diff --git a/examples/marketcolor_overrides.ipynb b/examples/marketcolor_overrides.ipynb new file mode 100644 index 00000000..e4968366 --- /dev/null +++ b/examples/marketcolor_overrides.ipynb @@ -0,0 +1,831 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# This allows multiple outputs from a single jupyter notebook cell:\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = \"all\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "# Coloring Individual Candlesticks\n", + "\n", + "- Users can **color one or more specific candlesticks (or ohlc bars) differently than others**.\n", + " - Users may choose to do this in order to highlight a specific pattern or technical signal.\n", + "\n", + "\n", + "- The **`marketcolor_overrides` kwarg** is used to specify individual candle colors.\n", + "\n", + "\n", + "- **`marketcolor_overrides`** must be set it to an interable (`list`,`tuple`,`ndarray`) **that is the *same length as the dataframe*** being plotted.\n", + " - The simplest way to do this is to create a \"marketcolor overrides\" column in the dataframe.\n", + "\n", + "\n", + "- **Rows where the user wants to override the candle color must contain a \"color-like\" object:**\n", + " - Examples of color-like objects include:\n", + " - a **string** such as `'yellow'` or `'#ffff00'`\n", + " - an **rgb or rgba tuple** such as `(1.0, 1.0, 0)` or `(1.0, 1.0, 0, 0.75)`, or `(255, 255, 0)` or `(255, 255, 0, 0.75)`\n", + " - an **mplfinance marketcolor object**, created with `mpf.make_marketcolors()`\n", + "\n", + "\n", + "- **Rows where the user does *NOT* want to override** the candle color ***MUST*** contain **`None`** values.\n", + "\n", + "---\n", + "---\n", + "\n", + "### To illustrate, we will first give simple examples using just a few candles.\n", + "### This is followed by examples using more realistic, larger, data sets:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "pandas version= 1.1.2\n", + "mplfinance version= 0.12.8b4\n" + ] + } + ], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "print('pandas version=',pd.__version__)\n", + "\n", + "import mplfinance as mpf\n", + "print('mplfinance version=',mpf.__version__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Start with a simple, 5-row DataFrame:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OpenHighLowCloseVolume
2021-10-11131.4133.2131.3132.119591
2021-10-12131.9132.7131.3131.421467
2021-10-13132.0133.2131.5131.820406
2021-10-14130.9132.7130.6132.122611
2021-10-15131.6131.8130.7131.022001
\n", + "
" + ], + "text/plain": [ + " Open High Low Close Volume\n", + "2021-10-11 131.4 133.2 131.3 132.1 19591\n", + "2021-10-12 131.9 132.7 131.3 131.4 21467\n", + "2021-10-13 132.0 133.2 131.5 131.8 20406\n", + "2021-10-14 130.9 132.7 130.6 132.1 22611\n", + "2021-10-15 131.6 131.8 130.7 131.0 22001" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHaCAYAAABCYPJ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOlElEQVR4nO3de1wVdf7H8fcBFG+BYApqApKkKGWsC66maRLtVqKsl9IyzX522TYry1va3TIttWxT13S7SKtumbapZWWZbtaauksLVi6sprYiKBKEqAfOmd8fyFkRRMAzMwKv5+Ph43hmhvl+53OGOW/m6jAMwxAAAABgIh+7OwAAAID6j9AJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApvOrzkRut9vzf4fDYVpnAAAALhSn38rcx4f9dOerWqFTkn7++Wcz+wEAAHBBuuiii+zuQr1Q7dApSU2aNKmwp9PlcikjI0NRUVHy9fX1audwdtTdetTcHtTdHtTdetTcHlXV3TAMnThxwqae1T/VCp1lQdPhcFQInQ6HQ4ZhVDoO5qHu1qPm9qDu9qDu1qPm9qhO3fk8vIMTFAAAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6Kyj8vPz9dVXXyk/P9/urgCmYl0HgPqB0FlH5efna9u2bXwRo95jXQeA+oHQCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAC/YunWrRowYoejoaAUFBWn9+vXlxs+aNUvx8fFq3769IiIilJycrB07dpSbZuTIkYqJiVFoaKi6dOmiu+++W1lZWVW2e+LECU2cOFGRkZG65JJLNHr0aOXk5Hh9+c4XoRMAAMALioqKFBMToxdeeKHS8Zdeeqmef/55bd26VR9++KHCwsI0ZMgQHTlyxDNN37599frrr+vrr7/Wm2++qb1792rMmDFVtjtt2jRt2LBBb7zxhtatW6dDhw7ptttu8+qyeYNfTSZ2uVxyOBwVhp3+Cmu43W7PK7W3Buu6PVjX7cH6bj1qbo+q6m4YhiSpoKCgXP7x9/eXv79/hekTExOVmJh41raGDx9e7v0zzzyjlJQU7dq1S/369ZMk3XvvvZ7xYWFhevDBBzVq1CgVFxerUaNGFeaZn5+vt956S0uWLNHVV18tSXrllVfUs2dPbd++XXFxcWftj9VqFDozMjI8H8CZMjMzvdIhVE/ZbvMDBw7o5MmTNvemYWFdtxbrur1Y361Hze1RWd0dDofCw8MVExOjwsJCz/ApU6Zo6tSp59We0+nUm2++qYCAAMXExFQ6TV5enlatWqX4+PhKA6ckffPNNyouLlb//v09wy677DJdcskldTt0RkVFVbqnMzMzU506dZKvr69XO4ezK/sLq0OHDoqIiLC3Mw0E67o9WNftwfpuPWpuj6rqbhiGnE6n0tPTK+zprK0NGzZo3LhxKioqUmhoqNasWaNWrVqVm+aJJ57Q0qVLVVRUpLi4OK1cufKs88vOzlbjxo0VGBhYbnibNm2UnZ1d636aoUah09fXt0LoPH0cvyTW8fHx8bxSd2uxrluLdd1erO/Wo+b2qKzuZUd3AwICzpp/aqpv377asmWLcnNztWzZMo0dO1YbN25U69atPdPcf//9uu2223TgwAHNnj1b99xzj/7yl794rQ924UIiAAAAizRv3lyRkZGKi4vTH/7wB/n5+SklJaXcNK1atVKnTp10zTXX6E9/+pM++eQTbd++vdL5hYSEyOl0Kj8/v9zwnJwchYSEmLYctUHoBAAAsInb7ZbT6axyvKSzTtO9e3c1atRImzdv9gzLyMjQjz/+eEGdzynV8PA6AAAAKldYWKi9e/d63u/bt09paWlq2bKlgoODNXfuXF1//fUKCQnR0aNHtXTpUmVlZWnw4MGSpB07dugf//iHevXqpcDAQP3www969tln1bFjR0+APHjwoJKTk7Vo0SL16NFDgYGBGjVqlKZPn66goCBddNFFmjx5suLi4gidAAAA9VFqaqqSkpI876dPny6p9Ibv8+bNU0ZGhlauXKnc3FwFBwcrNjZWH3zwgaKjoyVJTZs21bp16zRr1iwVFRUpJCRECQkJmjhxoufipZKSEmVkZOj48eOedmbOnCkfHx+NHj1aTqdTAwYM0Jw5cyxc8uohdAIAAHhBnz59lJeXd9bxZ567eaZu3brp/fffr3KasLCwCm00adJEc+bMuSCD5uk4pxMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInUA15efn66uvvlJ+fr7dXQFMx/oOwNsInUA15efna9u2bXwJo0FgfQfgbYROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAADAC7Zu3aoRI0YoOjpaQUFBWr9+fbnxs2bNUnx8vNq3b6+IiAglJydrx44dnvH79+/X+PHj1b17d7Vt21axsbF67rnn5HQ6q2x34MCBCgoKKvdvwoQJpizj+fCzuwMAAAD1QVFRkWJiYjRq1CjddtttFcZfeumlev755xUREaHjx49r0aJFGjJkiP7xj3/o4osv1r///W+53W69+OKLioyM1LfffqsHH3xQRUVFmjFjRpVtjxkzRo888ojnfdOmTb2+fOeL0AkAAOAFiYmJSkxMPOv44cOHl3v/zDPPKCUlRbt27VK/fv107bXX6tprr/WMj4iIUGZmpl577bVzhs6mTZsqJCTk/BbAZDUKnS6XSw6Ho8Kw019hDbfb7Xml9tag5vag7vag7tbj+9QeVdXdMAxJUkFBQbn84+/vL39///Nq1+l06s0331RAQIBiYmLOOl1BQYGCgoLOOb933nlHb7/9ttq0aaPf/OY3mjRpkpo1a3ZeffS2GoXOjIwMzwdwpszMTK90CNWTk5MjSTpw4IBOnjxpc28aBmpuD+puD+puH75P7VFZ3R0Oh8LDwxUTE6PCwkLP8ClTpmjq1Km1amfDhg0aN26cioqKFBoaqjVr1qhVq1aVTrtnzx69+uqr59zLOWzYMHXo0EGhoaHatWuXnnrqKWVmZiolJaVWfTRLjUJnVFRUpXs6MzMz1alTJ/n6+nq1czi7sr+wOnTooIiICHs700BQc3tQd3tQd+vxfWqPqupuGIacTqfS09Mr7Omsrb59+2rLli3Kzc3VsmXLNHbsWG3cuFGtW7cuN93Bgwc1bNgwJScna8yYMVXO8/bbb/f8v1u3bgoNDdXgwYO1d+9edezYsdZ99bYahU5fX98KofP0cfySWMfHx8fzSt2tQc3tQd3tQd3tw/epPSqre9nR3YCAgLPmn5pq3ry5IiMjFRkZqbi4OPXo0UMpKSl66KGHPNNkZWVp0KBBio+P10svvVTjNnr06CGpdE/phRQ6uWUSAACATdxud7lbIh08eFBJSUnq3r27FixY4PkDsCbS0tIk6YK7sIir1wEAALygsLBQe/fu9bzft2+f0tLS1LJlSwUHB2vu3Lm6/vrrFRISoqNHj2rp0qXKysrS4MGDJf0vcHbo0EEzZszQkSNHPPMqC5AHDx5UcnKyFi1apB49emjv3r1atWqVEhMTFRwcrPT0dE2fPl29e/eu8gIlOxA6AQAAvCA1NVVJSUme99OnT5ckjRw5UvPmzVNGRoZWrlyp3NxcBQcHKzY2Vh988IGio6MlSZ9//rn27NmjPXv2qFu3buXmnZeXJ0kqKSlRRkaGjh8/Lklq1KiRPv/8cy1atEhFRUVq3769kpKSNHHiRCsWuUYInQAAAF7Qp08fTziszLmuJr/lllt0yy23VDlNWFhYuTYuueSSCk8+ulBxTicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDo/uztQH2Qcy1ZhyQlL28w+dkiStPvYIf2Ub+3fDi38miiqeYilbQINlR3bF4ltDADvI3Sep4xj2eq2+THL2216QurcWfrLv1/X8f2WN69d/WbwpQCYzK7ti8Q2BoD3ETrPU9keiJZ+TeXn8LWsXaOR9EO3EjXz9VNzy1qVSgyXfio5bsueF6ChsWv7IrGNAeB9hE4v8XP4qpGPhaFTko/bkK+PrxyWtSrJbWVjACTrty8S2xgA3seFRAAAADAdoRMAAACmI3QCAADAdIROAAAAL9i6datGjBih6OhoBQUFaf369eXGz5o1S/Hx8Wrfvr0iIiKUnJysHTt2eMbv379f48ePV/fu3dW2bVvFxsbqueeek9PprLLdEydOaOLEiYqMjNQll1yi0aNHKycnx5RlPB+ETgAAAC8oKipSTEyMXnjhhUrHX3rppXr++ee1detWffjhhwoLC9OQIUN05MgRSdK///1vud1uvfjii/rqq6/07LPP6vXXX9eMGTOqbHfatGnasGGD3njjDa1bt06HDh3SbbfdVqtlcDqdysjIUElJSa1+vipcvQ4AAOAFiYmJSkxMPOv44cOHl3v/zDPPKCUlRbt27VK/fv107bXX6tprr/WMj4iIUGZmpl577bWzBs/8/Hy99dZbWrJkia6++mpJ0iuvvKKePXtq+/btiouLq1bfi4qKNGXKFK1YsUKStGPHDkVERGjy5Mlq27atJkyYUK35VKVGodPlcsnhcFQYdvprQ+Nyl97fwzj1zzKG4Xk1HNbd0KRsGV1ud4P7zN2nPmt3A1z2Mo4DB6SiIkvbdGdllb7u2SP38eOWtq1mzWR06GBtm6exbfsisY2xQUP/PrVLVXU3Tv0eFBQUlMs//v7+8vf3P692nU6n3nzzTQUEBCgmJuas0xUUFCgoKOis47/55hsVFxerf//+nmGXXXaZLrnkkhqFzqefflrp6elau3ZtuXDcv39/zZo1y/rQmZGR4fkAzpSZmXnenamL9p0sPWfC5SqRj9vyrwXLN04uo7S9fT/sUzN/iwOAzcrOjzlw4IBOnjxpc2+s1/hQtrpMfcTydkP8/DTo4lYKeewJNTbhcM+5fD/rOTlD7Xkyjt3bl9K22cZYraF+n9qtsro7HA6Fh4crJiZGhYWFnuFTpkzR1KlTa9XOhg0bNG7cOBUVFSk0NFRr1qxRq1atKp12z549evXVV6s8vJ6dna3GjRsrMDCw3PA2bdooOzu72v1av369XnvtNcXFxZUL2F26dNEPP/xQ7flUpUahMyoqqtI9nZmZmerUqZN8fa29efGFoKigqZQl+fr6ydfKmzcbhlwuV2nNLdwL4XY7JLcUHhGuzgFhlrV7ISj7q7ZDhw6KiIiwtzM2KFvLjBYtJD/r1vUAQ7qx8Jh8mzeXYeVdyktcchQWKjI0REbnzhY2/D+2bV8ktjE2aOjfp3apqu6GYcjpdCo9Pb3Cns7a6tu3r7Zs2aLc3FwtW7ZMY8eO1caNG9W6dety0x08eFDDhg1TcnKyxowZU+v2qis3N7dCHyTp2LFjXmujRqHT19e3Qug8fVxD/CXx9Sm9FsshWfrUDs/hLofD0nbL2vL18Wlwn7fPqc/apwEuuyTp1PLLz6/0n0UcMiSH5PDzk7W/ZaVt+fj4SDZ93nZtXyS2MXZqqN+ndqus7mVHdwMCAs6af2qqefPmioyMVGRkpOLi4tSjRw+lpKTooYce8kyTlZWlQYMGKT4+Xi+99FKV8wsJCZHT6VR+fn65vZ05OTkKCan+UZorr7xSH3/8se666y5J8ixvSkqK4uPja7CEZ8eFRAAAADZxu93lbol08OBBDRo0SN27d9eCBQs8OzzOpnv37mrUqJE2b96sQYMGSSo9HfLHH3+s9vmckvTYY4/ppptu0vfff6+SkhL98Y9/1O7du/X1119r3bp1tVu4M3DLJAAAAC8oLCxUWlqa0tLSJEn79u1TWlqaDhw4oGPHjunpp5/W9u3btX//fqWmpuq+++5TVlaWBg8eLKk0cCYlJemSSy7RjBkzdOTIEWVnZ5c7N/PgwYOKj4/Xzp07JUmBgYEaNWqUpk+frr/97W9KTU3V73//e8XFxdUodPbq1UtbtmyRy+VS165dtWnTJl188cX66KOPdOWVV3qlPuzpBAAA8ILU1FQlJSV53k+fPl2SNHLkSM2bN08ZGRlauXKlcnNzFRwcrNjYWH3wwQeKjo6WJH3++efas2eP9uzZo27dupWbd15eniSppKREGRkZOn7a3TxmzpwpHx8fjR49Wk6nUwMGDNCcOXNq3P+OHTtq/vz5Nf656iJ0AgAAeEGfPn084bAyKSkpVf78LbfcoltuuaXKacLCwiq00aRJE82ZM6dWQbPMxx9/LF9fXyUkJJQb/umnn8rtdld5/9Hq4vA6AABAA/fUU0+d9V6lTz31lFfaIHQCAAA0cHv27FGXLl0qDL/sssu0d+9er7TB4XXUTfv3W/5kHMehQ6Wv+/ZJdtwcvlkzKaxh3bcQAGCNgIAA/fDDDwo743tmz549atasmVfaIHSi7tm/X37DbrK82YtPPRnn4mmPys+GJ+NIUsmqtwmeAACvu/766/XII4/orbfeUseOHSWVBs5HH31U119/vVfaIHSi7jm1h7P0yTjWrcKBMnRj4TH5tWguw+pbdZeUyFFYaPneXQBAw/DUU09p+PDhio+PV7t27SSV3p6pV69eVT6GsyYInai7LH4yjmT8r13Lnw8DAIB5AgMD9dFHH2nTpk1KT09XkyZN1K1bN1111VVea4PQCQAAADkcDg0YMEADBgwwZf6ETgAAgAZo8eLFGjNmjJo0aaLFixdXOe3dd9993u0ROgEAABqghQsXavjw4WrSpIkWLlx41ukcDgehEwAAALXzzTffVPp/s3BzeAAAgAasuLhYsbGx2r17t6ntEDoBAAAasEaNGumkBQ894fA6gJqx/Mb4hlRS9jxgC29VZdMDAADADv/3f/+n+fPn6+WXX5afSbcjJHQCqJ5Tj0FzFBZa2uxPfn76/OJW6n8kVy3tCIJeevwbcC75+fn66quvFBoaquDgYLu7gwbmn//8p7Zs2aJNmzapa9euFR59mZKSct5tEDoBVE9YWOljOC1+KtKRQ4f0/vLlinloglqEhlraNs+7h5Xy8/O1bds2DRgwgNAJywUGBiopKcnUNgidAKrPhgBm+PuXvoaHS6eeBwwA8A63262XX35ZmZmZKi4uVt++fTV16lQ1bdrU621xIREAAEADNXfuXM2YMUMtWrRQ27Zt9eqrr2rSpEmmtEXoBAAAaKBWrlypOXPm6N1339Wf//xnrVixQu+8847cbrfX2yJ0AgAANFA//vijEhMTPe/79+8vh8OhrKwsr7dF6AQAAGigSkpK1KRJk3LDGjVqpBIT7hbChUQAAAANlGEYuvfee+V/6qJNSTpx4oQeeuihcrdN4pZJAAAAqLWRI0dWGHbTTTeZ0hahEwAAoIFasGCBZW1xTicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAEzHE4kAADjT/v1SUZGlTToOHSp93bdPOnnS0rbVrJkUFmZtm2hwCJ0AAJxu/375DTPn2