-
Notifications
You must be signed in to change notification settings - Fork 2
/
inverse-of-G-operator.tex
316 lines (284 loc) · 10.3 KB
/
inverse-of-G-operator.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
\section{ $[t^{n}] $ inverse operator of generating function operator}
In this section we'll study the inverse operator $[t^{n}] $ of
$\mathcal{G} $, which consume a generating function $g(t)$, where
$g(t) = \mathcal{G} (\{a_n\}_{n\in\mathbb{N} } )$, and returns the
$a_n$ coefficient of the sequence $\{a_n\}_{n\in\mathbb{N} }$ (in
other words, $[t^n]a(t) = f(n)$, so $[t^n]$ returns a function of
$n$), formally $[t^{n}] g(t) = a_n$. It is interesting to note that
the function $g(t)$ to which $[t^n]$ is applied to depends only on $t$
(in the last lectures we will see a special case of application
$[t^n]g(t,n)$).
\subsection{Linearity of $[t^{n}] $}
\begin{displaymath}
\begin{split}
[t^{n}] (\alpha a(t) + \beta b(t)) = [t^{n}]
\left(\sum_{n=0}^{\infty}{(\alpha a_n + \beta b_n )t^n}\right) =
\alpha a_n + \beta b_n
\end{split}
\end{displaymath}
\subsection{Translation of $[t^{n}] $}
Let $s\in \mathbb{Z}$:
\begin{displaymath}
\begin{split}
[t^{n}] t^s a(t) &= [t^{n}] t^s (a_0 + a_1 t + a_2 t^2 + \ldots +
a_n t^n + \ldots )\\
&= [t^{n}] (a_0 t^s + a_1 t^{s+1} + a_2 t^{s+2} + \ldots + a_n
t^{n+s} + \ldots )\\
&= [t^{n-s}] a(t)
\end{split}
\end{displaymath}
A simple observation:
\begin{displaymath}
[t^{n}] \frac{ a(t)}{t^s} = [t^{n+s}] a(t)
\end{displaymath}
\subsection{Derivation of $[t^{n}] $}
\begin{displaymath}
\begin{split}
a(t) &= a_0 + a_1 t + a_2 t^2 + \ldots + a_n t^n + \ldots \\
\frac{\partial}{\partial t}\left(a(t) \right) &= a_1 + 2a_2 t +
3a_3 t^2+\ldots + (n+1)a_{n+1} t^n + \ldots \\
[t^{n}] \frac{\partial}{\partial t}\left(a(t) \right) &=
(n+1)a_{n+1}
\end{split}
\end{displaymath}
It is interesting to note the following fact:
\begin{displaymath}
\begin{split}
[t^{n}] \frac{\partial}{\partial t}\left(a(t) \right) &=
(n+1)a_{n+1}\\
&\downarrow \\
[t^{n-1}] \frac{\partial}{\partial t}\left(a(t) \right) &= n a_{n} \\
n[t^{n}]a(t) &= n a_{n}\quad \text{by def of } [t^{n}]
\end{split}
\end{displaymath}
So the following holds:
\begin{equation}
\label{eq:implication-der-property-of-inverse-of-G}
[t^{n}]a(t) = \frac{1}{n} [t^{n-1}] a^{\prime}(t)
\end{equation}
\subsection{Convolution of $[t^{n}] $}
\begin{displaymath}
\begin{split}
[t^{n}] a(t)b(t) &= [t^{n}] \mathcal{G} (a_n) \mathcal{G} (b_n) =
[t^{n}]\mathcal{G} \left(\sum_{k=0}^{n}{a_k b_{n-k}} \right) =
\sum_{k=0}^{n}{a_k b_{n-k}}
\end{split}
\end{displaymath}
\subsection{Composition of $[t^{n}] $}
\begin{displaymath}
\begin{split}
[t^{n}] a(t)\circ b(t) &=[t^{n}] a(b(t))
=[t^{n}]\sum_{k=0}^{\infty}{a_k (\mathcal{G} (b_n))^k}\\
&=\sum_{k=0}^{\infty}{a_k [t^{n}] b(t)^k} \quad \text{by linearity
of } [t^n]
\end{split}
\end{displaymath}
\subsection{Netwon's rule}
Let $\alpha, r \in \mathbb{R} $:
\begin{equation}
\label{eq:newton-rule}
[t^{n}] (1 + \alpha t)^r = {{r}\choose{n}} \alpha^n
\end{equation}
\begin{proof}[Proof]
We repeatedly apply
\autoref{eq:implication-der-property-of-inverse-of-G} to $[t^{n}] (1
+ \alpha t)^r$ getting the following:
\begin{displaymath}
\begin{split}
[t^{n}] (1 + \alpha t)^r &= \frac{1}{n} [t^{n-1}] r\alpha(1 +
\alpha t)^{r-1} \\
&= \frac{r\alpha}{n} \frac{1}{n-1}[t^{n-2}] (r-1)\alpha(1 +
