-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_campbell.py
197 lines (159 loc) · 7.93 KB
/
plot_campbell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
"""
Load a structural and aeroelastic Campbell diagram and plot it.
"""
import numpy as np
import matplotlib.pyplot as plt
import os
from pathlib import Path
path = './V2/data/V2_hs2.opt'
struc_path = './V2/results/hawcstab2/structural_it2.cmb' # either None or path to structural .cmb file
aero_path = './V2/results/hawcstab2/aeroelastic_it2.cmb' # either None or path to aeroelastic .cmb file
min_wsp = 4 # minimum wind speed to plot
max_modes = 12 # maximum number of modes to plot
opt_path = path # opt path for 1P, 3P, 6P lines
save_fig = False # save the figures to png?
# identification of modes for structural and aeroelastic campbell diagram
# modes_struc = ['1. 1st Twr FA', '2. 1st Twr SS', '3. 1st BW flap', '4. 1st SYM flap',
# '5. 1st FW flap', '6. 1st BW edge', '7. 1st FW edge', '8. 2nd BW flap',
# '9. 2nd FW flap', '10. 2nd SYM flap', '11. 3rd SYM flap ', '12. 1st DT ']
modes_struc = ['1. 1st Twr FA', '2. 1st Twr SS', '3. 1st BW flap', '4. 1st FW flap',
'5. 1st SYM flap', '6. 2nd FW flap', '7. 1st SYM edge', '8. 1st BW edge',
'9. 2nd FW flap', '10. 2nd FW edge', '11. 2nd BW flap', '12. 2nd FW flap']
# modes_aero = ['1. 1st Twr FA', '2. 1st Twr SS', '3. 1st BW flap', '4. 1st FW flap',
# '5. 1st SYM flap', '6. 1st BW edge', '7. 1st FW edge', '8. 2nd BW flap',
# '9. 2nd FW flap', '10. 2nd SYM flap', '11. 1st SYM edge', '12. 1st DT']
modes_aero = ['1. 1st Twr FA', '2. 1st Twr SS', '3. 1st BW flap', '4. 1st FW flap',
'5. 1st SYM flap', '6. 2nd BW flap', '7. 2nd SYM flap ', '8. 1st BW edge',
'9. 2nd FW flap', '10. 1st FW edge', '11. 3rd BW flap', '12. 3rd FW flap']
#%% Define useful functions
def load_campbell(path, min_wsp=4, max_modes=11, filter_modes=True):
"""Load a Campbell diagram, filtering out modes who are all critically damped.
Option to provide a minimum wind speed and max number of modes to load.
"""
damp_thresh = 98 # set threshold to 98%
# open the file, isolate useful columns
with open(path, 'r') as f:
nmodes = int(f.readline().split()[-1])
all_data = np.loadtxt(path, skiprows=1)
wind = all_data[:, 0]
freqs = all_data[:, 1:nmodes + 1]
damps = all_data[:, nmodes + 1:2*nmodes + 1]
# if desired, filter out very-damped modes
if filter_modes:
mask = np.abs(damps) > damp_thresh # mask the values whose damping is too high
freqs[mask] = np.nan # set overdamped freqs to nan
out_cols = ~np.all(mask, axis=0) # only return cols who have at least 1 non-nan
freqs = freqs[:, out_cols]
damps = damps[:, out_cols]
# filter out wind speeds below minimum and by max number of modes
freqs = freqs[wind > min_wsp, :][:, :max_modes]
damps = damps[wind > min_wsp, :][:, :max_modes]
wind = wind[wind > min_wsp]
# sort columns by increasing first frequency
idx_sort = np.argsort(freqs[0, :])
freqs = freqs[:, idx_sort]
damps = damps[:, idx_sort]
return wind, freqs, damps
def switch_modes(wind, freqs, damps, col_mode1, col_mode2, wsp_start):
"""Switch modes in freqs, damps due to misidentification"""
# check that the requested starting wind speed is in the provided wind speeds
if wsp_start not in wind:
raise ValueError(f'Wind speed {wsp_start} not in available wind speeds!')
# get the row index for the starting wind speed
idx_start = np.argmax(wind == wsp_start)
# perform the mode switching
f_mode1 = freqs[idx_start:, col_mode1].copy()
d_mode1 = damps[idx_start:, col_mode1].copy()
freqs[idx_start:, col_mode1] = freqs[idx_start:, col_mode2]
damps[idx_start:, col_mode1] = damps[idx_start:, col_mode2]
freqs[idx_start:, col_mode2] = f_mode1
damps[idx_start:, col_mode2] = d_mode1
return freqs, damps
def plot_freqs_vs_wsp(wsps, freqs, fig_num=1, labels=None, opt_path=None):
"""Make a Campbell diagram figure. Option to plot the NP harmonics if opt_path given."""