dNVudjPT4MubqWLpz0qv5ISy9svWfU2wROmInQCAHC6U3s4jRYtJD/rviYDZejGwmPya9FchhyWtauSEjkKCy3fs4uGh9AJAEBl/PwsDZ2S8b92rQydgEW4kAgAAACmI3QCAADAdIROAAAAmI7QCQAA4AVbt27ViBEjFB0draCgIK1fv77c+FmzZik+Pl7t27dXRESEkpOTtWPHjnLTzJkzR9ddd53atWun8PDwarV77733KigoqNy/YcOGeW25vIXQCQAA4AVFRUWKiYnRCy+8UOn4Sy+9VM8//7y2bt2qDz/8UGFhYRoyZIiOHDnimaa4uFjJycm64447atR2QkKCvv/+e8+/pUuXnteymIGr1wEAALwgMTFRiYmJZx0/fPjwcu+feeYZpaSkaNeuXerXr58k6ZFHHpEkLV++vEZt+/v7KyQkpIY9tlaNQqfL5ZLD4agw7PTXhsbldksqvdGFYWXDhuF5NRzW3VqjbBldbrdtn7njVM2trvppJZfDYemnrbLldLvdMhrY75r71OfttnGds4tt2xeJbYynNw1hG9Nwty9S1TnGOPWhFBQUlMs//v7+8vf3P692nU6n3nzzTQUEBCgmJua85iVJX3zxhaKiotSyZUv17dtXjz76qIKDg897vt5Uo9CZkZHh+QDOlJmZ6ZUO1TX7TuZIklyuEvm4Lf9asHyj7DJK29v3wz418z9uadtlmv6wT1GSSkrs2Ti6XNY/KUQlLjVSad3tqbp9jh07pp49e+ro0aM6afWjAW1m9/altG22MVazfBvTgLcvp6ssxzgcDoWHhysmJkaFhYWe4VOmTNHUqVNr1c6GDRs0btw4FRUVKTQ0VGvWrFGrVq1q3W+p9ND6wIEDFR4erh9++EEzZszQ8OHD9fHHH8vX1/e85u1NNQqdUVFRle7pzMzMVKdOnS6oBbNKUUFTKUvy9fWTr4+Fy28YcrlcpTW3cC+E2+2Q3FJ4RLg6B9jzuLSypfXz87X0xs2GUfpl4OvrZ2XJywmPCJfRubM9jdvE5XKpefPmDXIbY9v2RWIbo4a3jWmI2xep6hxjGIacTqfS09Mr7Omsrb59+2rLli3Kzc3VsmXLNHbsWG3cuFGtW7eu9TyHDh3q+X+3bt3UrVs3xcbG6osvvvActr8Q1Oi3ydfXt0LoPH1cQ/tCkCRfn9JrsRyy9vkRnsNdDoel7Za15evjY9/n7VN2/Zu1VS873FVaequ/EUrb8/HxkRrg75nUMLcxdm1fJLYx/+tNQ9jGsH2RKt/GlB3dDQgIOGv+qanmzZsrMjJSkZGRiouLU48ePZSSkqKHHnrIK/OXpIiICLVq1Up79uy5oEInV68DAADYxO12y+l0enWe//3vf3X06NEL7sIiQicAAIAXFBYWKi0tTWlpaZKkffv2KS0tTQcOHNCxY8f09NNPa/v27dq/f79SU1N13333KSsrS4MHD/bM48CBA0pLS9OPP/4ot9vtmd/p55TGx8dr3bp1njYfe+wxz3w3b96sW2+9VZGRkUpISLC2AOfALZMAAAC8IDU1VUlJSZ7306dPlySNHDlS8+bNU0ZGhlauXKnc3FwFBwcrNjZWH3zwgaKjoz0/89xzz2nFihWe91dffbUkae3aterTp4+k0gu7CwoKJJWeFvDtt99q5cqVys/PV2hoqAYMGKBp06ad9xX23kboBAAA8II+ffooLy/vrONTUlLOOY+FCxdq4cKFVU5zehtNmzbVu+++W/1O2ojD6wAAADAdoRMAAACm4/C6l5QYLsl97um8xVDpTZTdbmtvZ1JiXEBPqyix+ibthuS5WbTFN7CxfFkBAPAuQud5auHXRJL0U4m1z3FoekLqvFfa3VE63sTSpiX9b7lt0ayZJMlx2pV8VvjJz0+fX9xK/Y/kqqVdIfDUsgMAUNcQOs9TVPMQ7eo3Q4UlJyxtN/vAQa3e8Lqe/vVYhXRoZ2nbLfyaKKq5jff+CgtTyaq3paIiS5s9cuiQ3l++XDEPTVCL0FBL25ZUGjjD7HlCCwAA54vQ6QV2BLC9R0uP5XduHqqOgeGWt287G8KXcerWE0Z4uNSxo+XtAwBQl3EhEQAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTETrrqMDAQPXs2VOBgYF2d6XBoOYAANQeobOOCgwMVK9evQhAFqLmAADUHqETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAeMHWrVs1YsQIRUdHKygoSOvXry83ftasWYqPj1f79u0VERGh5ORk7dixo9w0c+bM0XXXXad27dopPDy8Wu0ahqGZM2eqS5cuatu2rZKTk/Wf//zHa8vlLYROAAAALygqKlJMTIxeeOGFSsdfeumlev7557V161Z9+OGHCgsL05AhQ3TkyBHPNMXFxUpOTtYdd9xR7Xbnz5+vxYsXa968efrkk0/UrFkzDR06VCdOnDjvZfImv5pM7HK55HA4Kgw7/RXWoO7Wo+b2aMh1d7ndkiTj1D9LGYbn1Thju29qs6deXW63bZ+541TdVVIiKytvGJJcLhmGZGHJpZLSOrvdbhkN8fesim2Mcer3oKCgoFz+8ff3l7+/f4XpExMTlZiYeNa2hg8fXu79M888o5SUFO3atUv9+vWTJD3yyCOSpOXLl1er/4Zh6I9//KMmTpyoG264QZK0aNEide7cWevXr9fQoUOrNR8r1Ch0ZmRkeD6AM2VmZnqlQ6gZ6m49am6Phlj3fSdzJEkuV4l83JbHzlNtWxtCXEZpe/t+2Kdm/sctbbtM40PZ6iLJUVhoabv5fn76/OJW6n8kVy1LSixtW5L2HMqW0/JWLxyVbWMcDofCw8MVExOjwtPWhylTpmjq1Knn1Z7T6dSbb76pgIAAxcTE1Ho++/btU3Z2tvr37+8ZFhgYqB49emj79u11N3RGRUVVuqczMzNTnTp1kq+vr1c7h7Oj7taj5vZoyHUvKmgqZUm+vn7y9bF42Q1DLpertOYW7nZzux2SWwqPCFfngDDL2i2nc2c5314pFRVZ2mx2Vpbe/8tfFP3A/WrWtq2lbatZM3Xs0MHaNi8QVW1jDMOQ0+lUenp6hT2dtbVhwwaNGzdORUVFCg0N1Zo1a9SqVatazy87O1uS1Lp163LD27Rpo5ycnFrP1ww1Cp2+vr4VQufp4xraF8KFgLpbj5rboyHW3den9LR7x6l/VvIcUnc4LG27rC1fHx97P++ICMub9GnatPQ1MlI+HTta3n5DV9k2puzobkBAwFnzT0317dtXW7ZsUW5urpYtW6axY8dq48aNFUJjfcSFRAAAABZp3ry5IiMjFRcXpz/84Q/y8/NTSkpKrecXEhIiSTp8+HC54Tk5OWrTps159dXbCJ0AAAA2cbvdcjprfzZteHi4QkJCtHnzZs+wgoIC7dy5U3Fxcd7ootfU6PA6AAAAKldYWKi9e/d63u/bt09paWlq2bKlgoODNXfuXF1//fUKCQnR0aNHtXTpUmVlZWnw4MGenzlw4IB++ukn/fjjj3K73UpLS5MkdezYUS1atJAkxcfH6/HHH9fAgQPlcDh0zz33aM6cOYqMjFR4eLhmzpyp0NBQ3XjjjdYW4BwInQAAAF6QmpqqpKQkz/vp06dLkkaOHKl58+YpIyNDK1euVG5uroKDgxUbG6sPPvhA0dHRnp957rnntGLFCs/7q6++WpK0du1a9enTR1Lp3YQKCgo80zzwwAMqKirShAkTlJ+fr1/96ldatWqVmjRpYury1hShEwAAwAv69OmjvLy8s46vzrmbCxcu1MKFC6uc5sw2HA6Hpk2bpmnTplWvozbhnE4AAACYjtAJAAAA03F4HQAucCWGS3Jb26ah0qcDud3W3qezxGh4j2EEGgpCJwBcoFr4lV4E8FOJ9Y+DbHpC6rxX2t1ROm7DtQhlyw6g/iB0AsAFKqp5iHb1m6HCkhOWt5194KBWb3hdT/96rEI6tLO07RZ+TRTVPMTSNgGYj9AJABcwu8LX3qOlx/M7Nw9Vx8BwW/oAoH7hQiIAAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQDABSAwMFA9e/ZUYGCg3V0BTEHoBADgAhAYGKhevXoROlFvEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAFfB0HADeRugEAFTA03EAeBuhEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAvGDr1q0aMWKEoqOjFRQUpPXr15cbP2vWLMXHx6t9+/aKiIhQcnKyduzYUW6avLw83XnnnQoLC1N4eLjGjx+vwsLCKtsdOHCggoKCyv2bMGGC15fvfBE6AQAAvKCoqEgxMTF64YUXKh1/6aWX6vnnn9fWrVv14YcfKiwsTEOGDNGRI0c809x55536/vvvtXr1aq1cuVJffvmlHnzwwXO2PWbMGH3//feef0899ZS3Fstr/OzuAAAAQH2QmJioxMTEs44fPnx4uffPPPOMUlJStGvXLvXr10+7d+/Wp59+qs8++0yxsbGSpNmzZ+umm27SjBkz1LZt27POu2nTpgoJCfHOgpikRqHT5XLJ4XBUGHb6K6xB3a1Hze1B3e1B3a1Hze1RVd0Nw5AkFRQUlMs//v7+8vf3P692nU6n3nzzTQUEBCgmJkaStH37dgUGBnoCpyT1799fPj4+2rlzpwYOHHjW+b3zzjt6++231aZNG/3mN7/RpEmT1KxZs/Pqo7fVKHRmZGR4PoAzZWZmeqVDqBnqbj1qbg/qbg/qbj1qbo/K6u5wOBQeHq6YmJhy51VOmTJFU6dOrVU7GzZs0Lhx41RUVKTQ0FCtWbNGrVq1kiRlZ2erdevW5ab38/NTUFCQsrOzzzrPYcOGqUOHDgoNDdWuXbv01FNPKTMzUykpKbXqo1lqFDqjoqIq3dOZmZmpTp06ydfX16udw9lRd+tRc3tQd3tQd+tRc3tUVXfDMOR0OpWenl5hT2dt9e3bV1u2bFFubq6WLVumsWPHauPGjRXCZk3cfvvtnv9369ZNoaGhGjx4sPbu3auOHTvWer7eVq3Qefou5zNDp8PhkI+PjxwOR4VxMA91tx41twd1twd1tx41t0dVdS87utu8eXP5+XnnMpjmzZsrMjJSkZGRiouLU48ePZSSkqKHHnpIISEhOnz4cLnpS0pKlJeXV6PzNXv06CFJ2rNnT90LnWWcTmelw8PCwlRcXKzi4mKvdArVQ92tR83tQd3tQd2tR83tYWfd3W63J1/FxcUpPz9fqampuvLKKyVJW7Zskdvt9gTJ6khLS5OkC+7CohqFziZNmlR6eD0jI0NRUVEcDrAQdbceNbcHdbcHdbceNbdHVXU3DEMnTpyo9rwKCwu1d+9ez/t9+/YpLS1NLVu2VHBwsObOnavrr79eISEhOnr0qJYuXaqsrCwNHjxYktS5c2clJCTogQce0Lx581RcXKzJkydryJAhnivXDx48qOTkZC1atEg9evTQ3r17tWrVKiUmJio4OFjp6emaPn26evfu7blA6UJRrdBZ9iFUtuvZ4XDIMAwOB1iMuluPmtuDutuDuluPmtujOnWv7h8BqampSkpK8ryfPn26JGnkyJGaN2+eMjIytHLlSuXm5io4OFixsbH64IMPFB0d7fmZJUuWaNKkSUpOTpbD4dCgQYM0a9Ysz/iSkhJlZGTo+PHjkqRGjRrp888/16JFi1RUVKT27dsrKSlJEydOrHEtzMZ9OgEAALygT58+ysvLO+v46lxNHhQUpKVLl551fFhYWLk2LrnkkgpPPrpQ8UQiAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjicSAYDJbtvxqnKdx+zuRg0ZcrsN+WzbIKnuPJKxVePmSvnlXXZ3A0AlCJ0AYLJc5zE19fe3uxsNQu7JuhbugYaDw+sAAAAwHaETAAAApuPwOgCg3vG5517p6FG7u1EjPpK6Gm75OOrg/qDgYLn/uNDuXuACR+gEANQ/R4/K0b6d3b2oMV+7O1BLxn8P2t0F1AF18M8pAAAA1DXs6YRt6trhLw59AQBQe4RO2KcOHv7i0BcAALVTB3fZAAAAoK4hdAIAAMB0hE4AAACYjtAJAADgBfPmzdOAAQPUoUMHRUVF6dZbb1VGRka5aU6cOKGJEycqMjJSl1xyiUaPHq2cnJxy0xw4cEA33XST2rVrp6ioKD322GMqKSkpN80XX3yhfv36KSQkRL/4xS+0fPnyCv1ZsmSJrrjiCoWGhuraa6/Vzp07vb/QNUDoBAAA8IIvv/xS48aN08cff6zVq1eruLhYQ4YM0bFjxzzTTJs2TRs2bNAbb7yhdevW6dChQ7rttts8410ul26++WYVFxfro48+0sKFC7VixQrNnDnTM82+fft08803q2/fvtqyZYvuuece3X///fr0008906xevVqPPvqopkyZos8//1wxMTEaOnSoDh8+bE0xKsHV60ADctuOV5XrPHbuCS8ohtxuQz7bNkhy2N2ZGmnVuLlSfnmX3d0AYJFVq1aVe79w4UJFRUUpNTVVV111lfLz8/XWW29pyZIluvrqqyVJr7zyinr27Knt27crLi5On332mXbv3q333ntPbdq00eWXX65p06bpySef1NSpU9W4cWO99tprCgsL0zPPPCNJ6ty5s/7+979r0aJFSkhI8LQ9evRo3XrrrZJK98J+/PHHeuuttzRhwgQLq/I/NQqdLpdLDoejwrDTX2GN+lB3drNby+VyKddZqKb+TezuSoORe7Lw1O+oYXdXGhBDLpeL7YsN6ur3UVXfp4ZR+rtbUFBQLv/4+/vL39//nPMuKCiQJAUFBUmSvvnmGxUXF6t///6eaS677DJdcsklntC5fft2de3aVW3atPFMk5CQoIcffljff/+9rrjiCm3fvr3cPMqmeeSRRyRJTqdTqamp5cKlj4+P+vXrp+3bt5+z32apUejMyMjwfABnyszM9EqHUDN1ue5dDXedve9lXeM23Nq9e7fcbsKPldxug7pbrKzmbF+sVbaNqcsq+z51OBwKDw9XTEyMCgsLPcOnTJmiqVOnVjk/t9utRx55RD179lTXrl0lSdnZ2WrcuLECAwPLTdumTRtlZ2dLknJycsoFTklq3bq15+fLpikbdvo0P//8s44fP66ffvpJLper0mnOPMfUSjUKnVFRUZXu6czMzFSnTp3k68uvuFXqQ93r5JN96igfh486d+586hA1rOLj46DuFvPUnO2Lpcq2MXVRVd+nhmHI6XQqPT29wp7Oc5k4caK+++47ffjhh17vc11Vo9Dp6+tbIXSePq6uhp+6jLqjukrXk7p1TmTd56DulnOwTbRJXa97Zd+nZUd3AwICzpp/KjNp0iR99NFH+uCDD9S+fXvP8JCQEDmdTuXn55fb25mTk6OQkBBJpXs9z7zKvOzin9OnOfOCoMOHD+uiiy5S06ZNPctS2TRn7kW1EhcSiYsrrMbFFQCA+sgwDE2ePFnr16/X2rVrFR4eXm589+7d1ahRI23evFmDBg2SVHrq4o8//qi4uDhJUlxcnObOnavDhw97Do9v2rRJF110kWdvclxcnD755JNy8960aZPi4+MlSY0bN9aVV16pzZs368Ybb5RUerh/y5YtGjdunHkFOAdCp6Rc5zE1rcaucnhH7sm6FvABADi3iRMnatWqVVq+fLlatGjhOQczICBATZs2VWBgoEaNGqXp06crKChIF110kSZPnqy4uDhP6BwwYIA6d+6se+65R08++aRycnL07LPPaty4cZ7D+nfccYeWLl2qxx9/XKNGjdKWLVv03nvv6S9/+YunL/fee6/uvfdexcbG6he/+IUWLVqkY8eOea5mtwOhEwAAwAtee+01SdLAgQPLDV+wYIFuueUWSdLMmTPl4+Oj0aNHy+l0asCAAZozZ45nWl9fX61cuVIPP/ywfv3rX6tZs2YaOXKkpk2b5pkmPDxcf/nLXzRt2jQtXrxY7dq108svv+y5XZIkDRkyREeOHNHMmTOVk5Ojyy+/XKtWreLwOgAAQF2Xl5d3zmmaNGmiOXPmlAuaZwoLC9M777xT5Xz69OmjLVu2VDnNXXfdpbvuqt3pbF9++aXeeOMN/fDDD3rjjTfUrl07rVy5UuHh4erVq1et5snlfQAAAPB4//33NWzYMDVt2lT/+te/5HQ6JZXed3TevHm1ni+hEwAAAB5z5szRvHnzNH/+fDVq1Mgz/Fe/+pX+9a9/1Xq+hE4AAAB4ZGZmqnfv3hWGBwQEKD8/v9bzJXQCAADAo02bNtqzZ0+F4X//+98VERFR6/kSOgEAAOAxevRoPfLII9qxY4ccDoeysrL09ttv67HHHtMdd9xR6/ly9ToAAAA8JkyYILfbreTkZBUVFenGG2+Uv7+/7rvvvlpfDS8ROgEAAHAah8OhiRMn6v7779eePXt07Ngxde7cWS1atDiv+RI6AQAAUEHjxo3VpUsXr82P0AkAAACPEydO6NVXX9Xf/vY3HTlyRG63u9z4zZs312q+hE4AAAB4jB8/Xps2bdKgQYPUo0cPORwOr8yX0AkAAACPjz76SG+//bZ+9atfeXW+3DIJAAAAHu3atTvvi4YqQ+gEAACAx4wZM/Tkk09q//79Xp0vh9cBAADgERsbq5MnTyo2NlbNmjWTn1/5uLh3795azZfQCQAAAI9x48YpKytLjz32mNq0acOFRAAAAPC+r7/+Wh999JEuv/xyr86XczoBAADgERUVpRMnTnh9voROAAAAeDzxxBN69NFH9cUXX+jo0aMqKCgo96+2OLwOAAAAj2HDhkmSBg8eXG64YRhyOBzKzc2t1XwJnQAAAPBYu3atKfPl8DoAAIAXbN26VSNGjFB0dLSCgoK0fv36cuPvvfdeBQUFlftXtlexTF5enu68806FhYUpPDxc48ePV2FhYblp0tPTdf311ys0NFTdunXT/PnzK/TlvffeU3x8vEJDQ9W7d299/PHH1V6Oq666qsp/tcWeTgAAAC8oKipSTEyMRo0apdtuu63SaRISErRgwQLPe39//3Lj77zzTmVnZ2v16tUqLi7WfffdpwcffFBLly6VJBUUFGjo0KHq16+f5s2bp2+//Vbjx49XYGCgbr/9dknStm3bNG7cOD3++OP69a9/rVWrVmnUqFH6/PPP1bVr13Mux9atW6scX9vgSegEAADwgsTERCUmJlY5jb+/v0JCQiodt3v3bn366af67LPPFBsbK0maPXu2brrpJs2YMUNt27bVO++8I6fTqVdeeUWNGzdWdHS00tLStHDhQk/oXLx4sRISEnT//fdLkqZPn67PP/9cS5Ys0YsvvnjO5UhKSqow7PR7dVpyTqfL5apwg1CXy1XutW4y7O5AA2PI5XJxbofFSn9HWdetZVB3y7F9sUtdzQFV5RjDKP3dLSgoKJd//P39K+yhrK4vvvhCUVFRatmypfr27atHH31UwcHBkqTt27crMDDQEzglqX///vLx8dHOnTs1cOBAbd++Xb1791bjxo090yQkJGj+/Pn66aef1LJlS3399df6/e9/X67dAQMGVDjcfzZnPnGopKRE//rXvzRz5kw9+uijtVpuqYahMyMjw/MBnCkzM7PWnbCb280XgpXcbkO7d+9WV8MtX7s700C4Dbd2797Num6xsnWduluH7Ys9yrYxdVllOcbhcCg8PFwxMTHlzqucMmWKpk6dWuM2EhISNHDgQIWHh+uHH37QjBkzNHz4cH388cfy9fVVdna2WrduXe5n/Pz8FBQUpOzsbElSTk6OwsLCyk1T9jPZ2dlq2bKlcnJyKsyndevWysnJqVY/AwMDKwy75ppr1LhxY89e09qoUeiMioqqdE9nZmamOnXqJF/fuvkr7rNtg91daFB8fBzq3LmzfBzsi7CKj8OntOas65byrOvU3TJsX+xRto2pi6rKMYZhyOl0Kj09vcKeztoYOnSo5//dunVTt27dFBsbqy+++EL9+vWr3QJYqHXr1ue1k7FGodPX1/esz9/09fWts6FT8s4zRVFdjjq8rtRdpTVnXbeWg7pbju2LXep63SvLMWVHdwMCArz2/PHTRUREqFWrVtqzZ4/69eunkJAQHT58uNw0JSUlysvL85wH2qZNmwrTlL0/1zRt2rSpVr/S09PLvTcMQ9nZ2XrppZcUExNT/QU8AxcSAQAA2OC///2vjh496gmLcXFxys/PV2pqqq688kpJ0pYtW+R2u9WjRw/PNM8884yKi4vVqFEjSdKmTZs854lKUnx8vDZv3qzf/e53nrY2bdqkuLi4avXr6quvlsPhqHBK5S9/+Uu98sortV5eQicAAIAXFBYWlrsIZ9++fUpLS1PLli0VFBSk2bNna9CgQQoJCdHevXv1xBNPKDIyUgkJCZKkzp07KyEhQQ888IDmzZun4uJiTZ48WUOGDFHbtm0llT4t6Pnnn9f48eP1wAMP6LvvvtPixYv17LPPetq9++67NXDgQL3yyiu67rrrtHr1aqWmpuqll16q1nKkpqaWe+/j46OLL75YTZo0Oa/6EDoBAAC8IDU1tdzthqZPny5JGjlypObOnatvv/1WK1euVH5+vkJDQzVgwABNmzat3DmiS5Ys0aRJk5ScnCyHw6FBgwZp1qxZnvGBgYF69913NWnSJF1zzTVq1aqVJk2a5LldkiT17NlTS5Ys0bPPPqsZM2YoMjJSb731VrXu0SmpwoVK3kLoBAAA8II+ffooLy/vrOPffffdc84jKCjIcyP4s4mJidGHH35Y5TTJyclKTk4+Z3tlFi9eXO1p77777mpPezpCJwAAQAO3cOHCak3ncDgInQAAAKidb775xvQ2uJEZAAAAKmUYxlkfDFRThE4AAACUs3LlSvXu3Vtt27ZV27ZtddVVV2nlypXnNU8OrwMAAMBjwYIFmjlzpsaNG6eePXtKkv7+97/r4Ycf1tGjR3XvvffWar6ETgAAAHi8+uqrmjt3rkaMGOEZdsMNNyg6OlqzZs2qdejk8DoAAAA8srOzFR8fX2F4fHy8srOzaz1fQicAAAA8OnbsqDVr1lQYvmbNGkVGRtZ6vhxeBwAAgL799lt17dpV06ZN09ixY/XVV195zunctm2bNm/erNdff73W82dPJwAAANSnTx9de+21ys3N1V//+lcFBwdr/fr1Wr9+vYKDg/Xpp59q4MCBtZ4/ezoBAACgdevWafny5Xr88cfldruVlJSkZ599VldddZVX5s+eTgAAAKh379565ZVX9N1332n27Nnav3+/Bg0apF/+8pd66aWXzusiIonQCQAAgNM0b95ct956q9avX6/t27dr8ODBWrp0qS6//HKNHDmy1vMldAIAAKBSkZGReuihhzRx4kS1aNFCH3/8ca3nxTmdAAAAqGDr1q3685//rLVr18rhcOi3v/2tRo0aVev5EToBAAAgScrKytLy5cu1YsUK7dmzR/Hx8Zo1a5aSk5PVvHnz85o3oRMAAAAaNmyYNm/erFatWunmm2/WqFGjFBUV5bX5EzoBAACgRo0a6c0339Svf/1r+fr6en3+hE4AAABoxYoVps6fq9cBAAC8YOvWrRoxYoSio6MVFBSk9evXlxtvGIZmzpypLl26qG3btkpOTtZ//vOfctPk5eXpzjvvVFhYmMLDwzV+/HgVFhaWmyY9PV3XX3+9QkND1a1bN82fP79CX9577z3Fx8crNDRUvXv3Pq+rzr2F0AkAAOAFRUVFiomJ0QsvvFDp+Pnz52vx4sWaN2+ePvnkEzVr1kxDhw7ViRMnPNPceeed+v7777V69WqtXLlSX375pR588EHP+IKCAg0dOlQdOnTQpk2b9PTTT2v27Nl64403PNNs27ZN48aN06hRo7R582bdeOONGjVqlL799luzFr1aCJ0AAABekJiYqEcffbTS55MbhqE//vGPmjhxom644QbFxMRo0aJFOnTokGeP6O7du/Xpp5/q5Zdf1i9/+Uv16tVLs2fP1urVq5WVlSVJeuedd+R0OvXKK68oOjpaQ4cO1V133aWFCxd62lq8eLESEhJ0//33q3Pnzpo+fbq6d++uJUuWWFOIs6jROZ0ul0sOh6PCsNNf6ybD7g40MIZcLhd/8Vis9HeUdd1aBnW3HNsXu9TVHFBVjjGM0t/dgoKCcvnH399f/v7+NWpn3759ys7OVv/+/T3DAgMD1aNHD23fvl1Dhw7V9u3bFRgYqNjYWM80/fv3l4+Pj3bu3KmBAwdq+/bt6t27txo3buyZJiEhQfPnz9dPP/2kli1b6uuvv9bvf//7cu0PGDCgwuF+q9UodGZkZHg+gDNlZmZ6pUN2cLv5QrCS221o9+7d6mq45f1r41AZt+HW7t27WdctVrauU3frsH2xR9k2pi6rLMc4HA6Fh4crJiam3HmVU6ZM0dSpU2s0/7Lnlrdu3brc8DZt2ignJ8czzZnj/fz8FBQU5Pn5nJwchYWFlZum7Geys7PVsmVL5eTkVJhP69atPe3YpUahMyoqqtI9nZmZmerUqZMpl9dbwWfbBru70KD4+DjUuXNn+TjYF2EVH4dPac1Z1y3lWdepu2XYvtijbBtTF1WVYwzDkNPpVHp6eoU9nai5GoVOX1/fCqHz9HF1NXRKlS8TzOKow+tK3VVac9Z1azmou+XYvtilrte9shxTdnQ3ICDgrPmnukJCQiRJhw8fVmhoqGd4Tk6OLr/8cs80hw8fLvdzJSUlysvL8/x8mzZtKkxT9v5c07Rp0+a8luF88acgAACAycLDwxUSEqLNmzd7hhUUFGjnzp2Ki4uTJMXFxSk/P1+pqameabZs2SK3260ePXp4pvnyyy9VXFzsmWbTpk2KiopSy5YtJUnx8fHl2imbpqwduxA6AQAAvKCwsFBpaWlKS0uTVHrxUFpamg4cOCCHw6F77rlHc+bM0QcffKBdu3bpd7/7nUJDQ3XjjTdKkjp37qyEhAQ98MAD2rlzp/7+979r8uTJGjJkiNq2bSup9FGVjRs31vjx4/Xdd99p9erVWrx4se69915PP+6++259+umneuWVV/Tvf/9bs2bNUmpqqu68807ri3IankgEAADgBampqUpKSvK8nz59uiRp5MiRWrhwoR544AEVFRVpwoQJys/P169+9SutWrVKTZo08fzMkiVLNGnSJCUnJ8vhcGjQoEGaNWuWZ3xgYKDeffddTZo0Sddcc41atWqlSZMm6fbbb/dM07NnTy1ZskTPPvusZsyYocjISL311lvq2rWr+UWoAqETAADAC/r06aO8vLyzjnc4HJo2bZqmTZt21mmCgoK0dOnSKtuJiYnRhx9+WOU0ycnJSk5OrnIaq3F4HQAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACm86vORIZhlHs9c5zD4ZBhGJWOrwua+jRSE59Gdnej4fBxl64vTZpI/v5296ZBMJo0kWEYrOtWO7WuU3cLsX2xRdk2pi6qKsecnn8cDocd3atXHEY11hK3262ff/7Ziv4AAABcUC666CL5+HBw+HxVO3R6fuCMpF9QUKCYmBilp6crICDA+z1Epai79ai5Pai7Pai79ai5Paqq++kRidB5/qp1eL2qQjscDhUWFsrhcLDr2ULU3XrU3B7U3R7U3XrU3B5V1Z3PwbuI7QAAADAdoRMAAACmO+/Q6e/vrylTpsifqwQtRd2tR83tQd3tQd2tR83tQd2tU60LiQAAAIDzweF1AAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAIDz5nK57O5Cg3L646mBuoLQWc8VFxfb3YUGp7CwUDk5OcrPz+eL2EK5ubn65z//qbS0NB09etTu7jQIu3fv1rx58yRJvr6+rO8W+ec//6lRo0bp5MmTdncFqJFqPXsddVNmZqZef/11jRo1StHR0XZ3p0H47rvvNGnSJOXm5srpdGrMmDEaPXq0WrZsaXfX6rVdu3bp7rvvVklJiQoLC5WQkKAnn3xSQUFBdnet3jpx4oSGDh2qgwcP6vDhw3ruuec8wdPX19fu7tVbaWlpSkpK0siRI7mZOeoc9nTWU3v37tWNN96oZcuWaenSpdq9e7fdXar3du/erUGDBunyyy/X008/reuuu07Lli3Td999Z3fX6rXvv/9egwYNUkJCgpYvX6777rtPmzZtYm+nyRo3bqz27dvr1ltv1ddff63JkydLKt3jyaFfc6Slpen666/XHXfcoRdeeEGSVFJSIqfTKZ7zgrqAJxLVQ0VFRXr44YfldDp1+eWXa82aNYqNjdXvfvc7de7c2e7u1Uv5+fkaN26cOnTo4DncKEm/+c1v1LFjRy1atMjG3tVfeXl5uuWWW9S9e3fNmjXLM/y3v/2t7r77bgUFBalt27YKCwuzsZf114MPPqioqCj5+vrq9ddf17XXXqtnn31WW7Zs0ZVXXqmAgAC7u1hv5Obmqnv37rrmmmuUkpKi4uJiPfLII9q7d6+ysrKUkJCg0aNHKyoqyu6uAmfF4fV6qEmTJrr66qvlcDg0YsQIXXzxxVqyZIkWLVpE8DRJdna2LrroIv32t7+VJDmdTjVu3Fh9+/bV3r17be5d/XXixAkNHz5cPXv29AybM2eONm/erEOHDsnPz095eXlavny5rrjiCht7Wr+UHUL39/fX8ePH9dBDD0mS/vznP6t79+4yDENfffWV3G63fHw4oOYNLpdLN954ozZu3KitW7fqpZdeUlFRka655hrl5ORo586d+uc//6kFCxYoPDzc7u4ClWJrUA/5+Pho6NChuvnmmyVJo0aN0v/93/8pNTVVixYt8hxqLy4u1qFDh+zsar1x2WWXadiwYerbt68kyc+v9O+5iy++WCdOnCg37c8//2x5/+qrtm3bavDgwerWrZskacWKFZo9e7beeOMNrV+/Xq+++qq6dOmihQsX6uTJkxyC9JKyIDlgwAB999138vHx0T333CM/Pz/l5OSoR48eat68uXx8fDjU7iVt2rTRc889p+uuu05JSUkyDEMpKSmaOHGinn/+ed13333Kzc3VV199ZXdXgbMidNYzZVePNm7cWA6Hw/N+9OjRGjt2rCd4pqen6/HHH9fw4cO5AvI8ld0h4IYbbpAkGYbh+VIuu5K9LOy8+OKLmjFjhkpKSuzpbD1Stm63atXKM+yGG27Qhg0bNGjQIAUHBys6OloBAQHKz8+Xv7+/HA6HXd2tF8oCZFkd/f399e2330qS7r//fh08eFBjx47Vnj17dN9990kSezq9oGxdDw4O1lNPPaUnn3xSd9xxh4KDgz2fyQ033CCn06lvvvnGzq4CVeLwej2wf/9+ffPNN0pKSvKcxF+2oT/9/ZgxY+RwOPTGG2/olltuUV5entauXcsVkLVwes0bNWpUruYOh0OGYcjhcKh58+YKCAiQw+HQzJkzPYd+y/aEomaqWtddLpcCAwPVo0cPSaXh3zAMNW3aVJGRkXK73XI4HATPGjq95mV7LstqHhsbq7CwMA0bNkzffvut1q5dq3bt2mnRokXauHGjsrOzFRISYvMS1E1nrutlpzS0adNGY8aMUbNmzSSVhnqXy6WioiKFh4dzGgkuaHzz1XGZmZn6zW9+o4suukjHjh3TiBEjKnwxnP5+9OjRWrFihX7++Wdt2LDBc1gS1Vedmpdp0qSJWrVqpdmzZ+sPf/iDPvvsM11++eU29bxuO1fdz7xNj9vt1uzZs7Vp0ya9//777HGrhXPVPDAwUEeOHNH+/fv17rvv6rLLLpMk3XXXXRo3bhy3rKqlyup+evAMDAwsN72Pj48WLFig//znP+rdu7dNvQbOjavX67AjR47o7rvvlsPhUGBgoH788UeNGTNGt9xyiyRVCEElJSWaOHGili1bpr/97W8Ezlqoac0XLFigxx57TM2aNdO6det05ZVX2tTzuq2mdf/888+1bt06vffee1q9ejV7f2rhXDUvLi5Wo0aNVFRUpOzsbHXs2FGSPHv5UTs1Xdc//fRTrV27Vn/961/1/vvv80ctLmjs6azDTp48qRYtWuj2229X27Zt9dJLL+nNN9+UJN1yyy0V9r75+fmpV69eGjNmDIGzlqpT89O/dFu1aqXw8HCtXLmSuwach5rW/ciRI/L19dX69eupey2dq+aNGjVSSUmJmjVr5gmckgic56mm63rZOeMffvihunTpYmfXgXNiT2cdl5WVpbZt20qSvv32W82fP18//PCDRo8erVtvvVVS6R5OziH0nurUvGwvkCTOa/OS6tS97FZVUun9asvOe0PtsH2xR03X9WPHjql58+a29ReoLk5yquPKNkwul0tdu3bVhAkTFBERoWXLlmn58uWSpIcfflivv/66nd2sV6pT84kTJ2rJkiWSROD0kurUfdKkSfrTn/4kSQROL2D7Yo+arusETtQV7Omsh77//nu9+OKLOnDggBwOh7766itt3LhRv/jFL+zuWr1Fze1B3a1Hze1B3VEfEDrrqHOdrJ+Wlqabb75ZRUVFWrdunWJiYizsXf1Eze1B3a1Hze1B3VHfcXi9jii7OXBubq6kqk/WdzqdntsiffDBB2yYaoma24O6W4+a24O6o6EhdF7gMjMztW7dOvn6+uq9997TPffco8OHD1f5Mz///LO2b9+u999/X127drWop/UHNbcHdbceNbcHdUeDZeCC5XK5jOeee84ICgoyHn30USMoKMhYsWJFlT/jdrsNwzCMkydPWtHFeoea24O6W4+a24O6oyHjnM46YPjw4frss890xx136IUXXqj0yTdnMrhB83mh5vag7taj5vag7miIOLx+gSr7W6C4uFjBwcHq3bu3XnvtNb377ruemwOf+ffC6e/ZMNUcNbcHdbceNbcHdUeDZ9EeVdRA2aGUf/zjH8Ynn3xi/Pzzz4ZhGMYTTzxhBAcHG++880656fbt22dPR+sRam4P6m49am4P6g4YBns6LzDGqcMn77//voYPH66dO3fq4MGDkkpvwjx+/Hjdc889WrVqlRwOh+bOnavJkyfr2LFjNve87qLm9qDu1qPm9qDuwCm2Rl5U6quvvjLCwsKM119/3Th+/Hi5cQUFBcYzzzxjBAUFGdddd53Rtm1bIzU11aae1h/U3B7U3XrU3B7UHeBCoguKceqv4ZkzZ2rXrl3685//7Bnncrnk6+vref/JJ59oz549uu6669SxY0c7ulsvUHN7UHfrUXN7UHfgf/zs7gD+t1EqO0n80KFDnpsGl13RWLZh+uabb9S5c2clJiZyJeN5oOb2oO7Wo+b2oO5ARZzTaaPjx4/r5MmT+vHHH3Xy5EnP8Hbt2mnbtm3Kzc31XNEold4cePXq1dq2bZskrmSsDWpuD+puPWpuD+oOVMHKY/n4n++//9647bbbjF69ehkXX3yx0bdvX+Oxxx4zDMMwCgsLjauvvtro1auXkZ2dbbjdbqO4uNh46qmnjG7duhkHDhywufd1EzW3B3W3HjW3B3UHqsY5nTbYtWuXbrjhBt1000264oorFBQUpBUrVmjjxo265ppr9MYbbygjI0MTJkxQZmamunTpokaNGum7777T6tWrdcUVV9i9CHUONbcHdbceNbcHdQfOjdBpsSNHjmjo0KEaMGCAnnjiiXLD16xZoyeeeEJJSUlavHixDMPQkiVLdOTIEbVo0UJJSUmcXF4L1Nwe1N161Nwe1B2oJtv2sTZQ33zzjdGrVy9j165dRklJiWEYpc/iNQzD+Omnn4wXXnjBaNu2rbF27Vo7u1mvUHN7UHfrUXN7UHegeriQyGLp6enau3evunbtKl9fXxmG4XnebmBgoIYPH65GjRpp79695X7OYId0rVFze1B361Fze1B3oHoInRYrO4zy/vvvS6p4pWJ4eLgiIiKUlZVVbjhXNNYeNbcHdbceNbcHdQeqh9BpsbCwMF100UVauXKl9u/f7xnudrslST/99JOaNGmi7t2729XFeoea24O6W4+a24O6A9VD6LRY+/btNXfuXH366aeaOXOmvvvuO0nyHIpZsGCBDh06pF69etnZzXqFmtuDuluPmtuDugPVw9XrNnC5XFq2bJkmT56sjh07qmfPngoJCdG+ffu0ceNG/fWvf+X2GV5Gze1B3a1Hze1B3YFzI3TaaMeOHXr55ZeVkZGhwMBAxcTE6K677tJll11md9fqLWpuD+puPWpuD+oOnB2h02Yul0s+Pj5yOBye5/HCXNTcHtTdetTcHtQdqBy/CTYr2zBJXMloFWpuD+puPWpuD+oOVI49nQAAADAdezoBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABM9/+DbfwmU5c69wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ix = pd.DatetimeIndex(['2021-10-11','2021-10-12','2021-10-13','2021-10-14','2021-10-15'])\n", + "\n", + "df = pd.DataFrame(dict( Open=[131.4, 131.9, 132.0, 130.9, 131.6],\n", + " High=[133.2, 132.7, 133.2, 132.7, 131.8],\n", + " Low=[131.3, 131.3, 131.5, 130.6, 130.7],\n", + " Close=[132.1, 131.4, 131.8, 132.1, 131.0],\n", + " Volume=[19591, 21467, 20406, 22611, 22001]),\n", + " index=ix)\n", + "df\n", + "mpf.plot(df,volume=True,style='yahoo',type='candle')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "--- \n", + "\n", + "#### Suppose we want to color the third candle yellow, and the fourth candle blue.\n", + "#### Then we create a list of overrides as follows: `mco = [None,None,'yellow','blue',None]`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHaCAYAAABCYPJ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP9ElEQVR4nO3de1wVdf7H8fdwQLwFgimYCUoSqZSxLriapmm2W3lhvZSWafazy7bZ1Vta28UyLbXcTV3TXxdp0y3TNrWsLNPN2lJ3afGSC6uh/URQNAhRD5wzvz+Qkwgi4JkZgdfz8fBxPDPDfL/zOcOcN3M1TNM0BQAAAFgowOkOAAAAoO4jdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlAqsykdfr9f3fMAzLOgMAAHC+OPVW5gEB7Kc7V1UKnZL0008/WdkPAACA89IFF1zgdBfqhCqHTklq2LBhuT2dHo9H6enpio2Nlcvl8mvncGbU3X7U3BnU3RnU3X7U3BmV1d00TR0/ftyhntU9VQqdpUHTMIxyodMwDJmmWeE4WIe624+aO4O6O4O624+aO6Mqdefz8A9OUAAAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcobOWysvL01dffaW8vDynuwJYLEsREQskZTndEQDAOSB01lJ5eXn6+uuvCZ2o8wzjgCIjF8owDjjdFQDAOSB0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAwA82bdqk4cOHq0OHDgoLC9OaNWvKjJ8xY4aSkpLUunVrtW3bVsnJydqyZUuZaUaMGKH4+HhFRkbqsssu0913362srKxK2z1+/LjGjx+vmJgYXXzxxRo1apRycnL8vnznitAJAADgB4WFhYqPj9cLL7xQ4fhLLrlEzz//vDZt2qQPP/xQUVFRGjx4sA4dOuSbpmfPnnrttdf0zTff6I033tCePXs0evToStudMmWK1q5dq9dff12rV6/WgQMHdNttt/l12fwhsDoTezweGYZRbtipr7CH1+v1vVJ7e7CuO8M0f17XTZPa24X13X7U3BmV1d00TUlSfn5+mfwTHBys4ODgctP369dP/fr1O2Nbw4YNK/P+mWeeUUpKirZv365evXpJku69917f+KioKD344IMaOXKkioqKFBQUVG6eeXl5evPNN7Vo0SJdffXVkqSXX35ZXbt21ebNm5WYmHjG/titWqEzPT3d9wGcLiMjwy8dQtWU7jbft2+fTpw44XBv6hfWdXs1arRPl15asq4fO9bU6e7UO6zv9qPmzqio7oZhKDo6WvHx8SooKPANnzRpkiZPnnxO7bndbr3xxhsKCQlRfHx8hdMcOXJEy5cvV1JSUoWBU5K+/fZbFRUVqXfv3r5hl156qS6++OLaHTpjY2Mr3NOZkZGh9u3by+Vy+bVzOLPSv7DatGmjtm3bOtuZeoJ13RmmWbKhb9OmjQwjzuHe1B+s7/aj5s6orO6macrtdmvbtm3l9nTW1Nq1azV27FgVFhYqMjJSK1euVPPmzctM88QTT2jx4sUqLCxUYmKili1bdsb5ZWdnq0GDBgoNDS0zvGXLlsrOzq5xP61QrdDpcrnKhc5Tx/FLYp+AgADfK3W3F+u6vbzen9f1gADqbjfWd/tRc2dUVPfSo7shISFnzD/V1bNnT23cuFG5ublasmSJxowZo3Xr1qlFixa+ae6//37ddttt2rdvn2bOnKl77rlHf/3rX/3WB6dwIREAAIBNmjRpopiYGCUmJupPf/qTAgMDlZKSUmaa5s2bq3379rrmmmv0v//7v/rkk0+0efPmCucXEREht9utvLy8MsNzcnIUERFh2XLUBKETAADAIV6vV263u9Lxks44TefOnRUUFKQNGzb4hqWnp+uHH344r87nlKp5eB0AAAAVKygo0J49e3zvMzMzlZaWpmbNmik8PFyzZ8/W9ddfr4iICB0+fFiLFy9WVlaWBg0aJEnasmWL/vnPf6pbt24KDQ3V999/r2effVbt2rXzBcj9+/crOTlZCxYsUJcuXRQaGqqRI0dq6tSpCgsL0wUXXKCJEycqMTGR0AkAAFAXpaamasCAAb73U6dOlVRyw/c5c+YoPT1dy5YtU25ursLDw5WQkKAPPvhAHTp0kCQ1atRIq1ev1owZM1RYWKiIiAj17dtX48eP9128VFxcrPT0dB07dszXzvTp0xUQEKBRo0bJ7XarT58+mjVrlo1LXjWETgAAAD/o0aOHjhw5csbxp5+7ebpOnTrp/fffr3SaqKiocm00bNhQs2bNOi+D5qk4pxMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInUAV5eXl6auvvlJeXp7TXQEsl5UlLVgQoawsp3sCoK4gdAJVlJeXp6+//prQiXrhwAFDCxdG6sABw+muAKgjCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAIAfbNq0ScOHD1eHDh0UFhamNWvWlBk/Y8YMJSUlqXXr1mrbtq2Sk5O1ZcsW3/i9e/dq3Lhx6ty5s1q1aqWEhAQ999xzcrvdlbbbv39/hYWFlfn30EMPWbKM5yLQ6Q4AAADUBYWFhYqPj9fIkSN12223lRt/ySWX6Pnnn1fbtm117NgxLViwQIMHD9Y///lPXXjhhfrPf/4jr9erF198UTExMdqxY4cefPBBFRYWatq0aZW2PXr0aD366KO+940aNfL78p0rQicAAIAf9OvXT/369Tvj+GHDhpV5/8wzzyglJUXbt29Xr169dO211+raa6/1jW/btq0yMjL06quvnjV0NmrUSBEREee2ABarVuj0eDwyDKPcsFNfYQ+v1+t7pfb2oObOMM2f626a1N0uXq958tUrj8d0uDf1A9+nzqis7qZZsu7n5+eXyT/BwcEKDg4+p3bdbrfeeOMNhYSEKD4+/ozT5efnKyws7Kzze+edd/T222+rZcuW+s1vfqMJEyaocePG59RHf6tW6ExPT/d9AKfLyMjwS4dQNTk5OZKkffv26cSJEw73pn6g5s5o1GifLr20pO7HjjV1ujv1xr59jSRdqn379qlp02NOd6de4fvUGRXV3TAMRUdHKz4+XgUFBb7hkyZN0uTJk2vUztq1azV27FgVFhYqMjJSK1euVPPmzSucdvfu3XrllVfOupdz6NChatOmjSIjI7V9+3Y99dRTysjIUEpKSo36aJVqhc7Y2NgK93RmZGSoffv2crlcfu0czqz0L6w2bdqobdu2znamnqDmzjDNkg19mzZtZBhxDvem/igoKNnB0KZNG8XFGWeZGv7A96kzKqu7aZpyu93atm1buT2dNdWzZ09t3LhRubm5WrJkicaMGaN169apRYsWZabbv3+/hg4dquTkZI0ePbrSed5+++2+/3fq1EmRkZEaNGiQ9uzZo3bt2tW4r/5WrdDpcrnKhc5Tx/FLYp+AgADfK3W3BzV3htf7c90DAqi7XQICvCdfA+RycaMTO/F96oyK6l56dDckJOSM+ae6mjRpopiYGMXExCgxMVFdunRRSkqKHn74Yd80WVlZGjhwoJKSkvTSSy9Vu40uXbpIKtlTej6FTrYkAAAADvF6vWVuibR//34NGDBAnTt31rx583w7PKojLS1Nks67C4u4eh0AAMAPCgoKtGfPHt/7zMxMpaWlqVmzZgoPD9fs2bN1/fXXKyIiQocPH9bixYuVlZWlQYMGSfo5cLZp00bTpk3ToUOHfPMqDZD79+9XcnKyFixYoC5dumjPnj1avny5+vXrp/DwcG3btk1Tp05V9+7dK71AyQmETgAAAD9ITU3VgAEDfO+nTp0qSRoxYoTmzJmj9PR0LVu2TLm5uQoPD1dCQoI++OADdejQQZL0+eefa/fu3dq9e7c6depUZt5HjhyRJBUXFys9PV3HjpVc4BcUFKTPP/9cCxYsUGFhoVq3bq0BAwZo/PjxdixytRA6AQAA/KBHjx6+cFiRs11Nfsstt+iWW26pdJqoqKgybVx88cXlnnx0vuKcTgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoFOd6AuSD+arYLi47a2mX30gCRp19ED+jHP3r8dmgY2VGyTCFvbBOqr9HSpoMD+dnftMnyvLpe9bTdtKsXG2tsmAOsROs9R+tFsddrwuO3tNjouxcVJf/3Pazq21/bmtb3XNIInYLH0dKlTpyBH+zBmTANH2t2+vYjgCdQxhM5zVLqHs1lgIwUa9u0OMIOk7zsVq7ErUE1sa1UqNj36sfiY7Xt2gfqodA9ns2amAm3eWpum5PEUy+UKlGHY125xsfTjj4Yje3cBWIvQ6SeBhktBATaGTkkBXlOuAJds/D6QvHY2BkCSAgOlIJt3eJqmFBAguVyyNXQCqLu4kAgAAACWI3QCAADAcoROAAAAWI7QCQAA4AebNm3S8OHD1aFDB4WFhWnNmjVlxs+YMUNJSUlq3bq12rZtq+TkZG3ZssU3fu/evRo3bpw6d+6sVq1aKSEhQc8995zcbnel7R4/flzjx49XTEyMLr74Yo0aNUo5OTmWLOO5IHQCAAD4QWFhoeLj4/XCCy9UOP6SSy7R888/r02bNunDDz9UVFSUBg8erEOHDkmS/vOf/8jr9erFF1/UV199pWeffVavvfaapk2bVmm7U6ZM0dq1a/X6669r9erVOnDggG677bYaLYPb7VZ6erqKi4tr9POV4ep1AAAAP+jXr5/69et3xvHDhg0r8/6ZZ55RSkqKtm/frl69eunaa6/Vtdde6xvftm1bZWRk6NVXXz1j8MzLy9Obb76pRYsW6eqrr5Ykvfzyy+ratas2b96sxMTEKvW9sLBQkyZN0tKlSyVJW7ZsUdu2bTVx4kS1atVKDz30UJXmU5lqhU6PxyPjtHtneDyeMq/1jcdbcg8h8+Q/25im79W08X4mpcvo8Xrr3WfuPflZe+vhspcyjAxJP9napmnu9L16bb9l1wUyzfZ2N+rj8ZT8bpvmz7/y9jF9r6Zp4zbmZLMej1cej+0L7aj6/n3qlMrqbp5cIfPz88vkn+DgYAUHB59Tu263W2+88YZCQkIUHx9/xuny8/MVFhZ2xvHffvutioqK1Lt3b9+wSy+9VBdffHG1QufTTz+tbdu2adWqVWXCce/evTVjxgz7Q2d6errvAzhdRkbGOXemNso8UXLOhMdTrACv/RtIuzdOHrOkvczvM9U4+JitbTut9PyYffv26cSJEw73xn4NGmSqQ4dBjrXfsOH/ONLuzp1/k9sd7UjbmZmNJF1asn1x6GQo27cxHkkKUmZmpho3rl/bmFL19fvUaRXV3TAMRUdHKz4+XgWnPLFg0qRJmjx5co3aWbt2rcaOHavCwkJFRkZq5cqVat68eYXT7t69W6+88kqlh9ezs7PVoEEDhYaGlhnesmVLZWdnV7lfa9as0auvvqrExMQyAfuyyy7T999/X+X5VKZaoTM2NrbCPZ0ZGRlq3769XHY/oPc8UJjfSMqSXK5AuWy8ObxMUx6Pp6TmNu7p9HoNyStFt41WXEiUbe2eD0r/qm3Tpo3atm3rbGccYBiFkiTTDJWdZ+aUPBmnZF239yblxTKMPMXEtJBpxtnZsE9hYckCu1yBtj//XDplG2PjIyhK92ZHR0crLq7+7emsz9+nTqms7qZpyu12a9u2beX2dNZUz549tXHjRuXm5mrJkiUaM2aM1q1bpxYtWpSZbv/+/Ro6dKiSk5M1evToGrdXVbm5ueX6IElHjx71WxvV+uYo2ehXvPFxuVz18pfEdXL3gyE7N8v6+ZC6YdjabmlbroCAevd5B5z8rAPq4bKXKF3moJP/7GEYpqQAGYa94ae0rYAAl35ednuVrmaGYf9TgX4+pG7Y2nZpWy5XgANB+/xQX79PnVZR3UuP7oaEhJwx/1RXkyZNFBMTo5iYGCUmJqpLly5KSUnRww8/7JsmKytLAwcOVFJSkl566aVK5xcRESG32628vLwyeztzcnIUERFR5X5deeWV+vjjj3XXXXdJkm95U1JSlJSUVI0lPDMuJAIAAHCI1+stc0uk/fv3a+DAgercubPmzZvn2+FxJp07d1ZQUJA2bNiggQMHSio5HfKHH36o8vmckvT444/rpptu0nfffafi4mL9+c9/1q5du/TNN99o9erVNVu403DLJAAAAD8oKChQWlqa0tLSJEmZmZlKS0vTvn37dPToUT399NPavHmz9u7dq9TUVN13333KysrSoEEl58vv379fAwYM0MUXX6xp06bp0KFDys7OLnNu5v79+5WUlKStW7dKkkJDQzVy5EhNnTpVf//735Wamqrf//73SkxMrFbo7NatmzZu3CiPx6OOHTtq/fr1uvDCC/XRRx/pyiuv9Et92NMJAADgB6mpqRowYIDv/dSpUyVJI0aM0Jw5c5Senq5ly5YpNzdX4eHhSkhI0AcffKAOHTpIkj7//HPt3r1bu3fvVqdOncrM+8iRI5Kk4uJipaen69ixny+0mz59ugICAjRq1Ci53W716dNHs2bNqnb/27Vrp7lz51b756qK0AkAAOAHPXr08IXDiqSkpFT687fccotuueWWSqeJiooq10bDhg01a9asGgXNUh9//LFcLpf69u1bZvinn34qr9db6f1Hq4rD6wAAAPXcU089dcZ7lT711FN+aYPQCQAAUM/t3r1bl112Wbnhl156qfbs2eOXNji8jtpp716psNDWJo0DB0peMzMlJ24O37ixFFW/7o0KALBHSEiIvv/+e0Wd9j2ze/duNW7c2C9tEDpR++zdq8ChN9ne7IWBgRp4YXNdOOUxBRYX296+JBUvf5vgCQDwu+uvv16PPvqo3nzzTbVr105SSeB87LHHdP311/ulDUInap+TezjNpk2lQPtW4VCZurHgqAKbNpFp603KJRUXyygosH3vLgCgfnjqqac0bNgwJSUl6aKLLpJUcnumbt26VfoYzuogdKL2Cgy0NXRK5s/t2h06AQCwUGhoqD766COtX79e27ZtU8OGDdWpUyddddVVfmuD0AkAAAAZhqE+ffqoT58+lsyf0AkAAFAPLVy4UKNHj1bDhg21cOHCSqe9++67z7k9QicAAEA9NH/+fA0bNkwNGzbU/PnzzzidYRiETgAAANTMt99+W+H/rcLN4QEAAOqxoqIiJSQkaNeuXZa2Q+gEAACox4KCgnTChoeeEDoBVFOxpKJ68M+ZBwAAgBP+53/+R3PnzlWxhQ8/4ZxOAFXUVJJkGD/a3nJQkO1NnqKpk42jHsnLy9NXX32lyMhIhYeHO90d1DP/+te/tHHjRq1fv14dO3Ys9+jLlJSUc26D0AmgimJVVLRdUoGtrZrmDjVoMEZu92syjI62tl0SOGNtbhP1VV5enr7++mv16dOH0AnbhYaGasCAAZa2QegEUA32BzDT9Jx8jZNhJNjePgDUZV6vV3/84x+VkZGhoqIi9ezZU5MnT1ajRo383hbndAIAANRTs2fP1rRp09S0aVO1atVKr7zyiiZMmGBJW4ROAACAemrZsmWaNWuW3n33Xf3lL3/R0qVL9c4778jr9fq9LUInAABAPfXDDz+oX79+vve9e/eWYRjKysrye1uETgAAgHqquLhYDRs2LDMsKCjIklsncSERAABAPWWapu69914FBwf7hh0/flwPP/xwmdsmccskAAAA1NiIESPKDbvpppssaYvQCQAAUE/NmzfPtrY4pxMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJbjiUQAAJxu716psNDWJo0DB0peMzOlEydsbVuNG0tRUfa2iXqH0AkAwKn27lXgUGuePV2ZCwMDNfDC5rpwymMKLC62vf3i5W8TPGEpQicAAKc6uYfTbNpUCrTvazJUpm4sOKrApk1kyrCtXRUXyygosH3PLuofQicAABUJDLQ1dErmz+3aGToBm3AhEQAAACxH6AQAAIDlCJ0AAACwHKETAADADzZt2qThw4erQ4cOCgsL05o1a8qMnzFjhpKSktS6dWu1bdtWycnJ2rJlS5lpZs2apeuuu04XXXSRoqOjq9Tuvffeq7CwsDL/hg4d6rfl8hdCJwAAgB8UFhYqPj5eL7zwQoXjL7nkEj3//PPatGmTPvzwQ0VFRWnw4ME6dOiQb5qioiIlJyfrjjvuqFbbffv21Xfffef7t3jx4nNaFitw9ToAAIAf9OvXT/369Tvj+GHDhpV5/8wzzyglJUXbt29Xr169JEmPPvqoJOmtt96qVtvBwcGKiIioZo/tVa3Q6fF4ZBhGuWGnvtY3Hq9XUsmNLkw7GzZN36tp2HdrjdJl9Hi9jn3mxsma2131U0ouw7D101bpcnq9Xpn17HfNNEs+b6/XK9OsX8vu8ZT8bpvmz+uffUzfq2nauI052azH45XHY/tCS6qP25j6u32RKs8x5skPJT8/v0z+CQ4OVnBw8Dm163a79cYbbygkJETx8fHnNC9J+uKLLxQbG6tmzZqpZ8+eeuyxxxQeHn7O8/WnaoXO9PR03wdwuoyMDL90qLbJPJEjSfJ4ihXgtX8DaXfw85z80s/8PlONg4/Z2napRt9nKlZScbEzG0ePx/4nhajYoyCV1N2ZqjsnMPCYmje/W7m5x1RcvMvp7tgqM7ORpEtLti8OnQxl+zbGI0lByszMVOPGbGNsUY+3L6eqKMcYhqHo6GjFx8eroKDAN3zSpEmaPHlyjdpZu3atxo4dq8LCQkVGRmrlypVq3rx5jfstlRxa79+/v6Kjo/X9999r2rRpGjZsmD7++GO5XK5zmrc/VSt0xsbGVrinMyMjQ+3btz+vFswuhfmNpCzJ5QqUK8DG5TdNeTyekprbuKfT6zUkrxTdNlpxIc48Lq10aQMDXbbeuNk0S74MXK5AO0teRnTbaJlxcc407hCPp70yMlrUy21MYWHJiuZyBcr+RT9lG2PjjcpLdzJGR0crLs6hPZ0nX+vbNqY+bl+kynOMaZpyu93atm1buT2dNdWzZ09t3LhRubm5WrJkicaMGaN169apRYsWNZ7nkCFDfP/v1KmTOnXqpISEBH3xxRe+w/bng2r9NrlcrnKh89Rx9e0LQZJcJ3c/GLL3+RG+Q+qGYWu7pW25AgKc+7x9u3zsrXrp4a6S0tv9jVDSXkBAgBxIH+eF+riNKV1cw7D1b0tJOuWQumFr26VtuVwBzq3q9W4bw/ZFqngbU3p0NyQk5Iz5p7qaNGmimJgYxcTEKDExUV26dFFKSooefvhhv8xfktq2bavmzZtr9+7d51Xo5Op1AAAAh3i9Xrndbr/O8//+7/90+PDh8+7CIkInAACAHxQUFCgtLU1paWmSpMzMTKWlpWnfvn06evSonn76aW3evFl79+5Vamqq7rvvPmVlZWnQoEG+eezbt09paWn64Ycf5PV6ffM79ZzSpKQkrV692tfm448/7pvvhg0bdOuttyomJkZ9+/a1twBnwS2TAAAA/CA1NVUDBgzwvZ86daokacSIEZozZ47S09O1bNky5ebmKjw8XAkJCfrggw/UoUMH388899xzWrp0qe/91VdfLUlatWqVevToIankwu78/HxJJacF7NixQ8uWLVNeXp4iIyPVp08fTZky5ZyvsPc3QicAAIAf9OjRQ0eOHDnj+JSUlLPOY/78+Zo/f36l05zaRqNGjfTuu+9WvZMO4vA6AAAALEfoBAAAgOU4vO4nxaZH8p59On8xVXKjdq/X3lsmFZ9PT4Qptvsm7abku1m0zfevsX1ZAQDwL0LnOWoa2FCS9GOxvc9xaHRcitsj7WonHWtoa9OSfl5uRzRuLEkyTrmSzw4/Bgbq8wubq/ehXDVzKgSeXHYAAGobQuc5im0Soe29pqmg+Lit7Wbv268Va1/T078eo4g2F9nadtPAhopt4uC9v6KiVLz8bamw0NZmDx04oPffekvxDz+kppGRtrYtqSRwRjnzFCgAAM4VodMPnAhgew6XHMuPaxKpdqHRtrfvOAfCl3ny1hNmdLTUrp3t7QMAUJtxIREAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6a6nQ0FB17dpVoaGhTnel3qDmAADUHKGzlgoNDVW3bt0IQDai5gAA1ByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAPjBpk2bNHz4cHXo0EFhYWFas2ZNmfEzZsxQUlKSWrdurbZt2yo5OVlbtmwpM82sWbN03XXX6aKLLlJ0dHSV2jVNU9OnT9dll12mVq1aKTk5Wf/973/9tlz+QugEAADwg8LCQsXHx+uFF16ocPwll1yi559/Xps2bdKHH36oqKgoDR48WIcOHfJNU1RUpOTkZN1xxx1Vbnfu3LlauHCh5syZo08++USNGzfWkCFDdPz48XNeJn8KrM7EHo9HhmGUG3bqK+xB3e1HzZ1Rn+vu8ZRsb02z5J+9TN+raRqVTunXVk826/F45fHYvtCSJMPrLflPcbF+roP1TFOSxyPTlAz7Si4Vl/xueb1emfXy9+zM2xjz5AqZn59fJv8EBwcrODi43PT9+vVTv379ztjWsGHDyrx/5plnlJKSou3bt6tXr16SpEcffVSS9NZbb1Wp/6Zp6s9//rPGjx+vG264QZK0YMECxcXFac2aNRoyZEiV5mOHaoXO9PR03wdwuoyMDL90CNVD3e1HzZ1RH+uemdlI0qXyeIoV4NBxKbvDfklzQcrMzFTjxsdsbbtUgwPZukySUVBga7t5gYH6/MLm6n0oV82Ki21tW5J2H8iW2/ZWzx8VbWMMw1B0dLTi4+NVcMr6MGnSJE2ePPmc2nO73XrjjTcUEhKi+Pj4Gs8nMzNT2dnZ6t27t29YaGiounTpos2bN9fe0BkbG1vhns6MjAy1b99eLpfLr53DmVF3+1FzZ9TnuhcWlmxvXa5A2b/opjwez8ma27fbrXQnY3R0tOLinNnTqbg4ud9eJhUW2tpsdlaW3v/rX9XhgfvVuFUrW9tW48Zq16aNvW2eJyrbxpimKbfbrW3btpXb01lTa9eu1dixY1VYWKjIyEitXLlSzZs3r/H8srOzJUktWrQoM7xly5bKycmp8XytUK3Q6XK5yoXOU8fVty+E8wF1tx81d0Z9rHvp4hqGzYdbpVMOqRu2tl3alssV4EDQPkXbtrY3GdCoUclrTIwC2rWzvf36rqJtTOnR3ZCQkDPmn+rq2bOnNm7cqNzcXC1ZskRjxozRunXryoXGuogLiQAAAGzSpEkTxcTEKDExUX/6058UGBiolJSUGs8vIiJCknTw4MEyw3NyctSyZctz6qu/EToBAAAc4vV65XbX/Gza6OhoRUREaMOGDb5h+fn52rp1qxITE/3RRb+p1uF1AAAAVKygoEB79uzxvc/MzFRaWpqaNWum8PBwzZ49W9dff70iIiJ0+PBhLV68WFlZWRo0aJDvZ/bt26cff/xRP/zwg7xer9LS0iRJ7dq1U9OmTSVJSUlJ+sMf/qD+/fvLMAzdc889mjVrlmJiYhQdHa3p06crMjJSN954o70FOAtCJwAAgB+kpqZqwIABvvdTp06VJI0YMUJz5sxRenq6li1bptzcXIWHhyshIUEffPCBOnTo4PuZ5557TkuXLvW9v/rqqyVJq1atUo8ePSSV3E0oPz/fN80DDzygwsJCPfTQQ8rLy9OvfvUrLV++XA0bNrR0eauL0AkAAOAHPXr00JEjR844virnbs6fP1/z58+vdJrT2zAMQ1OmTNGUKVOq1lGHcE4nAAAALEfoBAAAgOU4vA4A5zkHHk4j0yx5OpDXa+89Qp1YVgD2IHQCwHnq5IWq+vFHm+8M7xPkULs/LzuAuoPQCQDnqdhYafv2Itn8CHBJ0o4dpsaMaaDXXnOrY0d7Q2/TpiXLDqBuIXQCwHnMqfDl8ZQ8/i8uzlRCglN7WgHUJVxIBAAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBADgPhIaGqmvXrgoNDXW6K4AlCJ0AAJwHQkND1a1bN0In6ixCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAKCcyEhTd999QJGRptNdAVBHEDoBAOW0aiX97nfZatXK6Z4AqCsInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAA4AebNm3S8OHD1aFDB4WFhWnNmjVlxs+YMUNJSUlq3bq12rZtq+TkZG3ZsqXMNEeOHNGdd96pqKgoRUdHa9y4cSooKKi03f79+yssLKzMv4ceesjvy3euCJ0AAAB+UFhYqPj4eL3wwgsVjr/kkkv0/PPPa9OmTfrwww8VFRWlwYMH69ChQ75p7rzzTn333XdasWKFli1bpi+//FIPPvjgWdsePXq0vvvuO9+/p556yl+L5TeBTncAAACgLujXr5/69et3xvHDhg0r8/6ZZ55RSkqKtm/frl69emnXrl369NNP9dlnnykhIUGSNHPmTN10002aNm2aWlVyD7NGjRopIiLCPwtikWqFTo/HI8Mwyg079RX2oO72o+bOoO7OoO72o+bOqKzuplnycIT8/Pwy+Sc4OFjBwcHn1K7b7dYbb7yhkJAQxcfHS5I2b96s0NBQX+CUpN69eysgIEBbt25V//79zzi/d955R2+//bZatmyp3/zmN5owYYIaN258Tn30t2qFzvT0dN8HcLqMjAy/dAjVQ93tR82dQd2dQd3tR82dUVHdDcNQdHS04uPjy5xXOWnSJE2ePLlG7axdu1Zjx45VYWGhIiMjtXLlSjVv3lySlJ2drRYtWpSZPjAwUGFhYcrOzj7jPIcOHao2bdooMjJS27dv11NPPaWMjAylpKTUqI9WqVbojI2NrXBPZ0ZGhtq3by+Xy+XXzuHMqLv9qLkzqLszqLv9qLkzKqu7aZpyu93atm1buT2dNdWzZ09t3LhRubm5WrJkicaMGaN169aVC5vVcfvtt/v+36lTJ0VGRmrQoEHas2eP2rVrV+P5+luVQuepu5xPD52GYSggIECGYZQbB+tQd/tRc2dQd2dQd/tRc2dUVvfSo7tNmjRRYKB/LoNp0qSJYmJiFBMTo8TERHXp0kUpKSl6+OGHFRERoYMHD5aZvri4WEeOHKnW+ZpdunSRJO3evbv2hc5Sbre7wuFRUVEqKipSUVGRXzqFqqHu9qPmzqDuzqDu9qPmznCy7l6v15evEhMTlZeXp9TUVF155ZWSpI0bN8rr9fqCZFWkpaVJ0nl3YVG1QmfDhg0rPLyenp6u2NhYDgfYiLrbj5o7g7o7g7rbj5o7o7K6m6ap48ePV3leBQUF2rNnj+99Zmam0tLS1KxZM4WHh2v27Nm6/vrrFRERocOHD2vx4sXKysrSoEGDJElxcXHq27evHnjgAc2ZM0dFRUWaOHGiBg8e7Ltyff/+/UpOTtaCBQvUpUsX7dmzR8uXL1e/fv0UHh6ubdu2aerUqerevbvvAqXzRZVCZ+mHUNGuZ8MwZJomhwNsRt3tR82dQd2dQd3tR82dUZW6V/WPgNTUVA0YMMD3furUqZKkESNGaM6cOUpPT9eyZcuUm5ur8PBwJSQk6IMPPlCHDh18P7No0SJNmDBBycnJMgxDAwcO1IwZM3zji4uLlZ6ermPHjkmSgoKC9Pnnn2vBggUqLCxU69atNWDAAI0fP77atbAa9+kEAADwgx49eujIkSNnHF+Vq8nDwsK0ePHiM46Piooq08bFF19c7slH5yueSAQAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMvxRCIAsNhtW15Rrvuo092oJlNer6mAr9dKqj2PZGzeoIlSfnmX090AUAFCJwBYLNd9VI2Cg53uRr2Qe6K2hXug/uDwOgAAACxH6AQAAIDlOLwOAKhzAu65Vzp82OluVEuApI6mVwFGLdwfFB4u75/nO90LnOcInQCAuufwYRmtL3K6F9XmcroDNWT+336nu4BaoBb+OQUAAIDahj2dcExtO/zFoS8AAGqO0Ann1MLDXxz6AgCgZmrhLhsAAADUNoROAAAAWI7QCQAAAMsROgEAAPxgzpw56tOnj9q0aaPY2FjdeuutSk9PLzPN8ePHNX78eMXExOjiiy/WqFGjlJOTU2aaffv26aabbtJFF12k2NhYPf744youLi4zzRdffKFevXopIiJCv/jFL/TWW2+V68+iRYt0xRVXKDIyUtdee622bt3q/4WuBkInAACAH3z55ZcaO3asPv74Y61YsUJFRUUaPHiwjh496ptmypQpWrt2rV5//XWtXr1aBw4c0G233eYb7/F4dPPNN6uoqEgfffSR5s+fr6VLl2r69Om+aTIzM3XzzTerZ8+e2rhxo+655x7df//9+vTTT33TrFixQo899pgmTZqkzz//XPHx8RoyZIgOHjxoTzEqwNXrQD1y25ZXlOs+evYJzyumvF5TAV+vlWQ43Zlqad6giVJ+eZfT3QBgk+XLl5d5P3/+fMXGxio1NVVXXXWV8vLy9Oabb2rRokW6+uqrJUkvv/yyunbtqs2bNysxMVGfffaZdu3apffee08tW7bU5ZdfrilTpujJJ5/U5MmT1aBBA7366quKiorSM888I0mKi4vTP/7xDy1YsEB9+/b1tT1q1Cjdeuutkkr2wn788cd688039dBDD9lYlZ9VK3R6PB4ZhlFu2KmvsEddqDu72e3l8XiU6y5Qo+CGTnel3sg9UXDyd9R0uiv1iCmPx8P2xQG19fuosu9T0yz53c3Pzy+Tf4KDgxUcHHzWeefn50uSwsLCJEnffvutioqK1Lt3b980l156qS6++GJf6Ny8ebM6duyoli1b+qbp27evHnnkEX333Xe64oortHnz5jLzKJ3m0UcflSS53W6lpqaWCZcBAQHq1auXNm/efNZ+W6VaoTM9Pd33AZwuIyPDLx1C9dTmunc0vbX2vpe1jdf0ateuXfJ6CT928npN6m6z0pqzfbFX6TamNqvo+9QwDEVHRys+Pl4FBQW+4ZMmTdLkyZMrnZ/X69Wjjz6qrl27qmPHjpKk7OxsNWjQQKGhoWWmbdmypbKzsyVJOTk5ZQKnJLVo0cL386XTlA47dZqffvpJx44d048//iiPx1PhNKefY2qnaoXO2NjYCvd0ZmRkqH379nK5+BW3S12oe618sk8tFWAEKC4u7uQhatglIMCg7jbz1Zzti61KtzG1UWXfp6Zpyu12a9u2beX2dJ7N+PHjtXPnTn344Yd+73NtVa3Q6XK5yoXOU8fV1vBTm1F3VFXJelK7zoms/QzqbjuDbaJDanvdK/o+LT26GxIScsb8U5EJEyboo48+0gcffKDWrVv7hkdERMjtdisvL6/M3s6cnBxFRERIKtnrefpV5qUX/5w6zekXBB08eFAXXHCBGjVq5FuWiqY5fS+qnbiQSFxcYTcurgAA1EWmaWrixIlas2aNVq1apejo6DLjO3furKCgIG3YsEEDBw6UVHLq4g8//KDExERJUmJiombPnq2DBw/6Do+vX79eF1xwgW9vcmJioj755JMy816/fr2SkpIkSQ0aNNCVV16pDRs26MYbb5RUcrh/48aNGjt2rHUFOAtCp6Rc91E1qsKucvhH7onaFvABADi78ePHa/ny5XrrrbfUtGlT3zmYISEhatSokUJDQzVy5EhNnTpVYWFhuuCCCzRx4kQlJib6QmefPn0UFxene+65R08++aRycnL07LPPauzYsb7D+nfccYcWL16sP/zhDxo5cqQ2btyo9957T3/96199fbn33nt17733KiEhQb/4xS+0YMECHT161Hc1uxMInQAAAH7w6quvSpL69+9fZvi8efN0yy23SJKmT5+ugIAAjRo1Sm63W3369NGsWbN807pcLi1btkyPPPKIfv3rX6tx48YaMWKEpkyZ4psmOjpaf/3rXzVlyhQtXLhQF110kf74xz/6bpckSYMHD9ahQ4c0ffp05eTk6PLLL9fy5cs5vA4AAFDbHTly5KzTNGzYULNmzSoTNE8XFRWld955p9L59OjRQxs3bqx0mrvuukt33VWz09m+/PJLvf766/r+++/1+uuv66KLLtKyZcsUHR2tbt261WieXN4HAAAAn/fff19Dhw5Vo0aN9O9//1tut1tSyX1H58yZU+P5EjoBAADgM2vWLM2ZM0dz585VUFCQb/ivfvUr/fvf/67xfAmdAAAA8MnIyFD37t3LDQ8JCVFeXl6N50voBAAAgE/Lli21e/fucsP/8Y9/qG3btjWeL6ETAAAAPqNGjdKjjz6qLVu2yDAMZWVl6e2339bjjz+uO+64o8bz5ep1AAAA+Dz00EPyer1KTk5WYWGhbrzxRgUHB+u+++6r8dXwEqETAAAApzAMQ+PHj9f999+v3bt36+jRo4qLi1PTpk3Pab6ETgAAAJTToEEDXXbZZX6bH6ETAAAAPsePH9crr7yiv//97zp06JC8Xm+Z8Rs2bKjRfAmdAAAA8Bk3bpzWr1+vgQMHqkuXLjIMwy/zJXQCAADA56OPPtLbb7+tX/3qV36dL7dMAgAAgM9FF110zhcNVYTQCQAAAJ9p06bpySef1N69e/06Xw6vAwAAwCchIUEnTpxQQkKCGjdurMDAsnFxz549NZovoRMAAAA+Y8eOVVZWlh5//HG1bNmSC4kAAADgf998840++ugjXX755X6dL+d0AgAAwCc2NlbHjx/3+3wJnQAAAPB54okn9Nhjj+mLL77Q4cOHlZ+fX+ZfTXF4HQAAAD5Dhw6VJA0aNKjMcNM0ZRiGcnNzazRfQicAAAB8Vq1aZcl8ObwOAADgB5s2bdLw4cPVoUMHhYWFac2aNWXG33vvvQoLCyvzr3SvYqkjR47ozjvvVFRUlKKjozVu3DgVFBSUmWbbtm26/vrrFRkZqU6dOmnu3Lnl+vLee+8pKSlJkZGR6t69uz7++OMqL8dVV11V6b+aYk8nAACAHxQWFio+Pl4jR47UbbfdVuE0ffv21bx583zvg4ODy4y/8847lZ2drRUrVqioqEj33XefHnzwQS1evFiSlJ+fryFDhqhXr16aM2eOduzYoXHjxik0NFS33367JOnrr7/W2LFj9Yc//EG//vWvtXz5co0cOVKff/65OnbseNbl2LRpU6Xjaxo8CZ0AAAB+0K9fP/Xr16/SaYKDgxUREVHhuF27dunTTz/VZ599poSEBEnSzJkzddNNN2natGlq1aqV3nnnHbndbr388stq0KCBOnTooLS0NM2fP98XOhcuXKi+ffvq/vvvlyRNnTpVn3/+uRYtWqQXX3zxrMsxYMCAcsNOvVenLed0ejyecjcI9Xg8ZV5rJ9PpDtQzpjweD+d22Kzkd5R13V4mdbcd2xen1NYcUFmOMc2S3938/Pwy+Sc4OLjcHsqq+uKLLxQbG6tmzZqpZ8+eeuyxxxQeHi5J2rx5s0JDQ32BU5J69+6tgIAAbd26Vf3799fmzZvVvXt3NWjQwDdN3759NXfuXP34449q1qyZvvnmG/3+978v026fPn3KHe4/k9OfOFRcXKx///vfmj59uh577LEaLbdUzdCZnp7u+wBOl5GRUeNOOM3r5QvBTl6vqV27dqmj6ZXL6c7UE17Tq127drGu26x0Xafu9mH74ozSbUxtVlGOMQxD0dHRio+PL3Ne5aRJkzR58uRqt9G3b1/1799f0dHR+v777zVt2jQNGzZMH3/8sVwul7Kzs9WiRYsyPxMYGKiwsDBlZ2dLknJychQVFVVmmtKfyc7OVrNmzZSTk1NuPi1atFBOTk6V+hkaGlpu2DXXXKMGDRr49prWRLVCZ2xsbIV7OjMyMtS+fXu5XLXzVzzg67VOd6FeCQgwFBcXpwCDfRF2CTACSmrOum4r37pO3W3D9sUZpduY2qiyHGOaptxut7Zt21ZuT2dNDBkyxPf/Tp06qVOnTkpISNAXX3yhXr161WwBbNSiRYtz2slYrdDpcrnO+PxNl8tVa0On5J9niqKqjFq8rtReJTVnXbeXQd1tx/bFKbW97hXlmNKjuyEhIX57/vip2rZtq+bNm2v37t3q1auXIiIidPDgwTLTFBcX68iRI77zQFu2bFlumtL3Z5umZcuWVerXtm3byrw3TVPZ2dl66aWXFB8fX/UFPA0XEgEAADjg//7v/3T48GFfWExMTFReXp5SU1N15ZVXSpI2btwor9erLl26+KZ55plnVFRUpKCgIEnS+vXrfeeJSlJSUpI2bNig3/3ud7621q9fr8TExCr16+qrr5ZhGOVOqfzlL3+pl19+ucbLS+gEAADwg4KCgjIX4WRmZiotLU3NmjVTWFiYZs6cqYEDByoiIkJ79uzRE088oZiYGPXt21eSFBcXp759++qBBx7QnDlzVFRUpIkTJ2rw4MFq1aqVpJKnBT3//PMaN26cHnjgAe3cuVMLFy7Us88+62v37rvvVv/+/fXyyy/ruuuu04oVK5SamqqXXnqpSsuRmppa5n1AQIAuvPBCNWzY8JzqQ+gEAADwg9TU1DK3G5o6daokacSIEZo9e7Z27NihZcuWKS8vT5GRkerTp4+mTJlS5hzRRYsWacKECUpOTpZhGBo4cKBmzJjhGx8aGqp3331XEyZM0DXXXKPmzZtrwoQJvtslSVLXrl21aNEiPfvss5o2bZpiYmL05ptvVukenZLKXajkL4ROAAAAP+jRo4eOHDlyxvHvvvvuWecRFhbmuxH8mcTHx+vDDz+sdJrk5GQlJyeftb1SCxcurPK0d999d5WnPRWhEwAAoJ6bP39+laYzDIPQCQAAgJr59ttvLW+DG5kBAACgQqZpnvHBQNVF6AQAAEAZy5YtU/fu3dWqVSu1atVKV111lZYtW3ZO8+TwOgAAAHzmzZun6dOna+zYseratask6R//+IceeeQRHT58WPfee2+N5kvoBAAAgM8rr7yi2bNna/jw4b5hN9xwgzp06KAZM2bUOHRyeB0AAAA+2dnZSkpKKjc8KSlJ2dnZNZ4voRMAAAA+7dq108qVK8sNX7lypWJiYmo8Xw6vAwAAQDt27FDHjh01ZcoUjRkzRl999ZXvnM6vv/5aGzZs0GuvvVbj+bOnEwAAAOrRo4euvfZa5ebm6m9/+5vCw8O1Zs0arVmzRuHh4fr000/Vv3//Gs+fPZ0AAADQ6tWr9dZbb+kPf/iDvF6vBgwYoGeffVZXXXWVX+bPnk4AAACoe/fuevnll7Vz507NnDlTe/fu1cCBA/XLX/5SL7300jldRCQROgEAAHCKJk2a6NZbb9WaNWu0efNmDRo0SIsXL9bll1+uESNG1Hi+hE4AAABUKCYmRg8//LDGjx+vpk2b6uOPP67xvDinEwAAAOVs2rRJf/nLX7Rq1SoZhqHf/va3GjlyZI3nR+gEAACAJCkrK0tvvfWWli5dqt27dyspKUkzZsxQcnKymjRpck7zJnQCAABAQ4cO1YYNG9S8eXPdfPPNGjlypGJjY/02f0InAAAAFBQUpDfeeEO//vWv5XK5/D5/QicAAAC0dOlSS+fP1esAAAB+sGnTJg0fPlwdOnRQWFiY1qxZU2a8aZqaPn26LrvsMrVq1UrJycn673//W2aaI0eO6M4771RUVJSio6M1btw4FRQUlJlm27Ztuv766xUZGalOnTpp7ty55fry3nvvKSkpSZGRkerevfs5XXXuL4ROAAAAPygsLFR8fLxeeOGFCsfPnTtXCxcu1Jw5c/TJJ5+ocePGGjJkiI4fP+6b5s4779R3332nFStWaNmyZfryyy/14IMP+sbn5+dryJAhatOmjdavX6+nn35aM2fO1Ouvv+6b5uuvv9bYsWM1cuRIbdiwQTfeeKNGjhypHTt2WLXoVULoBAAA8IN+/frpscceq/D55KZp6s9//rPGjx+vG264QfHx8VqwYIEOHDjg2yO6a9cuffrpp/rjH/+oX/7yl+rWrZtmzpypFStWKCsrS5L0zjvvyO126+WXX1aHDh00ZMgQ3XXXXZo/f76vrYULF6pv3766//77FRcXp6lTp6pz585atGiRPYU4g2qd0+nxeGQYRrlhp77WTqbTHahnTHk8Hv7isVnJ7yjrur1M6m47ti9Oqa05oLIcY5olv7v5+fll8k9wcLCCg4Or1U5mZqays7PVu3dv37DQ0FB16dJFmzdv1pAhQ7R582aFhoYqISHBN03v3r0VEBCgrVu3qn///tq8ebO6d++uBg0a+Kbp27ev5s6dqx9//FHNmjXTN998o9///vdl2u/Tp0+5w/12q1boTE9P930Ap8vIyPBLh5zg9fKFYCev19SuXbvU0fTK/9fGoSJe06tdu3axrtusdF2n7vZh++KM0m1MbVZRjjEMQ9HR0YqPjy9zXuWkSZM0efLkas2/9LnlLVq0KDO8ZcuWysnJ8U1z+vjAwECFhYX5fj4nJ0dRUVFlpin9mezsbDVr1kw5OTnl5tOiRQtfO06pVuiMjY2tcE9nRkaG2rdvb8nl9XYI+Hqt012oVwICDMXFxSnAYF+EXQKMgJKas67byreuU3fbsH1xRuk2pjaqLMeYpim3261t27aV29OJ6qtW6HS5XOVC56njamvolCpeJljFqMXrSu1VUnPWdXsZ1N12bF+cUtvrXlGOKT26GxIScsb8U1URERGSpIMHDyoyMtI3PCcnR5dffrlvmoMHD5b5ueLiYh05csT38y1btiw3Ten7s03TsmXLc1qGc8WfggAAABaLjo5WRESENmzY4BuWn5+vrVu3KjExUZKUmJiovLw8paam+qbZuHGjvF6vunTp4pvmyy+/VFFRkW+a9evXKzY2Vs2aNZMkJSUllWmndJrSdpxC6AQAAPCDgoICpaWlKS0tTVLJxUNpaWnat2+fDMPQPffco1mzZumDDz7Q9u3b9bvf/U6RkZG68cYbJUlxcXHq27evHnjgAW3dulX/+Mc/NHHiRA0ePFitWrWSVPKoygYNGmjcuHHauXOnVqxYoYULF+ree+/19ePuu+/Wp59+qpdffln/+c9/NGPGDKWmpurOO++0vyin4IlEAAAAfpCamqoBAwb43k+dOlWSNGLECM2fP18PPPCACgsL9dBDDykvL0+/+tWvtHz5cjVs2ND3M4sWLdKECROUnJwswzA0cOBAzZgxwzc+NDRU7777riZMmKBrrrlGzZs314QJE3T77bf7punatasWLVqkZ599VtOmTVNMTIzefPNNdezY0foiVILQCQAA4Ac9evTQkSNHzjjeMAxNmTJFU6ZMOeM0YWFhWrx4caXtxMfH68MPP6x0muTkZCUnJ1c6jd04vA4AAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAywVWZSLTNMu8nj7OMAyZplnh+NqgUUCQGgYEOd2N+iPAW7K+NGwoBQc73Zt6wWzYUKZpsq7b7eS6Tt1txPbFEaXbmNqoshxzav4xDMOJ7tUphlmFtcTr9eqnn36yoz8AAADnlQsuuEABARwcPldVDp2+Hzgt6efn5ys+Pl7btm1TSEiI/3uIClF3+1FzZ1B3Z1B3+1FzZ1RW91MjEqHz3FXp8HplhTYMQwUFBTIMg13PNqLu9qPmzqDuzqDu9qPmzqis7nwO/kVsBwAAgOUInQAAALDcOYfO4OBgTZo0ScFcJWgr6m4/au4M6u4M6m4/au4M6m6fKl1IBAAAAJwLDq8DAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAJwzj8fjdBfqlVMfTw3UFoTOOq6oqMjpLtQ7BQUFysnJUV5eHl/ENsrNzdW//vUvpaWl6fDhw053p17YtWuX5syZI0lyuVys7zb517/+pZEjR+rEiRNOdwWolio9ex21U0ZGhl577TWNHDlSHTp0cLo79cLOnTs1YcIE5ebmyu12a/To0Ro1apSaNWvmdNfqtO3bt+vuu+9WcXGxCgoK1LdvXz355JMKCwtzumt11vHjxzVkyBDt379fBw8e1HPPPecLni6Xy+nu1VlpaWkaMGCARowYwc3MUeuwp7OO2rNnj2688UYtWbJEixcv1q5du5zuUp23a9cuDRw4UJdffrmefvppXXfddVqyZIl27tzpdNfqtO+++04DBw5U37599dZbb+m+++7T+vXr2dtpsQYNGqh169a69dZb9c0332jixImSSvZ4cujXGmlpabr++ut1xx136IUXXpAkFRcXy+12i+e8oDbgiUR1UGFhoR555BG53W5dfvnlWrlypRISEvS73/1OcXFxTnevTsrLy9PYsWPVpk0b3+FGSfrNb36jdu3aacGCBQ72ru46cuSIbrnlFnXu3FkzZszwDf/tb3+ru+++W2FhYWrVqpWioqIc7GXd9eCDDyo2NlYul0uvvfaarr32Wj377LPauHGjrrzySoWEhDjdxTojNzdXnTt31jXXXKOUlBQVFRXp0Ucf1Z49e5SVlaW+fftq1KhRio2NdbqrwBlxeL0Oatiwoa6++moZhqHhw4frwgsv1KJFi7RgwQKCp0Wys7N1wQUX6Le//a0kye12q0GDBurZs6f27NnjcO/qruPHj2vYsGHq2rWrb9isWbO0YcMGHThwQIGBgTpy5IjeeustXXHFFQ72tG4pPYQeHBysY8eO6eGHH5Yk/eUvf1Hnzp1lmqa++uoreb1eBQRwQM0fPB6PbrzxRq1bt06bNm3SSy+9pMLCQl1zzTXKycnR1q1b9a9//Uvz5s1TdHS0090FKsTWoA4KCAjQkCFDdPPNN0uSRo4cqf/5n/9RamqqFixY4DvUXlRUpAMHDjjZ1Trj0ksv1dChQ9WzZ09JUmBgyd9zF154oY4fP15m2p9++sn2/tVVrVq10qBBg9SpUydJ0tKlSzVz5ky9/vrrWrNmjV555RVddtllmj9/vk6cOMEhSD8pDZJ9+vTRzp07FRAQoHvuuUeBgYHKyclRly5d1KRJEwUEBHCo3U9atmyp5557Ttddd50GDBgg0zSVkpKi8ePH6/nnn9d9992n3NxcffXVV053FTgjQmcdU3r1aIMGDWQYhu/9qFGjNGbMGF/w3LZtm/7whz9o2LBhXAF5jkrvEHDDDTdIkkzT9H0pl17JXhp2XnzxRU2bNk3FxcXOdLYOKV23mzdv7ht2ww03aO3atRo4cKDCw8PVoUMHhYSEKC8vT8HBwTIMw6nu1gmlAbK0jsHBwdqxY4ck6f7779f+/fs1ZswY7d69W/fdd58ksafTD0rX9fDwcD311FN68skndccddyg8PNz3mdxwww1yu9369ttvnewqUCkOr9cBe/fu1bfffqsBAwb4TuIv3dCf+n706NEyDEOvv/66brnlFh05ckSrVq3iCsgaOLXmQUFBZWpuGIZM05RhGGrSpIlCQkJkGIamT5/uO/RbuicU1VPZuu7xeBQaGqouXbpIKgn/pmmqUaNGiomJkdfrlWEYBM9qOrXmpXsuS2uekJCgqKgoDR06VDt27NCqVat00UUXacGCBVq3bp2ys7MVERHh8BLUTqev66WnNLRs2VKjR49W48aNJZWEeo/Ho8LCQkVHR3MaCc5rfPPVchkZGfrNb36jCy64QEePHtXw4cPLfTGc+n7UqFFaunSpfvrpJ61du9Z3WBJVV5Wal2rYsKGaN2+umTNn6k9/+pM+++wzXX755Q71vHY7W91Pv02P1+vVzJkztX79er3//vvscauBs9U8NDRUhw4d0t69e/Xuu+/q0ksvlSTdddddGjt2LLesqqGK6n5q8AwNDS0zfUBAgObNm6f//ve/6t69u0O9Bs6Oq9drsUOHDunuu++WYRgKDQ3VDz/8oNGjR+uWW26RpHIhqLi4WOPHj9eSJUv097//ncBZA9Wt+bx58/T444+rcePGWr16ta688kqHel67Vbfun3/+uVavXq333ntPK1asYO9PDZyt5kVFRQoKClJhYaGys7PVrl07SfLt5UfNVHdd//TTT7Vq1Sr97W9/0/vvv88ftTivsaezFjtx4oSaNm2q22+/Xa1atdJLL72kN954Q5J0yy23lNv7FhgYqG7dumn06NEEzhqqSs1P/dJt3ry5oqOjtWzZMu4acA6qW/dDhw7J5XJpzZo11L2GzlbzoKAgFRcXq3Hjxr7AKYnAeY6qu66XnjP+4Ycf6rLLLnOy68BZsaezlsvKylKrVq0kSTt27NDcuXP1/fffa9SoUbr11lsllezh5BxC/6lKzUv3AknivDY/qUrdS29VJZXcr7b0vDfUDNsXZ1R3XT969KiaNGniWH+BquIkp1qudMPk8XjUsWNHPfTQQ2rbtq2WLFmit956S5L0yCOP6LXXXnOym3VKVWo+fvx4LVq0SJIInH5SlbpPmDBB//u//ytJBE4/YPvijOqu6wRO1Bbs6ayDvvvuO7344ovat2+fDMPQV199pXXr1ukXv/iF012rs6i5M6i7/ai5M6g76gJCZy11tpP109LSdPPNN6uwsFCrV69WfHy8jb2rm6i5M6i7/ai5M6g76joOr9cSpTcHzs3NlVT5yfput9t3W6QPPviADVMNUXNnUHf7UXNnUHfUN4TO81xGRoZWr14tl8ul9957T/fcc48OHjxY6c/89NNP2rx5s95//3117NjRpp7WHdTcGdTdftTcGdQd9ZaJ85bH4zGfe+45MywszHzsscfMsLAwc+nSpZX+jNfrNU3TNE+cOGFHF+scau4M6m4/au4M6o76jHM6a4Fhw4bps88+0x133KEXXnihwiffnM7kBs3nhJo7g7rbj5o7g7qjPuLw+nmq9G+BoqIihYeHq3v37nr11Vf17rvv+m4OfPrfC6e+Z8NUfdTcGdTdftTcGdQd9Z5Ne1RRDaWHUv75z3+an3zyifnTTz+ZpmmaTzzxhBkeHm6+8847ZabLzMx0pqN1CDV3BnW3HzV3BnUHTJM9necZ8+Thk/fff1/Dhg3T1q1btX//fkklN2EeN26c7rnnHi1fvlyGYWj27NmaOHGijh496nDPay9q7gzqbj9q7gzqDpzkaORFhb766iszKirKfO2118xjx46VGZefn28+88wzZlhYmHndddeZrVq1MlNTUx3qad1BzZ1B3e1HzZ1B3QEuJDqvmCf/Gp4+fbq2b9+uv/zlL75xHo9HLpfL9/6TTz7R7t27dd1116ldu3ZOdLdOoObOoO72o+bOoO7AzwKd7gB+3iiVniR+4MAB302DS69oLN0wffvtt4qLi1O/fv24kvEcUHNnUHf7UXNnUHegPM7pdNCxY8d04sQJ/fDDDzpx4oRv+EUXXaSvv/5aubm5visapZKbA69YsUJff/21JK5krAlq7gzqbj9q7gzqDlTCzmP5+Nl3331n3nbbbWa3bt3MCy+80OzZs6f5+OOPm6ZpmgUFBebVV19tduvWzczOzja9Xq9ZVFRkPvXUU2anTp3Mffv2Odz72omaO4O624+aO4O6A5XjnE4HbN++XTfccINuuukmXXHFFQoLC9PSpUu1bt06XXPNNXr99deVnp6uhx56SBkZGbrssssUFBSknTt3asWKFbriiiucXoRah5o7g7rbj5o7g7oDZ0fotNmhQ4c0ZMgQ9enTR0888USZ4StXrtQTTzyhAQMGaOHChTJNU4sWLdKhQ4fUtGlTDRgwgJPLa4CaO4O624+aO4O6A1Xk2D7Weurbb781u3XrZm7fvt0sLi42TbPkWbymaZo//vij+cILL5itWrUyV61a5WQ36xRq7gzqbj9q7gzqDlQNFxLZbNu2bdqzZ486duwol8sl0zR9z9sNDQ3VsGHDFBQUpD179pT5OZMd0jVGzZ1B3e1HzZ1B3YGqIXTarPQwyvvvvy+p/JWK0dHRatu2rbKyssoM54rGmqPmzqDu9qPmzqDuQNUQOm0WFRWlCy64QMuWLdPevXt9w71eryTpxx9/VMOGDdW5c2enuljnUHNnUHf7UXNnUHegagidNmvdurVmz56tTz/9VNOnT9fOnTslyXcoZt68eTpw4IC6devmZDfrFGruDOpuP2ruDOoOVA1XrzvA4/FoyZIlmjhxotq1a6euXbsqIiJCmZmZWrdunf72t79x+ww/o+bOoO72o+bOoO7A2RE6HbRlyxb98Y9/VHp6ukJDQxUfH6+77rpLl156qdNdq7OouTOou/2ouTOoO3BmhE6HeTweBQQEyDAM3/N4YS1q7gzqbj9q7gzqDlSM3wSHlW6YJK5ktAs1dwZ1tx81dwZ1ByrGnk4AAABYjj2dAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAlvt/FAH+qSUsSNkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mco = [None,None,'yellow','blue',None]\n", + "mpf.plot(df,volume=True,style='yahoo',type='candle',marketcolor_overrides=mco)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "#### We can change only the \"face\" (body) of the candle, with the `mco_faceonly` kwarg:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHaCAYAAABCYPJ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPKklEQVR4nO3de1xUdf7H8ffMoHgLBFNQE5AkRSlzXXA1TZNot/LCeikt0+xnl22zsryl3S3TUss2dU23i7TqlmmbWlaW6WZtqbu0aOXCamorgiJBiDowc35/ELMiiIBzzhF4PR8PH+Occzjf7/nM4cybc3UYhmEIAAAAMJHT7g4AAACg7iN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkCqjKR1+v1/d/hcJjWGQAAgPPFqbcydzrZT3euqhQ6Jemnn34ysx8AAADnpQsuuMDuLtQJVQ6dktSoUaNyezo9Ho/S09MVExMjl8vl187hzKi79ai5Pai7Pai79ai5PSqru2EYOnHihE09q3uqFDpLg6bD4SgXOh0OhwzDqHAczEPdrUfN7UHd7UHdrUfN7VGVuvN5+AcnKAAAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0FlL5eXl6YsvvlBeXp7dXQFMxboOAHUDobOWysvL05dffskXMeo81nUAqBsInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAPCDrVu3asSIEYqNjVVISIjWr19fZvysWbOUkJCgtm3bKioqSsnJydq+fXuZaUaOHKm4uDiFh4erU6dOuvPOO5WZmVlpuydOnNDEiRMVHR2tiy66SKNHj1Z2drbfl+9cEToBAAD8oLCwUHFxcXruuecqHH/xxRfr2Wef1datW/X+++8rIiJCQ4YM0ZEjR3zT9OnTR6+++qq++uorvf7669q7d6/GjBlTabvTpk3Thg0b9Nprr2ndunU6dOiQbrnlFr8umz8EVGdij8cjh8NRbtipr7CG1+v1vVJ7a7Cu24N13R6s79aj5vaorO6GYUiS8vPzy+SfwMBABQYGlps+KSlJSUlJZ2xr+PDhZd4/9dRTSklJ0a5du9S3b19J0t133+0bHxERofvvv1+jRo1SUVGRGjRoUG6eeXl5euONN7RkyRJdeeWVkqSXXnpJPXr00LZt2xQfH3/G/litWqEzPT3d9wGcLiMjwy8dQtWU7jY/cOCATp48aXNv6hfWdWuxrtuL9d161NweFdXd4XAoMjJScXFxKigo8A2fMmWKpk6dek7tud1uvf766woKClJcXFyF0+Tm5mrVqlVKSEioMHBK0tdff62ioiL169fPN+ySSy7RRRddVLtDZ0xMTIV7OjMyMtShQwe5XC6/dg5nVvoXVrt27RQVFWVvZ+oJ1nV7sK7bg/XdetTcHpXV3TAMud1u7dy5s9yezprasGGDxo0bp8LCQoWHh2vNmjVq0aJFmWkee+wxLV26VIWFhYqPj9fKlSvPOL+srCw1bNhQwcHBZYa3atVKWVlZNe6nGaoVOl0uV7nQeeo4fkms43Q6fa/U3Vqs69ZiXbcX67v1qLk9Kqp76dHdoKCgM+af6urTp4+2bNminJwcLVu2TGPHjtXGjRvVsmVL3zT33nuvbrnlFh04cECzZ8/WXXfdpb/85S9+64NduJAIAADAIk2bNlV0dLTi4+P1hz/8QQEBAUpJSSkzTYsWLdShQwddddVV+tOf/qSPPvpI27Ztq3B+YWFhcrvdysvLKzM8OztbYWFhpi1HTRA6AQAAbOL1euV2uysdL+mM03Tt2lUNGjTQ5s2bfcPS09P1ww8/nFfnc0rVPLwOAACAihUUFGjv3r2+9/v27VNaWpqaN2+u0NBQzZ07V9dee63CwsJ09OhRLV26VJmZmRo8eLAkafv27frHP/6hnj17Kjg4WN9//72efvpptW/f3hcgDx48qOTkZC1atEjdu3dXcHCwRo0apenTpyskJEQXXHCBJk+erPj4eEInAABAXZSamqqBAwf63k+fPl1SyQ3f582bp/T0dK1cuVI5OTkKDQ1Vt27d9N577yk2NlaS1LhxY61bt06zZs1SYWGhwsLClJiYqIkTJ/ouXiouLlZ6erqOHz/ua2fmzJlyOp0aPXq03G63+vfvrzlz5li45FVD6AQAAPCD3r17Kzc394zjTz9383RdunTRu+++W+k0ERER5dpo1KiR5syZc14GzVNxTicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROoEqysvL0xdffKG8vDy7uwKYjvUdgL8ROoEqysvL05dffsmXMOoF1ncA/kboBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAA/GDr1q0aMWKEYmNjFRISovXr15cZP2vWLCUkJKht27aKiopScnKytm/f7hu/f/9+jR8/Xl27dlXr1q3VrVs3PfPMM3K73ZW2O2DAAIWEhJT5N2HCBFOW8VwE2N0BAACAuqCwsFBxcXEaNWqUbrnllnLjL774Yj377LOKiorS8ePHtWjRIg0ZMkT/+Mc/dOGFF+rf//63vF6vnn/+eUVHR+ubb77R/fffr8LCQs2YMaPStseMGaOHHnrI975x48Z+X75zRegEAADwg6SkJCUlJZ1x/PDhw8u8f+qpp5SSkqJdu3apb9++uvrqq3X11Vf7xkdFRSkjI0OvvPLKWUNn48aNFRYWdm4LYLJqhU6PxyOHw1Fu2KmvsIbX6/W9UntrUHN7UHd7UHfr8X1qj8rqbhiGJCk/P79M/gkMDFRgYOA5tet2u/X6668rKChIcXFxZ5wuPz9fISEhZ53fW2+9pTfffFOtWrXSb37zG02aNElNmjQ5pz76W7VCZ3p6uu8DOF1GRoZfOoSqyc7OliQdOHBAJ0+etLk39QM1twd1twd1tw/fp/aoqO4Oh0ORkZGKi4tTQUGBb/iUKVM0derUGrWzYcMGjRs3ToWFhQoPD9eaNWvUokWLCqfds2ePXn755bPu5Rw2bJjatWun8PBw7dq1S0888YQyMjKUkpJSoz6apVqhMyYmpsI9nRkZGerQoYNcLpdfO4czK/0Lq127doqKirK3M/UENbcHdbcHdbce36f2qKzuhmHI7XZr586d5fZ01lSfPn20ZcsW5eTkaNmyZRo7dqw2btyoli1blpnu4MGDGjZsmJKTkzVmzJhK53nrrbf6/t+lSxeFh4dr8ODB2rt3r9q3b1/jvvpbtUKny+UqFzpPHccviXWcTqfvlbpbg5rbg7rbg7rbh+9Te1RU99Kju0FBQWfMP9XVtGlTRUdHKzo6WvHx8erevbtSUlL0wAMP+KbJzMzUoEGDlJCQoBdeeKHabXTv3l1SyZ7S8yl0csskAAAAm3i93jK3RDp48KAGDhyorl27asGCBb4/AKsjLS1Nks67C4u4eh0AAMAPCgoKtHfvXt/7ffv2KS0tTc2bN1doaKjmzp2ra6+9VmFhYTp69KiWLl2qzMxMDR48WNL/Ame7du00Y8YMHTlyxDev0gB58OBBJScna9GiRerevbv27t2rVatWKSkpSaGhodq5c6emT5+uXr16VXqBkh0InQAAAH6QmpqqgQMH+t5Pnz5dkjRy5EjNmzdP6enpWrlypXJychQaGqpu3brpvffeU2xsrCTp008/1Z49e7Rnzx516dKlzLxzc3MlScXFxUpPT9fx48clSQ0aNNCnn36qRYsWqbCwUG3bttXAgQM1ceJEKxa5WgidAAAAftC7d29fOKzI2a4mv+mmm3TTTTdVOk1ERESZNi666KJyTz46X3FOJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgugC7O1AXpB/LUkHxCUvbzDp2SJK0+9gh/Zhn7d8OzQIaKaZpmKVtAvWVHdsXiW0MAP8jdJ6j9GNZ6rL5EcvbbXxC6thR+su/X9Xx/ZY3r119Z/ClAJjMru2LxDYGgP8ROs9R6R6I5gGNFeBwWdau0UD6vkuxmrgC1NSyVqViw6Mfi4/bsucFqG9825dXblfAoTaWtm0Y0vfeYjVxBqipw7p2i8MP6sfblrCNAeogQqefBDhcauC0MHRKcnoNuZwuWfh9IHmtbAyAJAUcaqMGByItbdMwJKenWC5XgByWbmQA1FVcSAQAAADTEToBAABgOkInAAAATEfoBAAA8IOtW7dqxIgRio2NVUhIiNavX19m/KxZs5SQkKC2bdsqKipKycnJ2r59u2/8/v37NX78eHXt2lWtW7dWt27d9Mwzz8jtdlfa7okTJzRx4kRFR0froosu0ujRo5WdnW3KMp4LQicAAIAfFBYWKi4uTs8991yF4y+++GI9++yz2rp1q95//31FRERoyJAhOnLkiCTp3//+t7xer55//nl98cUXevrpp/Xqq69qxowZlbY7bdo0bdiwQa+99prWrVunQ4cO6ZZbbqnRMrjdbqWnp6u4uLhGP18Zrl4HAADwg6SkJCUlJZ1x/PDhw8u8f+qpp5SSkqJdu3apb9++uvrqq3X11Vf7xkdFRSkjI0OvvPLKGYNnXl6e3njjDS1ZskRXXnmlJOmll15Sjx49tG3bNsXHx1ep74WFhZoyZYpWrFghSdq+fbuioqI0efJktW7dWhMmTKjSfCpTrdDp8XjkOO3eGR6Pp8xrfePxltxDyPj5n2UMw/dqWHg/k9Jl9Hi99e4z9/78WXvr4bKXchw4IBUWWtqmNzOz5HXPHnmPH7e0bTVpIqNdO2vbPIVv+2L871feOobv1TAs3Mb83Gx93MbU9+9Tu1RWd+PnFTI/P79M/gkMDFRgYOA5tet2u/X6668rKChIcXFxZ5wuPz9fISEhZxz/9ddfq6ioSP369fMNu+SSS3TRRRdVK3Q++eST2rlzp9auXVsmHPfr10+zZs2yPnSmp6f7PoDTZWRknHNnaqN9J0vOmfB4iuX0Wv6tYPnGyWOUtLfv+31qEmhxALBZ6fkxBw4c0MmTJ23ujfUaHspSp6kPWd5uWECABl3YQmGPPKaGJhzuOZvvZj0jd7g9T8bxbV+8xXJ6rF92yYZtjLdkOevjNqZUff0+tVtFdXc4HIqMjFRcXJwKCgp8w6dMmaKpU6fWqJ0NGzZo3LhxKiwsVHh4uNasWaMWLVpUOO2ePXv08ssvV3p4PSsrSw0bNlRwcHCZ4a1atVJWVlaV+7V+/Xq98sorio+PLxOwO3XqpO+//77K86lMtUJnTExMhXs6MzIy1KFDB7lc1t0c/XxRmN9YypRcrgC5LLw5vAxDHo+npOYW7un0eh2SV4qMilTHoAjL2j0flP5V265dO0VFRdnbGRv41rKncqX21gWgYEMa4P2h5PfLypuU7w2QHg5RdHiYjI4dLWz4f3zbF2eAXC6rz4Y6ZRtjYeG9zpLlrI/bmPr+fWqXyupuGIbcbrd27txZbk9nTfXp00dbtmxRTk6Oli1bprFjx2rjxo1q2bJlmekOHjyoYcOGKTk5WWPGjKlxe1WVk5NTrg+SdOzYMb+1Ua2tmMvlKhc6Tx1XH39JXM6Sa7Ecsvb70HdI3eGwtN3StlxOZ737vJ0/f9bOerjskqSfl1/ti6VY60KnQ4ZU7JEjwCtrf8tKOJ1OyabP27d9cVj6t6UknXJI3WFp26Vt1cdtTKn6+n1qt4rqXnp0Nygo6Iz5p7qaNm2q6OhoRUdHKz4+Xt27d1dKSooeeOAB3zSZmZkaNGiQEhIS9MILL1Q6v7CwMLndbuXl5ZXZ25mdna2wsKofpbn88sv14Ycf6o477pAk3/KmpKQoISGhGkt4ZlxIBAAAYBOv11vmlkgHDx7UoEGD1LVrVy1YsMC3w+NMunbtqgYNGmjz5s0aNGiQpJLTIX/44Ycqn88pSY888ohuuOEGfffddyouLtYf//hH7d69W1999ZXWrVtXs4U7DbdMAgAA8IOCggKlpaUpLS1NkrRv3z6lpaXpwIEDOnbsmJ588klt27ZN+/fvV2pqqu655x5lZmZq8ODBkkoC58CBA3XRRRdpxowZOnLkiLKyssqcm3nw4EElJCRox44dkqTg4GCNGjVK06dP19/+9jelpqbq97//veLj46sVOnv27KktW7bI4/Goc+fO2rRpky688EJ98MEHuvzyy/1SH/Z0AgAA+EFqaqoGDhzoez99+nRJ0siRIzVv3jylp6dr5cqVysnJUWhoqLp166b33ntPsbGxkqRPP/1Ue/bs0Z49e9SlS5cy887NzZUkFRcXKz09XcdPuZvHzJkz5XQ6NXr0aLndbvXv319z5sypdv/bt2+v+fPnV/vnqorQCQAA4Ae9e/f2hcOKpKSkVPrzN910k2666aZKp4mIiCjXRqNGjTRnzpwaBc1SH374oVwulxITE8sM//jjj+X1eiu9/2hVcXgdAACgnnviiSfOeK/SJ554wi9tEDoBAADquT179qhTp07lhl9yySXau3evX9rg8Dpqp/37LX8yjuPQoZLXffskO24O36SJFFG/7lsIALBGUFCQvv/+e0Wc9j2zZ88eNWnSxC9tEDpR++zfr4BhN1je7IU/PxnnwmkPK8CGJ+NIUvGqNwmeAAC/u/baa/XQQw/pjTfeUPv27SWVBM6HH35Y1157rV/aIHSi9vl5D6fRrJkUYN0qHCxD1xccU0CzpjKsvkl5cbEcBQWW790FANQPTzzxhIYPH66EhAS1adNGUsntmXr27FnpYzirg9CJ2isgwNLQKRn/a9eGJ+MAAGCW4OBgffDBB9q0aZN27typRo0aqUuXLrriiiv81gahEwAAAHI4HOrfv7/69+9vyvwJnQAAAPXQ4sWLNWbMGDVq1EiLFy+udNo777zznNsjdAIAANRDCxcu1PDhw9WoUSMtXLjwjNM5HA5CJwAAAGrm66+/rvD/ZuHm8AAAAPVYUVGRunXrpt27d5vaDqETAACgHmvQoIFOWvDQEw6vA6ievTZsNjxOyeWytk07lhMAbPJ///d/mj9/vl588UUFmHQ7QraqAKqm9DFoD4dY2uyPAQH69MIW6nckR83teBKUnx7/BpxNXl6evvjiC4WHhys0NNTu7qCe+ec//6ktW7Zo06ZN6ty5c7lHX6akpJxzG4ROAFUTEVHyGE6Ln4p05NAhvbt8ueIemKBm4eGWts3z7mGlvLw8ffnll+rfvz+hE5YLDg7WwIEDTW2D0Amg6mwIYEZgYMlrZKT08/OAAQD+4fV69eKLLyojI0NFRUXq06ePpk6dqsaNG/u9LS4kAgAAqKfmzp2rGTNmqFmzZmrdurVefvllTZo0yZS2CJ0AAAD11MqVKzVnzhy9/fbb+vOf/6wVK1borbfektfr9XtbhE4AAIB66ocfflBSUpLvfb9+/eRwOJSZmen3tgidAAAA9VRxcbEaNWpUZliDBg1UbMLdQriQCAAAoJ4yDEN33323An++aFOSTpw4oQceeKDMbZO4ZRIAAABqbOTIkeWG3XDDDaa0RegEAACopxYsWGBZW5zTCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0/FEIgAATrd/v1RYaGmTjkOHSl737ZNOnrS0bTVpIkVEWNsm6h1CJwAAp9q/XwHDzHn2dGUuDAjQoAtb6MJpDyuguNjy9otXvUnwhKkInQAAnOrnPZxGs2ZSgHVfk8EydH3BMQU0aypDDsvaVXGxHAUFlu/ZRf1D6AQAoCIBAZaGTsn4X7tWhk7AIlxIBAAAANMROgEAAGA6QicAAABMR+gEAADwg61bt2rEiBGKjY1VSEiI1q9fX2b8rFmzlJCQoLZt2yoqKkrJycnavn17mWnmzJmja665Rm3atFFkZGSV2r377rsVEhJS5t+wYcP8tlz+QugEAADwg8LCQsXFxem5556rcPzFF1+sZ599Vlu3btX777+viIgIDRkyREeOHPFNU1RUpOTkZN12223VajsxMVHfffed79/SpUvPaVnMwNXrAAAAfpCUlKSkpKQzjh8+fHiZ90899ZRSUlK0a9cu9e3bV5L00EMPSZKWL19erbYDAwMVFhZWzR5bq1qh0+PxyOFwlBt26mt94/F6JZXc6MKwsmHD8L0aDuturVG6jB6v17bP3PFzza2u+ikll8Nh6aet0uX0er0y6tnvmvfnz9tr4zpnF9/2xfjf+mcdw/dqGBZuY35ulm2MlR94/d2+SJXnGOPnDyU/P79M/gkMDFRgYOA5tet2u/X6668rKChIcXFx5zQvSfrss88UExOj5s2bq0+fPnr44YcVGhp6zvP1p2qFzvT0dN8HcLqMjAy/dKi22XcyW5Lk8RTL6bX8W8HyjbLHKGlv3/f71CTwuKVtl2r8/T7FSCoutmfj6PFY/6QQFXvUQCV1t6fq9jl27Jh69Oiho0eP6qTVjwa0mW/74i2W0471TjZsY7wly8k2xkL1ePtyqopyjMPhUGRkpOLi4lRQUOAbPmXKFE2dOrVG7WzYsEHjxo1TYWGhwsPDtWbNGrVo0aLG/ZZKDq0PGDBAkZGR+v777zVjxgwNHz5cH374oVwu1znN25+qFTpjYmIq3NOZkZGhDh06nFcLZpXC/MZSpuRyBcjltHD5DUMej6ek5hbu6fR6HZJXioyKVMcgex6XVrq0AQEuS2/cbBglXwYuV4CVJS8jMipSRseO9jRuE4/Ho6ZNm9bLbYxv++IMkMtl9dlQp2xjLLxRuddZspxsYyxr1qc+bl+kynOMYRhyu93auXNnuT2dNdWnTx9t2bJFOTk5WrZsmcaOHauNGzeqZcuWNZ7n0KFDff/v0qWLunTpom7duumzzz7zHbY/H1Trt8nlcpULnaeOq29fCJLkcpZci+WQtc+P8B1Sdzgsbbe0LZfTad/n7Sy9/s3aqpce7iopvdXfCCXtOZ1OqR7+nkn1cxvj2744LP3bUpJOOaTusLTt0rbYxli/Za/P2xep4m1M6dHdoKCgM+af6mratKmio6MVHR2t+Ph4de/eXSkpKXrggQf8Mn9JioqKUosWLbRnz57zKnRy9ToAAIBNvF6v3G63X+f53//+V0ePHj3vLiwidAIAAPhBQUGB0tLSlJaWJknat2+f0tLSdODAAR07dkxPPvmktm3bpv379ys1NVX33HOPMjMzNXjwYN88Dhw4oLS0NP3www/yer2++Z16TmlCQoLWrVvna/ORRx7xzXfz5s26+eabFR0drcTERGsLcBbcMgkAAMAPUlNTNXDgQN/76dOnS5JGjhypefPmKT09XStXrlROTo5CQ0PVrVs3vffee4qNjfX9zDPPPKMVK1b43l955ZWSpLVr16p3796SSi7szs/Pl1RyWsA333yjlStXKi8vT+Hh4erfv7+mTZt2zlfY+xuhEwAAwA969+6t3NzcM45PSUk56zwWLlyohQsXVjrNqW00btxYb7/9dtU7aSMOrwMAAMB0hE4AAACYjsPrflJseCTv2afzF0MlN2r3eq29ZVKxcR49raLY6ptlG5LvZtEW37/G8mUFAMC/CJ3nqFlAI0nSj8XWPseh8Qmp415pd3vpeCNLm5b0v+W2RZMmkiTHKVfyWeHHgAB9emEL9TuSo+Z2hcCflx0AgNqG0HmOYpqGaVffGSooPmFpu1kHDmr1hlf15K/HKqxdG0vbbhbQSDFNbbz3V0SEile9KRUWWtrskUOH9O7y5Yp7YIKahYdb2rakksAZYc8TWgAAOFeETj+wI4DtPVpyLL9j03C1D460vH3b2RC+jJ9vPWFERkrt21vePgAAtRkXEgEAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaGzlgoODlaPHj0UHBxsd1fqDWoOAEDNETprqeDgYPXs2ZMAZCFqDgBAzRE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAgB9s3bpVI0aMUGxsrEJCQrR+/foy42fNmqWEhAS1bdtWUVFRSk5O1vbt28tMM2fOHF1zzTVq06aNIiMjq9SuYRiaOXOmOnXqpNatWys5OVn/+c9//LZc/kLoBAAA8IPCwkLFxcXpueeeq3D8xRdfrGeffVZbt27V+++/r4iICA0ZMkRHjhzxTVNUVKTk5GTddtttVW53/vz5Wrx4sebNm6ePPvpITZo00dChQ3XixIlzXiZ/CqjOxB6PRw6Ho9ywU19hDepuPWpuj/pcd4/XK0kyjJJ/1jJ8r4bhqHRKv7b6c7Mer9e2z9zxc91VXKz/1cF8hiHJ45FhSA7rSi4Vl9TZ6/XKqI+/Z5VsY4yfV8j8/Pwy+ScwMFCBgYHlpk9KSlJSUtIZ2xo+fHiZ90899ZRSUlK0a9cu9e3bV5L00EMPSZKWL19epf4bhqE//vGPmjhxoq677jpJ0qJFi9SxY0etX79eQ4cOrdJ8rFCt0Jmenu77AE6XkZHhlw6heqi79ai5Pepj3fedzJYkebzFcnqKbemD1cHP4y1Zzn3f71OTwOOWtl2q4aEsdZLkKCiwtN28gAB9emEL9TuSo+bF1n/eew5lyW15q+ePirYxDodDkZGRiouLU8Ep68OUKVM0derUc2rP7Xbr9ddfV1BQkOLi4mo8n3379ikrK0v9+vXzDQsODlb37t21bdu22hs6Y2JiKtzTmZGRoQ4dOsjlcvm1czgz6m49am6P+lz3wvzGUqbkcgbI5arW5toPDHk8np9rbt1uN6+zZDkjoyLVMSjCsnbL6NhR7jdXSoWFljablZmpd//yF8Xed6+atG5tadtq0kTt27Wzts3zRGXbGMMw5Ha7tXPnznJ7Omtqw4YNGjdunAoLCxUeHq41a9aoRYsWNZ5fVlaWJKlly5Zlhrdq1UrZ2dk1nq8ZqrUVc7lc5ULnqePq2xfC+YC6W4+a26M+1t3lLDnt3uGw+HCrdMohdYelbZe25XI67f28o6Isb9LZuHHJa3S0nO3bW95+fVfRNqb06G5QUNAZ80919enTR1u2bFFOTo6WLVumsWPHauPGjeVCY13EhUQAAAAWadq0qaKjoxUfH68//OEPCggIUEpKSo3nFxYWJkk6fPhwmeHZ2dlq1arVOfXV3widAAAANvF6vXK7a342bWRkpMLCwrR582bfsPz8fO3YsUPx8fH+6KLfWH2SEAAAQJ1UUFCgvXv3+t7v27dPaWlpat68uUJDQzV37lxde+21CgsL09GjR7V06VJlZmZq8ODBvp85cOCAfvzxR/3www/yer1KS0uTJLVv317NmjWTJCUkJOjRRx/VgAED5HA4dNddd2nOnDmKjo5WZGSkZs6cqfDwcF1//fXWFuAsCJ0AAAB+kJqaqoEDB/reT58+XZI0cuRIzZs3T+np6Vq5cqVycnIUGhqqbt266b333lNsbKzvZ5555hmtWLHC9/7KK6+UJK1du1a9e/eWVHI3ofz8fN809913nwoLCzVhwgTl5eXpV7/6lVatWqVGjRqZurzVRegEAADwg969eys3N/eM46ty7ubChQu1cOHCSqc5vQ2Hw6Fp06Zp2rRpVeuoTTinEwAAAKYjdAIAAMB0HF4HgPNccfhBy9s0jJKnA3mdAZbep9OOZQVgDUInAJynmgWUXATw421LLG+78Qmp415pd3vpuA3XIpQuO4C6g9AJAOepmKZh2tV3hgqKT1jedtaBg1q94VU9+euxCmvXxtK2mwU0UkzTMEvbBGA+QicAnMfsCl97j3olSR2bhqt9cKQtfQBQt3AhEQAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAOA8EBwcrB49eig4ONjurgCmIHQCAHAeCA4OVs+ePQmdqLMInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAIByeDoOAH8jdAIAyuHpOAD8jdAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAB+sHXrVo0YMUKxsbEKCQnR+vXry4yfNWuWEhIS1LZtW0VFRSk5OVnbt28vM01ubq5uv/12RUREKDIyUuPHj1dBQUGl7Q4YMEAhISFl/k2YMMHvy3euCJ0AAAB+UFhYqLi4OD333HMVjr/44ov17LPPauvWrXr//fcVERGhIUOG6MiRI75pbr/9dn333XdavXq1Vq5cqc8//1z333//WdseM2aMvvvuO9+/J554wl+L5TcBdncAAACgLkhKSlJSUtIZxw8fPrzM+6eeekopKSnatWuX+vbtq927d+vjjz/WJ598om7dukmSZs+erRtuuEEzZsxQ69atzzjvxo0bKywszD8LYpJqhU6PxyOHw1Fu2KmvsAZ1tx41twd1twd1tx41t0dldTcMQ5KUn59fJv8EBgYqMDDwnNp1u916/fXXFRQUpLi4OEnStm3bFBwc7AucktSvXz85nU7t2LFDAwYMOOP83nrrLb355ptq1aqVfvOb32jSpElq0qTJOfXR36oVOtPT030fwOkyMjL80iFUD3W3HjW3B3W3B3W3HjW3R0V1dzgcioyMVFxcXJnzKqdMmaKpU6fWqJ0NGzZo3LhxKiwsVHh4uNasWaMWLVpIkrKystSyZcsy0wcEBCgkJERZWVlnnOewYcPUrl07hYeHa9euXXriiSeUkZGhlJSUGvXRLNUKnTExMRXu6czIyFCHDh3kcrn82jmcGXW3HjW3B3W3B3W3HjW3R2V1NwxDbrdbO3fuLLens6b69OmjLVu2KCcnR8uWLdPYsWO1cePGcmGzOm699Vbf/7t06aLw8HANHjxYe/fuVfv27Ws8X3+rUug8dZfz6aHT4XDI6XTK4XCUGwfzUHfrUXN7UHd7UHfrUXN7VFb30qO7TZs2VUCAfy6Dadq0qaKjoxUdHa34+Hh1795dKSkpeuCBBxQWFqbDhw+Xmb64uFi5ubnVOl+ze/fukqQ9e/bUvtBZyu12Vzg8IiJCRUVFKioq8kunUDXU3XrU3B7U3R7U3XrU3B521t3r9fryVXx8vPLy8pSamqrLL79ckrRlyxZ5vV5fkKyKtLQ0STrvLiyqVuhs1KhRhYfX09PTFRMTw+EAC1F361Fze1B3e1B361Fze1RWd8MwdOLEiSrPq6CgQHv37vW937dvn9LS0tS8eXOFhoZq7ty5uvbaaxUWFqajR49q6dKlyszM1ODBgyVJHTt2VGJiou677z7NmzdPRUVFmjx5soYMGeK7cv3gwYNKTk7WokWL1L17d+3du1erVq1SUlKSQkNDtXPnTk2fPl29evXyXaB0vqhS6Cz9ECra9exwOGQYBocDLEbdrUfN7UHd7UHdrUfN7VGVulf1j4DU1FQNHDjQ93769OmSpJEjR2revHlKT0/XypUrlZOTo9DQUHXr1k3vvfeeYmNjfT+zZMkSTZo0ScnJyXI4HBo0aJBmzZrlG19cXKz09HQdP35cktSgQQN9+umnWrRokQoLC9W2bVsNHDhQEydOrHYtzMZ9OgEAAPygd+/eys3NPeP4qlxNHhISoqVLl55xfERERJk2LrroonJPPjpf8UQiAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjicSAYDJbtn+snLcx+zuRjUZ8noNOb/cIKn2PJKxRcOmSvnlHXZ3A0AFCJ0AYLIc9zE1Dgy0uxv1Qs7J2hbugfqDw+sAAAAwHaETAAAApuPwOgCgznHedbd09Kjd3agWp6TOhldORy3cHxQaKu8fF9rdC5znCJ0AgLrn6FE52raxuxfV5rK7AzVk/Peg3V1ALVAL/5wCAABAbcOeTtimth3+4tAXAAA1R+iEfWrh4S8OfQEAUDO1cJcNAAAAahtCJwAAAExH6AQAAIDpCJ0AAAB+MG/ePPXv31/t2rVTTEyMbr75ZqWnp5eZ5sSJE5o4caKio6N10UUXafTo0crOzi4zzYEDB3TDDTeoTZs2iomJ0SOPPKLi4uIy03z22Wfq27evwsLC9Itf/ELLly8v158lS5bosssuU3h4uK6++mrt2LHD/wtdDYROAAAAP/j88881btw4ffjhh1q9erWKioo0ZMgQHTt2zDfNtGnTtGHDBr322mtat26dDh06pFtuucU33uPx6MYbb1RRUZE++OADLVy4UCtWrNDMmTN90+zbt0833nij+vTpoy1btuiuu+7Svffeq48//tg3zerVq/Xwww9rypQp+vTTTxUXF6ehQ4fq8OHD1hSjAly9DtQjt2x/WTnuY2ef8LxiyOs15PxygySH3Z2plhYNmyrll3fY3Q0AFlm1alWZ9wsXLlRMTIxSU1N1xRVXKC8vT2+88YaWLFmiK6+8UpL00ksvqUePHtq2bZvi4+P1ySefaPfu3XrnnXfUqlUrXXrppZo2bZoef/xxTZ06VQ0bNtQrr7yiiIgIPfXUU5Kkjh076u9//7sWLVqkxMREX9ujR4/WzTffLKlkL+yHH36oN954QxMmTLCwKv9TrdDp8XjkcDjKDTv1FdaoC3VnN7u1PB6PctwFahzYyO6u1Bs5Jwt+/h017O5KPWLI4/GwfbFBbf0+quz71DBKfnfz8/PL5J/AwEAFBgaedd75+fmSpJCQEEnS119/raKiIvXr1883zSWXXKKLLrrIFzq3bdumzp07q1WrVr5pEhMT9eCDD+q7777TZZddpm3btpWZR+k0Dz30kCTJ7XYrNTW1TLh0Op3q27evtm3bdtZ+m6VaoTM9Pd33AZwuIyPDLx1C9dTmunc2vLX2vpe1jdfwavfu3fJ6CT9W8noN6m6x0pqzfbFW6TamNqvo+9ThcCgyMlJxcXEqKCjwDZ8yZYqmTp1a6fy8Xq8eeugh9ejRQ507d5YkZWVlqWHDhgoODi4zbatWrZSVlSVJys7OLhM4Jally5a+ny+dpnTYqdP89NNPOn78uH788Ud5PJ4Kpzn9HFMrVSt0xsTEVLinMyMjQx06dJDLxa+4VepC3Wvlk31qKafDqY4dO/58iBpWcTod1N1ivpqzfbFU6TamNqrs+9QwDLndbu3cubPcns6zmThxor799lu9//77fu9zbVWt0OlyucqFzlPH1dbwU5tRd1RVyXpSu86JrP0c1N1yDraJNqntda/o+7T06G5QUNAZ809FJk2apA8++EDvvfee2rZt6xseFhYmt9utvLy8Mns7s7OzFRYWJqlkr+fpV5mXXvxz6jSnXxB0+PBhXXDBBWrcuLFvWSqa5vS9qFbiQiJxcYXVuLgCAFAXGYahyZMna/369Vq7dq0iIyPLjO/atasaNGigzZs3a9CgQZJKTl384YcfFB8fL0mKj4/X3LlzdfjwYd/h8U2bNumCCy7w7U2Oj4/XRx99VGbemzZtUkJCgiSpYcOGuvzyy7V582Zdf/31kkoO92/ZskXjxo0zrwBnQeiUlOM+psZV2FUO/8g5WdsCPgAAZzdx4kStWrVKy5cvV7NmzXznYAYFBalx48YKDg7WqFGjNH36dIWEhOiCCy7Q5MmTFR8f7wud/fv3V8eOHXXXXXfp8ccfV3Z2tp5++mmNGzfOd1j/tttu09KlS/Xoo49q1KhR2rJli9555x395S9/8fXl7rvv1t13361u3brpF7/4hRYtWqRjx475rma3A6ETAADAD1555RVJ0oABA8oMX7BggW666SZJ0syZM+V0OjV69Gi53W71799fc+bM8U3rcrm0cuVKPfjgg/r1r3+tJk2aaOTIkZo2bZpvmsjISP3lL3/RtGnTtHjxYrVp00Yvvvii73ZJkjRkyBAdOXJEM2fOVHZ2ti699FKtWrWKw+sAAAC1XW5u7lmnadSokebMmVMmaJ4uIiJCb731VqXz6d27t7Zs2VLpNHfccYfuuKNmp7N9/vnneu211/T999/rtddeU5s2bbRy5UpFRkaqZ8+eNZonl/cBAADA591339WwYcPUuHFj/etf/5Lb7ZZUct/RefPm1Xi+hE4AAAD4zJkzR/PmzdP8+fPVoEED3/Bf/epX+te//lXj+RI6AQAA4JORkaFevXqVGx4UFKS8vLwaz5fQCQAAAJ9WrVppz5495Yb//e9/V1