-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhamux.py
281 lines (231 loc) · 10.1 KB
/
hamux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Taken from: https://github.com/bhoov/eqx-hamux to be used as package
"""A minimal implementation of HAMs in JAX. Unlike pytorch, this implementation operates on individual samples."""
import jax.numpy as jnp
import jax
import numpy as np
import functools as ft
from typing import *
from dataclasses import dataclass
import equinox as eqx
import jax.tree_util as jtu
## LAGRANGIANS
def lagr_identity(x):
"""The Lagrangian whose activation function is simply the identity."""
return 0.5 * jnp.power(x, 2).sum()
def lagr_repu(x,
n): # Degree of the polynomial in the power unit
"""Rectified Power Unit of degree `n`"""
return 1 / n * jnp.power(jnp.maximum(x, 0), n).sum()
def lagr_relu(x):
"""Rectified Linear Unit. Same as repu of degree 2"""
return lagr_repu(x, 2)
def lagr_softmax(x,
beta:float=1.0, # Inverse temperature
axis:int=-1): # Dimension over which to apply logsumexp
"""The lagrangian of the softmax -- the logsumexp"""
return (1/beta * jax.nn.logsumexp(beta * x, axis=axis, keepdims=False))
def lagr_exp(x,
beta:float=1.0): # Inverse temperature
"""Exponential activation function, as in [Demicirgil et al.](https://arxiv.org/abs/1702.01929). Operates elementwise"""
return 1 / beta * jnp.exp(beta * x).sum()
def lagr_rexp(x,
beta:float=1.0): # Inverse temperature
"""Rectified exponential activation function"""
xclipped = jnp.maximum(x, 0)
return 1 / beta * (jnp.exp(beta * xclipped)-xclipped).sum()
@jax.custom_jvp
def _lagr_tanh(x, beta=1.0):
return 1 / beta * jnp.log(jnp.cosh(beta * x))
@_lagr_tanh.defjvp
def _lagr_tanh_defjvp(primals, tangents):
x, beta = primals
x_dot, beta_dot = tangents
primal_out = _lagr_tanh(x, beta)
tangent_out = jnp.tanh(beta * x) * x_dot
return primal_out, tangent_out
def lagr_tanh(x,
beta=1.0): # Inverse temperature
"""Lagrangian of the tanh activation function"""
return _lagr_tanh(x, beta)
@jax.custom_jvp
def _lagr_sigmoid(x,
beta=1.0, # Inverse temperature
scale=1.0): # Amount to stretch the range of the sigmoid's lagrangian
"""The lagrangian of a sigmoid that we can define custom JVPs of"""
return scale / beta * jnp.log(jnp.exp(beta * x) + 1)
def _tempered_sigmoid(x,
beta=1.0, # Inverse temperature
scale=1.0): # Amount to stretch the range of the sigmoid
"""The basic sigmoid, but with a scaling factor"""
return scale / (1 + jnp.exp(-beta * x))
@_lagr_sigmoid.defjvp
def _lagr_sigmoid_jvp(primals, tangents):
x, beta, scale = primals
x_dot, beta_dot, scale_dot = tangents
primal_out = _lagr_sigmoid(x, beta, scale)
tangent_out = _tempered_sigmoid(x, beta=beta, scale=scale) * x_dot # Manually defined sigmoid
return primal_out, tangent_out
def lagr_sigmoid(x,
beta=1.0, # Inverse temperature
scale=1.0): # Amount to stretch the range of the sigmoid's lagrangian
"""The lagrangian of the sigmoid activation function"""
return _lagr_sigmoid(x, beta=beta, scale=scale)
def _simple_layernorm(x:jnp.ndarray,
gamma:float=1.0, # Scale the stdev
delta:Union[float, jnp.ndarray]=0., # Shift the mean
axis=-1, # Which axis to normalize
eps=1e-5, # Prevent division by 0
):
"""Layer norm activation function"""
xmean = x.mean(axis, keepdims=True)
xmeaned = x - xmean
denominator = jnp.sqrt(jnp.power(xmeaned, 2).mean(axis, keepdims=True) + eps)
return gamma * xmeaned / denominator + delta
def lagr_layernorm(x:jnp.ndarray,
gamma:float=1.0, # Scale the stdev
delta:Union[float, jnp.ndarray]=0., # Shift the mean
axis=-1, # Which axis to normalize
eps=1e-5, # Prevent division by 0
):
"""Lagrangian of the layer norm activation function"""
D = x.shape[axis] if axis is not None else x.size
xmean = x.mean(axis, keepdims=True)
xmeaned = x - xmean
y = jnp.sqrt(jnp.power(xmeaned, 2).mean(axis, keepdims=True) + eps)
return (D * gamma * y + (delta * x).sum()).sum()
def _simple_spherical_norm(x:jnp.ndarray,
axis=-1, # Which axis to normalize
):
"""Spherical norm activation function"""
xmean = x.mean(axis, keepdims=True)
xmeaned = x - xmean
denominator = jnp.sqrt(jnp.power(xmeaned, 2).mean(axis, keepdims=True) + eps)
return gamma * xmeaned / denominator + delta
def lagr_spherical_norm(x:jnp.ndarray,
gamma:float=1.0, # Scale the stdev
delta:Union[float, jnp.ndarray]=0., # Shift the mean
axis=-1, # Which axis to normalize
eps=1e-5, # Prevent division by 0
):
"""Lagrangian of the spherical norm activation function"""
