-
file
Rstruct_topology.v
-
package
coq-mathcomp-reals
depending oncoq-mathcomp-classical
with filesconstructive_ereal.v
reals.v
real_interval.v
signed.v
itv.v
prodnormedzmodule.v
nsatz_realtype.v
all_reals.v
-
in file
separation_axioms.v
,- new lemmas
compact_normal_local
, andcompact_normal
.
- new lemmas
-
package
coq-mathcomp-experimental-reals
depending oncoq-mathcomp-reals
with filesxfinmap.v
discrete.v
realseq.v
realsum.v
distr.v
-
package
coq-mathcomp-reals-stdlib
depending oncoq-mathcomp-reals
with fileRstruct.v
-
package
coq-mathcomp-analysis-stdlib
depending oncoq-mathcomp-analysis
andcoq-mathcomp-reals-stdlib
with filesRstruct_topology.v
showcase/uniform_bigO.v
-
in file
separation_axioms.v
,- new lemmas
compact_normal_local
, andcompact_normal
.
- new lemmas
-
in file
topology_theory/one_point_compactification.v
,- new definitions
one_point_compactification
, andone_point_nbhs
. - new lemmas
one_point_compactification_compact
,one_point_compactification_some_nbhs
,one_point_compactification_some_continuous
,one_point_compactification_open_some
,one_point_compactification_weak_topology
, andone_point_compactification_hausdorff
.
- new definitions
-
in file
normedtype.v
,- new definition
type
(in modulecompletely_regular_uniformity
) - new lemmas
normal_completely_regular
,one_point_compactification_completely_reg
,nbhs_one_point_compactification_weakE
,locally_compact_completely_regular
, andcompletely_regular_regular
.
- new definition
-
in file
mathcomp_extra.v
,- new definition
sigT_fun
.
- new definition
-
in file
sigT_topology.v
,- new definition
sigT_nbhs
. - new lemmas
sigT_nbhsE
,existT_continuous
,existT_open_map
,existT_nbhs
,sigT_openP
,sigT_continuous
,sigT_setUE
, andsigT_compact
.
- new definition
-
in file
separation_axioms.v
,- new lemma
sigT_hausdorff
.
- new lemma
-
in
measure.v
:- lemma
countable_measurable
- lemma
-
in
realfun.v
:- lemma
cvgr_dnbhsP
- lemma
-
in file
normedtype.v
, changedcompletely_regular_space
to depend on uniform separators which removes the dependency onR
. The old formulation can be recovered easily withuniform_separatorP
. -
moved from
Rstruct.v
toRstruct_topology.v
- lemmas
continuity_pt_nbhs
,continuity_pt_cvg
,continuity_ptE
,continuity_pt_cvg'
,continuity_pt_dnbhs
andnbhs_pt_comp
- lemmas
-
moved from
real_interval.v
tonormedtype.v
- lemmas
set_itvK
,RhullT
,RhullK
,set_itv_setT
,Rhull_smallest
,le_Rhull
,neitv_Rhull
,Rhull_involutive
,disj_itv_Rhull
- lemmas
-
in
topology.v
:- lemmas
subspace_pm_ball_center
,subspace_pm_ball_sym
,subspace_pm_ball_triangle
,subspace_pm_entourage
turned into localLet
's
- lemmas
-
in
lebesgue_integral.v
:- structure
SimpleFun
now inside a moduleHBSimple
- structure
NonNegSimpleFun
now inside a moduleHBNNSimple
- lemma
cst_nnfun_subproof
has now a different statement - lemma
indic_nnfun_subproof
has now a different statement
- structure
-
in
mathcomp_extra.v
:- definition
idempotent_fun
- definition
-
in
topology_structure.v
:- definitions
regopen
,regclosed
- lemmas
closure_setC
,interiorC
,closureU
,interiorU
,closureEbigcap
,interiorEbigcup
,closure_open_regclosed
,interior_closed_regopen
,closure_interior_idem
,interior_closure_idem
- definitions
-
in file
topology_structure.v
,- mixin
isContinuous
, typecontinuousType
, structureContinuous
- new lemma
continuousEP
. - new definition
mkcts
.
- mixin
-
in file
subspace_topology.v
,- new lemmas
continuous_subspace_setT
,nbhs_prodX_subspace_inE
, andcontinuous_subspace_prodP
. - type
continuousFunType
, HB structureContinuousFun
- new lemmas
-
in file
subtype_topology.v
,- new lemmas
subspace_subtypeP
,subspace_sigL_continuousP
,subspace_valL_continuousP'
,subspace_valL_continuousP
,sigT_of_setXK
,setX_of_sigTK
,setX_of_sigT_continuous
, andsigT_of_setX_continuous
.
- new lemmas
- in
lebesgue_integral.v
:- generalized from
sigmaRingType
/realType
tosigmaRingType
/sigmaRingType
- mixin
isMeasurableFun
- structure
MeasurableFun
- definition
mfun
- lemmas
mfun_rect
,mfun_valP
,mfuneqP
- mixin
- generalized from
- in
topology_structure.v
:- lemma
closureC
- lemma
-
in
lebesgue_integral.v
:- definition
cst_mfun
- lemma
mfun_cst
- definition
-
in
cardinality.v
:- lemma
cst_fimfun_subproof
- lemma
-
in
lebesgue_integral.v
:- lemma
cst_mfun_subproof
(use lemmameasurable_cst
instead) - lemma
cst_nnfun_subproof
(turned into aLet
) - lemma
indic_mfun_subproof
(use lemmameasurable_fun_indic
instead)
- lemma