# set plotting parameters
plt.rcParams['font.size'] = 12
plt.rcParams['axes.prop_cycle'] = plt.cycler('color', plt.cm.tab20.colors[::2] + plt.cm.tab20.colors[1::2])
# initialize the figure
fig, ax = plt.subplots(1, num=fig_num, clear=True, figsize=(9, 4))
# plot the data
handles = ax.plot(wsps, freqs, '-o', mfc='w')
# plot 1P, 3P and 6P if operation.dat file path is given
if opt_path is not None:
opt_wsp, opt_rotspd = np.loadtxt(opt_path, skiprows=1, usecols=[0, 2]).T
opt_rotspd = opt_rotspd[opt_wsp >= wsps.min()] / 60 # in Hz
opt_wsp = opt_wsp[opt_wsp >= wsps.min()]
lines = [ax.plot(opt_wsp, opt_rotspd*np.max([3*i, 1]),
'0.2', alpha=0.8, linestyle=['--', '-.', ':'][i])[0]
for i in range(3)]
handles += lines
labels = labels + ['1P', '3P', '6P']
# make the plot pretty
ax.grid('on')
ax.set(xlabel='Wind speed [m/s]', ylabel='Natural frequency [Hz]')
if labels is not None:
ax.legend(handles=handles, labels=labels,
bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
fig.tight_layout()
return fig, ax
def plot_damp_vs_wsp(wsps, damp, fig_num=1, labels=None,):
"""Plot damping versus wind speed."""
# set plotting parameters
plt.rcParams['font.size'] = 12
plt.rcParams['axes.prop_cycle'] = plt.cycler('color', plt.cm.tab20.colors[::2] + plt.cm.tab20.colors[1::2])
# initialize the figure
fig, ax = plt.subplots(1, num=fig_num, clear=True, figsize=(9, 4))
# plot the data
handles = ax.plot(wsps, damp, '-o', mfc='w')
# make the plot pretty
ax.grid('on')
ax.set(xlabel='Wind speed [m/s]', ylabel='Damping [% critical]')
if labels is not None:
ax.legend(handles=handles, labels=labels,
bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
fig.tight_layout()
return fig, ax
#%% Plot the figures
# =================== structural campbell diagram ===================
if struc_path is not None:
# freqs and damps for no-aero
u_struc, f_struc, d_struc = load_campbell(struc_path, min_wsp=min_wsp, max_modes=max_modes)
# plot the campbell diagram
fig, axs = plot_freqs_vs_wsp(u_struc, f_struc, fig_num=1, labels=modes_struc)
if save_fig: fig.savefig('campbell_structural.png', dpi=150)
# plot the damping
fig, axs = plot_damp_vs_wsp(u_struc, d_struc, fig_num=2, labels=modes_aero)
if save_fig: fig.savefig('damping_structural.png', dpi=150)
# =================== aeroelastic campbell diagram ===================
if aero_path is not None:
# freqs and damps for aero
u_aero, f_aero, d_aero = load_campbell(aero_path, min_wsp=min_wsp, max_modes=max_modes)
# plot the campbell diagram
fig, axs = plot_freqs_vs_wsp(u_aero, f_aero, fig_num=3, opt_path=opt_path, labels=modes_aero)
if save_fig: fig.savefig('campbell_aeroelastic.png', dpi=150)
# plot the damping
fig, axs = plot_damp_vs_wsp(u_aero, d_aero, fig_num=4, labels=modes_aero)
if save_fig: fig.savefig('damping_aeroelastic.png', dpi=150)
#%% Tower (NR) and blade (R) frequencies
import pandas as pd
wsp = 15
omega = 9.0156 #RPM
omega = omega*np.pi/30/2/np.pi
wsp_idx = np.asarray(np.where(u_aero==wsp))[0][0]
f = f_aero[wsp_idx,:]
modes_aero = np.array(['1. 1st Twr FA', '2. 1st Twr SS', '3. 1st BW flap', '4. 1st FW flap',
'5. 1st SYM flap', '6. 2nd BW flap', '7. 2nd SYM flap ', '8. 1st BW edge',
'9. 2nd FW flap', '10. 1st FW edge', '11. 3rd BW flap', '12. 3rd FW flap'])
idx_reorder = np.array([1, 2, 3, 5, 4, 8, 10, 6])-1
f_reordered = f[idx_reorder]
freqs = np.zeros((len(f_reordered),3))
freqs[:,0] = f_reordered
freqs[:,1] = f_reordered - omega
freqs[:,2] = f_reordered + omega
freqs[3, 1:3] = freqs[3,0]
#freqs[6, 1:3] = freqs[6,0]
df = pd.DataFrame(freqs, columns = ['Tower [Hz]', 'Blade signal FW [Hz]', 'Blade signal BW [Hz]'])
df.index = modes_aero[idx_reorder]
df = df.round(3)
print(df.to_latex())