y = jnp.sqrt(jnp.power(x, 2).sum(axis, keepdims=True) + eps)
return (gamma * y + (delta * x).sum()).sum()
## Neurons
class Neurons(eqx.Module):
lagrangian: Callable
shape: Tuple[int]
def __init__(self,
lagrangian:Union[Callable, eqx.Module],
shape:Union[int, Tuple[int]]
):
super().__init__()
self.lagrangian = lagrangian
if isinstance(shape, int):
shape = (shape,)
self.shape = shape
def activations(self, x):
return jax.grad(self.lagrangian)(x)
def g(self, x):
return self.activations(x)
def energy(self, g, x):
"""Assume vectorized"""
return jnp.multiply(g, x).sum() - self.lagrangian(x)
def init(self, bs:Optional[int]=None):
"""Return an empty state of the correct shape"""
if bs is None or bs == 0:
return jnp.zeros(*self.shape)
return jnp.zeros((bs, *self.shape))
def __repr__(self):
return f"Neurons(lagrangian={self.lagrangian}, shape={self.shape})"
## HAM
class HAM(eqx.Module):
neurons: Dict[str, Neurons]
synapses: Dict[str, eqx.Module]
connections: List[Tuple[Tuple, str]]
def __init__(self, neurons, synapses, connections):
self.neurons = neurons
self.synapses = synapses
self.connections = connections
@property
def n_neurons(self): return len(self.neurons)
@property
def n_synapses(self): return len(self.synapses)
@property
def n_connections(self): return len(self.connections)
def activations(self, xs):
"""Convert hidden states to activations"""
gs = {k: v.g(xs[k]) for k,v in self.neurons.items()}
return gs
def init_states(self, bs:Optional[int]=None):
"""Initialize states"""
xs = {k: v.init(bs) for k,v in self.neurons.items()}
return xs
def neuron_energy(self, gs, xs):
"""The sum of all neuron energies"""
energies = [self.neurons[k].energy(gs[k], xs[k]) for k in self.neurons.keys()]
return jnp.sum(jnp.stack(energies))
def synapse_energy(self, gs):
"""The sum of all synapse energies"""
def get_energy(neuron_set, s):
mygs = [gs[k] for k in neuron_set]
return self.synapses[s](*mygs)
energies = [get_energy(neuron_set, s) for neuron_set, s in self.connections]
return jnp.sum(jnp.stack(energies))
def energy(self, gs, xs):
"""The complete energy of the HAM"""
return self.neuron_energy(gs, xs) + self.synapse_energy(gs)
def dEdg(self, gs, xs, return_energy=False):
"""Calculate gradient of system energy wrt activations using cute trick"""
if return_energy:
return jax.value_and_grad(self.energy)(gs, xs)
return jax.grad(self.energy)(gs, xs)
def dEdg_manual(self, gs, xs, return_energy=False):
"""Calculate gradient of system energy wrt activations using cute trick"""
dEdg = jtu.tree_map(lambda x, s: x + s, xs, jax.grad(self.synapse_energy)(gs))
if return_energy:
return dEdg, self.energy(gs, xs)
return dEdg
def vectorize(self):
"""Compute new HAM with same API, except all methods expect a batch dimension"""
return VectorizedHAM(self)
def unvectorize(self):
return self
class VectorizedHAM(eqx.Module):
"""Re-expose HAM API with vectorized inputs"""
_ham: eqx.Module
def __init__(self, ham):
self._ham = ham
@property
def neurons(self): return self._ham.neurons
@property
def synapses(self): return self._ham.synapses
@property
def connections(self): return self._ham.connections
@property
def n_neurons(self): return self._ham.n_neurons
@property
def n_synapses(self): return self._ham.n_synapses
@property
def n_connections(self): return self._ham.n_connections
@property
def _batch_axes(self:HAM):
"""A helper function to tell vmap to batch along the 0'th dimension of each state in the HAM."""
return {k: 0 for k in self._ham.neurons.keys()}
def init_states(self, bs=None):
return self._ham.init_states(bs)
def activations(self, xs):
return jax.vmap(self._ham.activations, in_axes=(self._batch_axes,))(xs)
def synapse_energy(self, gs):
return jax.vmap(self._ham.synapse_energy, in_axes=(self._batch_axes,))(gs)
def neuron_energy(self, gs, xs):
return jax.vmap(self._ham.neuron_energy, in_axes=(self._batch_axes, self._batch_axes))(gs, xs)
def energy(self, gs, xs):
return jax.vmap(self._ham.energy, in_axes=(self._batch_axes, self._batch_axes))(gs, xs)
def dEdg(self, gs, xs, return_energy=False):
return jax.vmap(self._ham.dEdg, in_axes=(self._batch_axes, self._batch_axes, None))(gs, xs, return_energy)
def dEdg_manual(self, gs, xs, return_energy=False):
return jax.vmap(self._ham.dEdg, in_axes=(self._batch_axes, self._batch_axes, None))(gs, xs, return_energy)
def unvectorize(self):
return self._ham
def vectorize(self):
return self