\alpha t)^{r-2}\\
&= \frac{r\alpha}{n}
\frac{(r-1)\alpha}{n-1}\frac{1}{n-2}[t^{n-3}] (r-2)\alpha(1 +
\alpha t)^{r-3}\\
&\vdots\\
&= \frac{r\alpha}{n} \frac{(r-1)\alpha}{n-1}\cdots
\frac{(r-n+2))\alpha}{n-n+2} \frac{1}{n-n+1}[t^{n-n}]
(r-n+1)\alpha(1 +
\alpha t)^{r-n}\\
&= \frac{r\alpha}{n} \frac{(r-1)\alpha}{n-1}\cdots
\frac{(r-n+2))\alpha}{n-n+2} \frac{(r-n+1)\alpha}{n-n+1}[t^{0}]
(1 + \alpha t)^{r-n}\\
&= \alpha^n \frac{r(r-1)\cdots(r-n+1)}{n!}[t^{0}]
(1 + \alpha t)^{r-n}\\
&= \alpha^n {{r}\choose{n}} [t^{0}]
(1 + \alpha t)^{r-n}\\
&= \alpha^n {{r}\choose{n}}
\end{split}
\end{displaymath}
where $[t^{0}] (1 + \alpha t)^{r-n} = 1$ because, let $f(t)= (1 +
\mu t)^{\nu}$ in:
\begin{displaymath}
[t^0]f(t) = [t^0] \left(\sum_{k=0}^{\infty}{
\frac{f^k(0)}{k!}t^k } \right) = f^0(0) = f(0) = 1 \quad
\forall \mu, \nu \in \mathbb{R}
\end{displaymath}
\end{proof}
\subsection{Inverting Fibonacci generating function}
In this section we'll study the extract coefficient operator $[t^{n}]$
applied to the generating function of Fibonacci's sequence.
In \autoref{eq:fibonacci-generating-function} we found the generating
function for Fibonacci's sequence, in order to apply the Newton's
rule, we have to reach something like $(1 + \alpha t)^r$, for some
$\alpha, r \in \mathbb{R} $. So the idea is to write the term
$\frac{t}{1-t-t^2}$ as partial fractions and try to apply $[t^{n}]$.
First we solve $1-t-t^2 = 0$ respect $t$, having two solutions
$\phi=\frac{\sqrt{5}-1}{2}$ and $\hat{\phi}=-\frac{\sqrt{5}+1}{2}$
(Maxima results \parbox{8ex}{\color{labelcolor}(\%o759) }
and \parbox{8ex}{\color{labelcolor}(\%o760) }).
Those solutions are very interesting and enjoy the following
properties (Maxima results \parbox{8ex}{\color{labelcolor}(\%o761) }
and \parbox{8ex}{\color{labelcolor}(\%o762) }):
\begin{displaymath}
\begin{split}
\phi + \hat{\phi} &= \frac{\sqrt{5}}{2} - \frac{1}{2} -
\frac{\sqrt{5}}{2} - \frac{1}{2} = -1\\
\phi \hat{\phi} &= \frac{(\sqrt{5} -1)(-\sqrt{5} -1)}{4} =
\frac{-5+1}{4} = -1\\
&\downarrow\\
\phi + \hat{\phi} &= \phi \hat{\phi} = -1
\end{split}
\end{displaymath}
Now we use the previous solutions to factor $1-t-t^2$:
\begin{displaymath}
\begin{split}
1-t-t^2 &= -\left( t-\phi \right)\left( t-\hat{\phi} \right)\\
&= -(-\phi)(-\hat{\phi})\left(1 - \frac{t}{\phi} \right)
\left(1 - \frac{t}{\hat{\phi}} \right)\\
&= -\phi\hat{\phi}\left(1 - \frac{t}{\phi} \right)
\left(1 - \frac{t}{\hat{\phi}} \right)\\
&= \left(1 - \frac{t}{\phi} \right) \left(1 - \frac{t}{\hat{\phi}}
\right) \quad \text{ by above properties}
\end{split}
\end{displaymath}
Now we'll find two constants $A, B \in \mathbb{R} $ to build the
partial fractions:
\begin{displaymath}
\begin{split}
\frac{t}{1-t-t^2} &= \frac{A}{\left(1 - \frac{t}{\phi} \right)} +
\frac{B}{ \left(1 - \frac{t}{\hat{\phi}} \right)}= \frac{A \left(1
- \frac{t}{\hat{\phi}} \right) + B\left(1 - \frac{t}{\phi}
\right)}{\left(1 - \frac{t}{\phi} \right) \left(1 -
\frac{t}{\hat{\phi}} \right)} = \frac{(A+B) -t
\left(\frac{A}{\hat{\phi}} +\frac{B}{\phi}
\right)}{\left(1 - \frac{t}{\phi} \right) \left(1 -
\frac{t}{\hat{\phi}} \right)}
\end{split}
\end{displaymath}
So we've to solve the system with two equations in two unknowns:
$A+B=0$ and $\left(\frac{A}{\hat{\phi}} +\frac{B}{\phi} \right) = -1$,
which yields $A= \frac{1}{\sqrt{5}} $ and $B= -\frac{1}{\sqrt{5}}$ (as
