brook": 1.0, | ||
"c": c - 1e-10, | ||
}, | ||
"p_max": { | ||
"k_s": getattr(soilm, "k_s") + 1e-10, | ||
# "theta_r": getattr(soilm, "theta_r") + 1e-10, | ||
# "theta_s": getattr(soilm, "theta_s") + 1e-10, | ||
"theta_r": pPanday.at["theta_r", "p_max"], | ||
"theta_s": pPanday.at["theta_s", "p_max"], | ||
"alpha": pPanday.at["alpha", "p_max"], | ||
"beta": pPanday.at["beta", "p_max"], | ||
"brook": 50.0, | ||
"c": c + 1e-10, | ||
}, | ||
"swrc": { | ||
"k_s": False, | ||
"theta_r": True, | ||
"theta_s": True, | ||
"alpha": True, | ||
"beta": True, | ||
"brook": False, | ||
"c": True, | ||
}, | ||
}, | ||
) | ||
soilm_usg = soil_usg.fit( | ||
pe.Panday, | ||
pbounds=pbounds, | ||
k_s=soilm.k_s, | ||
W1=0.1 | ||
) | ||
soilms.append(soilm_usg) | ||
|
||
for sm in soilms: | ||
for col in sm.__annotations__: | ||
if isinstance(sm, pe.Genuchten): | ||
mi = "Genuchten-Mualem" | ||
else: | ||
if np.isclose(sm.c, 1.0): | ||
mi = "Genuchten-BC-Mualem" | ||
elif np.isclose(sm.c, 2.0): | ||
mi = "Genuchten-BC-Burdine" | ||
|
||
df.loc[(sn, mi), col] = sm.__getattribute__(col) | ||
|
||
|
||
f, ax = plt.subplots( | ||
1, 2, sharey=True, figsize=(6, 4) | ||
) | ||
for sm, ls, lab in zip(soilms, ["-", "--", "-."], ["Genuchten-Mualem", "Genuchten-BC-Mualem", "Genuchten-BC-Burdine"]): | ||
_ = pe.soilmodel.plot_swrc(sm, ax=ax[0], linestyle=ls, label=lab) | ||
_ = pe.soilmodel.plot_hcf(sm, ax=ax[1], linestyle=ls, label=lab) | ||
|
||
ax[0].set_yscale("log") | ||
ax[1].set_yscale("log") | ||
|
||
ax[0].set_xlim(0, 0.5) | ||
ax[0].set_xticks(np.linspace(0, 0.5, 6)) | ||
ax[0].set_yticks(h) | ||
|
||
ax[1].set_xscale("log") | ||
ax[1].set_xlim(1e-25, 5e3) | ||
|
||
ax[0].set_ylabel(r"|$\psi$| [cm]") | ||
ax[0].set_xlabel(r"$\theta$ [-]") | ||
ax[1].set_xlabel(r"$K_s$ [cm/d]") | ||
handles, labels = ax[0].get_legend_handles_labels() | ||
ncol = 3 | ||
ax[0].legend( | ||
flip(handles, ncol), | ||
flip(labels, ncol), | ||
loc=(-0.02, 1), | ||
fontsize=7.5, | ||
frameon=False, | ||
ncol=ncol, | ||
columnspacing=0.8, | ||
handlelength=2.5, | ||
) | ||
f.savefig( | ||
f"Soil_Properties_{sn.replace(' ', '')}.png", | ||
bbox_inches="tight", | ||
dpi=300, | ||
) | ||
f.align_xlabels() | ||
plt.close(f) | ||
|
||
df.loc[(slice(None), "Genuchten-Mualem"), "beta"] = df.loc[(slice(None), "Genuchten-Mualem"), "n"] | ||
df.loc[(slice(None), "Genuchten-Mualem"), "gamma"] = df.loc[(slice(None), "Genuchten-Mualem"), "m"] | ||
df = df.drop(columns=["n", "m", "c", "sr", "sy", "ss", "h_b"]) | ||
df.round(4).to_excel("Fitted_Parameters_Genuchten_BC_Mualem_Burdine.xlsx") |