confirmed in \parbox{8ex}{\color{labelcolor}(\%o765) }). So we've
found the partial fractions decomposition (as confirmed
in \parbox{8ex}{\color{labelcolor}(\%o767) }):
\begin{equation}
\frac{t}{1-t-t^2} = \frac{1}{\sqrt{5}}\frac{1}{1-\frac{t}{\phi}}-
\frac{1}{\sqrt{5}}\frac{1}{1-\frac{t}{\hat{\phi}}}
\end{equation}
We apply the $[t^{n}] $ to both members:
\begin{displaymath}
\begin{split}
[t^{n}]\frac{t}{1-t-t^2} &=
\frac{1}{\sqrt{5}}[t^{n}]\frac{1}{1-\frac{t}{\phi}}-
\frac{1}{\sqrt{5}}[t^{n}]\frac{1}{1-\frac{t}{\hat{\phi}}}\\
&= \frac{1}{\sqrt{5}}[t^{n}]\left(1-\frac{t}{\phi}\right)^{-1}-
\frac{1}{\sqrt{5}}[t^{n}]\left(1-\frac{t}{\hat{\phi}}\right)^{-1}
\\
&=
\frac{1}{\sqrt{5}}{{-1}\choose{n}}\left(-\frac{1}{\phi}\right)^{n}-
\frac{1}{\sqrt{5}}{{-1}\choose{n}}\left(-\frac{1}{\hat{\phi}}\right)^{n}
\quad \text{by Newton's rule}\\
&= \frac{1}{\sqrt{5}}(-1)^n(-1)^n\left(\frac{1}{\phi}\right)^{n}-
\frac{1}{\sqrt{5}}(-1)^n(-1)^n\left(\frac{1}{\hat{\phi}}\right)^{n}\\
& \quad \text{by } {{-1}\choose{n}} = (-1)^n{{1+n-1}\choose{n}} =
(-1)^n\\
&= \frac{1}{\sqrt{5}}\left(\frac{1}{\phi}\right)^{n}-
\frac{1}{\sqrt{5}}\left(\frac{1}{\hat{\phi}}\right)^{n}\\
\end{split}
\end{displaymath}
Checking with Maxima, in \parbox{8ex}{\color{labelcolor}(\%o770) } we
obtain the right Fibonacci numbers.
\noindent
%%%%%%%%%%%%%%%
%%% INPUT:
\begin{minipage}[t]{8ex}{\color{red}\bf
\begin{verbatim}
(%i757)
\end{verbatim}}
\end{minipage}
\begin{minipage}[t]{\textwidth}{\color{blue}
\begin{verbatim}
eqFib:1-k-k^2=0;
solutions:solve(eqFib,k);
phi:ev(k,solutions[2]);
phiHat:ev(k,solutions[1]);
ratsimp(phi*phiHat);
ratsimp(phi+phiHat);
ratsimp(-phi*phiHat*(1-t/phi)*(1-t/phiHat));
ratsimp((1+phi*t)*(1+phiHat*t));
ABvalues:solve([A+B=0, (A/phiHat)+(B/phi)=-1],[A,B]);
parFracAB(A,B):=(A/(1-t/phi))+(B/(1-t/phiHat));
ratsimp(ev(parFracAB(A,B),ABvalues));
coef(n,A,B):=A*(1/phi)^n + B*(1/phiHat)^n;
coefCurry(n):=ratsimp(ev(coef(n,A,B),ABvalues))$
map(coefCurry, makelist(n,n,0,10));
\end{verbatim}}
\end{minipage}
%%% OUTPUT:
\definecolor{labelcolor}{RGB}{100,0,0}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o757) }
-{k}^{2}-k+1=0
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o758) }
[k=-\frac{\sqrt{5}+1}{2},k=\frac{\sqrt{5}-1}{2}]
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o759) }
\frac{\sqrt{5}-1}{2}
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o760) }
-\frac{\sqrt{5}+1}{2}
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o761) }
-1
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o762) }
-1
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o763) }
-{t}^{2}-t+1
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o764) }
-{t}^{2}-t+1
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o765) }
[[A=\frac{1}{\sqrt{5}},B=-\frac{1}{\sqrt{5}}]]
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o766) }
\mathrm{parFracAB}\left( A,B\right)
:=\frac{A}{1-\frac{t}{\phi}}+\frac{B}{1-\frac{t}{phiHat}}
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o767) }
-\frac{t}{{t}^{2}+t-1}
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o768) }
\mathrm{coef}\left( n,A,B\right) :=A\,{\left( \frac{1}{\phi}\right)
}^{n}+B\,{\left( \frac{1}{phiHat}\right) }^{n}
\end{math}
\begin{math}\displaystyle
\parbox{8ex}{\color{labelcolor}(\%o770) }
[0,1,1,2,3,5,8,13,21,34,55]
\end{math}
%%%%%%%%%%%%%%%