RUVI3nS+gEAACAz+jRo/XQQw9p+/btcjgcyszM1JtvvqlHHnlEt912W43ny9XrAAAA8JkwYYK8Xq+Sk5NVWFio66+/XoGBgbrnnntqfDW8ROgEAADAKRwOhyZOnKh7771Xe/bs0bFjx9SxY0c1a9bsnOZL6AQAAEA5DRs2VKdOnfw2P0InAAAAfE6cOKGXX35Zf/vb33TkyBF5vd4y4zdv3lyj+RI6AQAA4DN+/Hht2rRJgwYNUvfu3eVwOPwyX0InAAAAfD744AO9+eab+tWvfuXX+XLLJAAAAPi0adPmnC8aqgihEwAAAD4zZszQ448/rv379/t1vhxeBwAAgE+3bt108uRJdevWTU2aNFFAQNm4uHfv3hrNl9AJAAAAn3HjxikzM1OPPPKIWrVqxYVEAAAA8L+vvvpKH3zwgS699FK/zpdzOgEAAOATExOjEydO+H2+hE4AAAD4PPbYY3r44Yf12Wef6ejRo8rPzy/zr6Y4vA4AAACfYcOGSZIGDx5cZrhhGHI4HMrJyanRfAmdAAAA8Fm7dq0p8+XwOgAAgB9s3bpVI0aMUGxsrEJCQrR+/foy4++++26FhISU+Ve6V7FUbm6ubr/9dkVERCgyMlLjx49XQUFBmWl27typa6+9VuHh4erSpYvmz59fri/vvPOOEhISFB4erl69eunDDz+s8nJcccUVlf6rKfZ0AgAA+EFhYaHi4uI0atQo3XLLLRVOk5iYqAULFvjeBwYGlhl/++23KysrS6tXr1ZRUZHuuece3X///Vq6dKkkKT8/X0OHDlXfvn01b948ffPNNxo/fryCg4N16623SpK+/PJLjRs3To8++qh+/etfa9WqVRo1apQ+/fRTde7c+azLsXXr1krH1zR4EjoBAAD8ICkpSUlJSZVOExgYqLCwsArH7d69Wx9//LE++eQTdevWTZI0e/Zs3XDDDZoxY4Zat26tt956S263Wy+99JIaNmyo2NhYpaWlaeHChb7QuXjxYiUmJuree++VJE2fPl2ffvqplixZoueff/6syzFw4MByw069V6cl53R6PJ5yNwj1eDxlXmsnw+4O1DOGPB4P53ZYrOR3lHXdWgZ1txzbF7vU1hxQWY4xjJLf3fz8/DL5JzAwsNweyqr67LPPFBMTo+bNm6tPnz56+OGHFRoaKknatm2bgoODfYFTkvr16yen06kdO3ZowIAB2rZtm3r16qWGDRv6pklMTNT8+fP1448/qnnz5vrqq6/0+9//vky7/fv3L3e4/0xOf+JQcXGx/vWvf2nmzJl6+OGHa7TcUjVDZ3p6uu8DOF1GRkaNO2E3r5cvBCt5vYZ2796tzoZXLrs7U094Da92797Num6x0nWduluH7Ys9SrcxtVlFOcbhcCgyMlJxcXFlzqucMmWKpk6dWu02EhMTNWDAAEVGRur777/XjBkzNHz4cH344YdyuVzKyspSy5Yty/xMQECAQkJClJWVJUnKzs5WREREmWlKfyYrK0vNmzdXdnZ2ufm0bNlS2dnZVepncHBwuWFXXXWVGjZs6NtrWhPVCp0xMTEV7unMyMhQhw4d5HLVzl9x55cb7O5CveJ0OtSxY0c5HeyLsIrT4SypOeu6pXzrOnW3DNsXe5RuY2qjynKMYRhyu93auXNnuT2dNTF06FDf/7t06aIuXbqoW7du+uyzz9S3b9+aLYCFWrZseU47GasVOl0u1xmfv+lyuWpt6JT880xRVJWjFq8rtVdJzVnXreWg7pZj+2KX2l73inJM6dHdoKAgvz1//FRRUVFq0aKF9uzZo759+yosLEyHDx8uM01xcbFyc3N954G2atWq3DSl7882TatWrarUr507d5Z5bxiGsrKy9MILLyguLq7qC3gaLiQCAACwwX//+18dPXrUFxbj4+OVl5en1NRUXX755ZKkLVu2yOv1qnv37r5pnnrqKRUVFalBgwaSpE2bNvnOE5WkhIQEbd68Wb/73e98bW3atEnx8fFV6teVV14ph8NR7pTKX/7yl3rppZdqvLyETgAAAD8oKCgocxHOvn37lJaWpubNmyskJESzZ8/WoEGDFBYWpr179+qxxx5TdHS0EhMTJUkdO3ZUYmKi7rvvPs2bN09FRUWaPHmyhgwZotatW0sqeVrQs88+q/Hjx+u+++7Tt99+q8WLF+vpp5/2tXvnnXdqwIABeumll3TNNddo9erVSk1N1QsvvFCl5UhNTS3z3ul06sILL1SjRo3OqT6ETgAAAD9ITU0tc7uh6dOnS5JGjhypuXPn6ptvvtHKlSuVl5en8PBw9e/fX9OmTStzjuiSJUs0adIkJScny+FwaNCgQZo1a5ZvfHBwsN5++21NmjRJV111lVq0aKFJkyb5bpckST169NCSJUv09NNPa8aMGYqOjtYbb7xRpXt0Sip3oZK/EDoBAAD8oHfv3srNzT3j+Lfffvus8wgJCfHdCP5M4uLi9P7771c6TXJyspKTk8/aXqnFixdXedo777yzytOeitAJAABQzy1cuLBK0zkcDkInAAAAaubrr782vQ1uZAYAAIAKGYZxxgcDVRehEwAAAGWsXLlSvXr1UuvWrdW6dWtdccUVWrly5TnNk8PrAAAA8FmwYIFmzpypcePGqUePHpKkv//973rwwQd19OhR3X333TWaL6ETAAAAPi+//LLmzp2rESNG+IZdd911io2N1axZs2ocOjm8DgAAAJ+srCwlJCSUG56QkKCsrKwaz5fQCQAAAJ/27dtrzZo15YavWbNG0dHRNZ4vh9cBAACgb775Rp07d9a0adM0duxYffHFF75zOr/88ktt3rxZr776ao3nz55OAAAAqHfv3rr66quVk5Ojv/71rwoNDdX69eu1fv16hYaG6uOPP9aAAQNqPH/2dAIAAEDr1q3T8uXL9eijj8rr9WrgwIF6+umndcUVV/hl/uzpBAAAgHr16qWXXnpJ3377rWbPnq39+/dr0KBB+uUvf6kXXnjhnC4ikgidAAAAOEXTpk118803a/369dq2bZsGDx6spUuX6tJLL9XIkSNrPF9CJwAAACoUHR2tBx54QBMnTlSzZs304Ycf1nhenNMJAACAcrZu3ao///nPWrt2rRwOh377299q1KhRNZ4foRMAAACSpMzMTC1fvlwrVqzQnj17lJCQoFmzZik5OVlNmzY9p3kTOgEAAKBhw4Zp8+bNatGihW688UaNGjVKMTExfps/oRMAAABq0KCBXn/9df3617+Wy+Xy+/wJnQAAANCKFStMnT9XrwMAAPjB1q1bNWLECMXGxiokJETr168vM94wDM2cOVOdOnVS69atlZycrP/85z9lpsnNzdXtt9+uiIgIRUZGavz48SooKCgzzc6dO3XttdcqPDxcXbp00fz588v15Z133lFCQoLCw8PVq1evc7rq3F8InQAAAH5QWFiouLg4PffccxWOnz9/vhYvXqx58+bpo48+UpMmTTR06FCdOHHCN83tt9+u7777TqtXr9bKlSv1+eef6/777/eNz8/P19ChQ9WuXTtt2rRJTz75pGbPnq3XXnvNN82XX36pcePGadSoUdq8ebOuv/56jRo1St98841Zi14lhE4AAAA/SEpK0sMPP1zh88kNw9Af//hHTZw4Udddd53i4uK0aNEiHTp0yLdHdPfu3fr444/14osv6pe//KV69uyp2bNna/Xq1crMzJQkvfXWW3K73XrppZcUGxuroUOH6o477tDChQt9bS1evFiJiYm699571bFjR02fPl1du3bVkiVLrCnEGVTrnE6PxyOHw1Fu2KmvtZNhdwfqGUMej4e/eCxW8jvKum4tg7pbju2LXWprDqgsxxhGye9ufn5+mfwTGBiowMDAarWzb98+ZWVlqV+/fr5hwcHB6t69u7Zt26ahQ4dq27ZtCg4OVrdu3XzT9OvXT06nUzt27NCAAQO0bds29erVSw0bNvRNk5iYqPnz5+vHH39U8+bN9dVXX+n3v/99mfb79+9f7nC/1aoVOtPT030fwOkyMjL80iE7eL18IVjJ6zW0e/dudTa88v+1caiI1/Bq9+7drOsWK13Xqbt12L7Yo3QbU5tVlGMcDociIyMVFxdX5rzKKVOmaOrUqdWaf+lzy1u2bFlmeKtWrZSdne2b5vTxAQEBCgkJ8f18dna2IiIiykxT+jNZWVlq3ry5srOzy82nZcuWvnbsUq3QGRMTU+GezoyMDHXo0MGUy+ut4Pxyg91dqFecToc6duwop4N9EVZxOpwlNWddt5RvXafulmH7Yo/SbUxtVFmOMQxDbrdbO3fuLLenE9VXrdDpcrnKhc5Tx9XW0ClVvEwwi6MWryu1V0nNWdet5aDulmP7YpfaXveKckzp0d2goKAz5p+qCgsLkyQdPnxY4eHhvuHZ2dm69NJLfdMcPny4zM8VFxcrNzfX9/OtWrUqN03p+7NN06pVq3NahnPFn4IAAAAmi4yMVFhYmDZv3uwblp+frx07dig+Pl6SFB8fr7y8PKWmpvqm2bJli7xer7p37+6b5vPPP1dRUZFvmk2bNikmJkbNmzeXJCUkJJRpp3Sa0nbsQugEAADwg4KCAqWlpSktLU1SycVDaWlpOnDggBwOh+666y7NmTNH7733nnbt2qXf/e53Cg8P1/XXXy9J6tixoxITE3Xfffdpx44d+vvf/67JkydryJAhat26taSSR1U2bNhQ48eP17fffqvVq1dr8eLFuvvuu339uPPOO/Xxxx/rpZde0r///W/NmjVLqampuv32260vyil4IhEAAIAfpKamauDAgb7306dPlySNHDlSCxcu1H333afCwkJNmDBBeXl5+tWvfqVVq1apUaNGvp9ZsmSJJk2apOTkZDkcDg0aNEizZs3yjQ8ODtbbb7+tSZMm6aqrrlKLFi00adIk3Xrrrb5pevTooSVLlujpp5/WjBkzFB0drTfeeEOdO3c2vwiVIHQCAAD4Qe/evZWbm3vG8Q6HQ9OmTdO0adPOOE1ISIiWLl1aaTtxcXF6//33K50mOTlZycnJlU5jNQ6vAwAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0AVWZyDCMMq+nj3M4HDIMo8LxtUFjZwM1cjawuxv1h9Nbsr40aiQFBtrdm3rBaNRIhmGwrlvt53WduluI7YstSrcxtVFlOebU/ONwOOzoXp3iMKqwlni9Xv30009W9AcAAOC8csEFF8jp5ODwuapy6PT9wGlJPz8/X3Fxcdq5c6eCgoL830NUiLpbj5rbg7rbg7pbj5rbo7K6nxqRCJ3nrkqH1ysrtMPhUEFBgRwOB7ueLUTdrUfN7UHd7UHdrUfN7VFZ3fkc/IvYDgAAANMROgEAAGC6cw6dgYGBmjJligK5StBS1N161Nwe1N0e1N161Nwe1N06VbqQCAAAADgXHF4HAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJADhnHo/H7i7UK6c+nhqoLQiddVxRUZHdXah3CgoKlJ2drby8PL6ILZSTk6N//vOfSktL09GjR+3uTr2we/duzZs3T5LkcrlY3y3yz3/+U6NGjdLJkyft7gpQLVV69jpqp4yMDL366qsaNWqUYmNj7e5OvfDtt99q0qRJysnJkdvt1pgxYzR69Gg1b97c7q7Vabt27dKdd96p4uJiFRQUKDExUY8//rhCQkLs7lqddeLECQ0dOlQHDx7U4cOH9cwzz/iCp8vlsrt7dVZaWpoGDhyokSNHcjNz1Drs6ayj9u7dq+uvv17Lli3T0qVLtXv3bru7VOft3r1bgwYN0qWXXqonn3xS11xzjZYtW6Zvv/3W7q7Vad99950GDRqkxMRELV++XPfcc482bdrE3k6TNWzYUG3bttXNN9+sr776SpMnT5ZUsseTQ7/mSEtL07XXXqvbbrtNzz33nCSpuLhYbrdbPOcFtQFPJKqDCgsL9eCDD8rtduvSSy/VmjVr1K1bN/3ud79Tx44d7e5enZSXl6dx48apXbt2vsONkvSb3/xG7du316JFi2zsXd2Vm5urm266SV27dtWsWbN8w3/729/qzjvvVEhIiFq3bq2IiAgbe1l33X///YqJiZHL5dKrr76qq6++Wk8//bS2bNmiyy+/XEFBQXZ3sc7IyclR165dddVVVyklJUVFRUV66KGHtHfvXmVmZioxMVGjR49WTEyM3V0FzojD63VQo0aNdOWVV8rhcGjEiBG68MILtWTJEi1atIjgaZKsrCxdcMEF+u1vfytJcrvdatiwofr06aO9e/fa3Lu668SJExo+fLh69OjhGzZnzhxt3rxZhw4dUkBAgHJzc7V8+XJddtllNva0bik9hB4YGKjjx4/rgQcekCT9+c9/VteuXWUYhr744gt5vV45nRxQ8wePx6Prr79eGzdu1NatW/XCCy+osLBQV111lbKzs7Vjxw7985//1IIFCxQZGWl3d4EKsTWog5xOp4YOHaobb7xRkjRq1Cj93//9n1JTU7Vo0SLfofaioiIdOnTIzq7WGZdccomGDRumPn36SJICAkr+nrvwwgt14sSJMtP+9NNPlvevrmrdurUGDx6sLl26SJJWrFih2bNn67XXXtP69ev18ssvq1OnTlq4cKFOnjzJIUg/KQ2S/fv317fffiun06m77rpLAQEBys7OVvfu3dW0aVM5nU4OtftJq1at9Mwzz+iaa67RwIEDZRiGUlJSNHHiRD377LO65557lJOToy+++MLurgJnROisY0qvHm3YsKEcDofv/ejRozV27Fhf8Ny5c6ceffRRDR8+nCsgz1HpHQKuu+46SZJhGL4v5dIr2UvDzvPPP68ZM2aouLjYns7WIaXrdosWLXzDrrvuOm3YsEGDBg1SaGioYmNjFRQUpLy8PAUGBsrhcNjV3TqhNECW1jEwMFDffPONJOnee+/VwYMHNXbsWO3Zs0f33HOPJLGn0w9K1/XQ0FA98cQTevzxx3XbbbcpNDTU95lcd911crvd+vrrr+3sKlApDq/XAfv379fXX3+tgQMH+k7iL93Qn/p+zJgxcjgceu2113TTTTcpNzdXa9eu5QrIGji15g0aNChTc4fDIcMw5HA41LRpUwUFBcnhcGjmzJm+Q7+le0JRPZWt6x6PR8HBwerevbukkvBvGIYaN26s6Ohoeb1eORwOgmc1nVrz0j2XpTXv1q2bIiIiNGzYMH3zzTdau3at2rRpo0WLFmnjxo3KyspSWFiYzUtQO52+rpee0tCqVSuNGTNGTZo0kVQS6j0ejwoLCxUZGclpJDiv8c1Xy2VkZOg3v/mNLrjgAh07dkwjRowo98Vw6vvRo0drxYoV+umnn7RhwwbfYUlUXVVqXqpRo0Zq0aKFZs+erT/84Q/65JNPdOmll9rU89rtbHU//TY9Xq9Xs2fP1qZNm/Tuu++yx60Gzlbz4OBgHTlyRPv379fbb7+tSy65RJJ0xx13aNy4cdyyqoYqqvupwTM4OLjM9E6nUwsWLNB//vMf9erVy6ZeA2fH1eu12JEjR3TnnXfK4XAoODhYP/zwg8aMGaObbrpJksqFoOLiYk2cOFHLli3T3/72NwJnDVS35gsWLNAjjzyiJk2aaN26dbr88stt6nntVt26f/rpp1q3bp3eeecdrV69mr0/NXC2mhcVFalBgwYqLCxUVlaW2rdvL0m+vfyomequ6x9//LHWrl2rv/71r3r33Xf5oxbnNfZ01mInT55Us2bNdOutt6p169Z64YUX9Prrr0uSbrrppnJ73wICAtSzZ0+NGTOGwFlDVan5qV+6LVq0UGRkpFauXMldA85Bdet+5MgRuVwurV+/nrrX0Nlq3qBBAxUXF6tJkya+wCmJwHmOqruul54z/v7776tTp052dh04K/Z01nKZmZlq3bq1JOmbb77R/Pnz9f3332v06NG6+eabJZXs4eQcQv+pSs1L9wJJ4rw2P6lK3UtvVSWV3K+29Lw31AzbF3tUd10/duyYmjZtalt/gariJKdarnTD5PF41LlzZ02YMEFRUVFatmyZli9fLkl68MEH9eqrr9rZzTqlKjWfOHGilixZIkkETj+pSt0nTZqkP/3pT5JE4PQDti/2qO66TuBEbcGezjrou+++0/PPP68DBw7I4XDoiy++0MaNG/WLX/zC7q7VWdTcHtTdetTcHtQddQGhs5Y628n6aWlpuvHGG1VYWKh169YpLi7Owt7VTdTcHtTdetTcHtQddR2H12uJ0psD5+TkSKr8ZH232+27LdJ7773HhqmGqLk9qLv1qLk9qDvqG0LneS4jI0Pr1q2Ty+XSO++8o7vuukuHDx+u9Gd++uknbdu2Te+++646d+5sUU/rDmpuD+puPWpuD+qOesvAecvj8RjPPPOMERISYjz88MNGSEiIsWLFikp/xuv1GoZhGCdPnrSii3UONbcHdbceNbcHdUd9xjmdtcDw4cP1ySef6LbbbtNzzz1X4ZNvTmdwg+ZzQs3tQd2tR83tQd1RH3F4/TxV+rdAUVGRQkND1atXL73yyit6++23fTcHPv3vhVPfs2GqPmpuD+puPWpuD+qOes+iPaqohtJDKf/4xz+Mjz76yPjpp58MwzCMxx57zAgNDTXeeuutMtPt27fPno7WIdTcHtTdetTcHtQdMAz2dJ5njJ8Pn7z77rsaPny4duzYoYMHD0oquQnz+PHjddddd2nVqlVyOByaO3euJk+erGPHjtnc89qLmtuDuluPmtuDugM/szXyokJffPGFERERYbz66qvG8ePHy4zLz883nnrqKSMkJMS45pprjNatWxupqak29bTuoOb2oO7Wo+b2oO4AFxKdV4yf/xqeOXOmdu3apT//+c++cR6PRy6Xy/f+o48+0p49e3TNNdeoffv2dnS3TqDm9qDu1qPm9qDuwP8E2N0B/G+jVHqS+KFDh3w3DS69orF0w/T111+rY8eOSkpK4krGc0DN7UHdrUfN7UHdgfI4p9NGx48f18mTJ/XDDz/o5MmTvuFt2rTRl19+qZycHN8VjVLJzYFXr16tL7/8UhJXMtYENbcHdbceNbcHdQcqYeWxfPzPd999Z9xyyy1Gz549jQsvvNDo06eP8cgjjxiGYRgFBQXGlVdeafTs2dPIysoyvF6vUVRUZDzxxBNGly5djAMHDtjc+9qJmtuDuluPmtuDugOV45xOG+zatUvXXXedbrjhBl122WUKCQnRihUrtHHjRl111VV67bXXlJ6ergkTJigjI0OdOnVSgwYN9O2332r16tW67LLL7F6EWoea24O6W4+a24O6A2dH6LTYkSNHNHToUPXv31+PPfZYmeFr1qzRY489poEDB2rx4sUyDENLlizRkSNH1KxZMw0cOJCTy2uAmtuDuluPmtuDugNVZNs+1nrq66+/Nnr27Gns2rXLKC4uNgyj5Fm8hmEYP/74o/Hcc88ZrVu3NtauXWtnN+sUam4P6m49am4P6g5UDRcSWWznzp3au3evOnfuLJfLJcMwfM/bDQ4O1vDhw9WgQQPt3bu3zM8Z7JCuMWpuD+puPWpuD+oOVA2h02Klh1HeffddSeWvVIyMjFRUVJQyMzPLDOeKxpqj5vag7taj5vag7kDVEDotFhERoQsuuEArV67U/v37fcO9Xq8k6ccff1SjRo3UtWtXu7pY51Bze1B361Fze1B3oGoInRZr27at5s6dq48//lgzZ87Ut99+K0m+QzELFizQoUOH1LNnTzu7WadQc3tQd+tRc3tQd6BquHrdBh6PR8uWLdPkyZPVvn179ejRQ2FhYdq3b582btyov/71r9w+w8+ouT2ou/WouT2oO3B2hE4bbd++XS+++KLS09MVHBysuLg43XHHHbrkkkvs7lqdRc3tQd2tR83tQd2BMyN02szj8cjpdMrhcPiexwtzUXN7UHfrUXN7UHegYvwm2Kx0wyRxJaNVqLk9qLv1qLk9qDtQMfZ0AgAAwHTs6QQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADDd/wNxOfmg59fUUgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mco = [None,None,'yellow','blue',None]\n", + "mpf.plot(df,volume=True,style='yahoo',type='candle',marketcolor_overrides=mco,mco_faceonly=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "#### marketcolor overrides work also with ohlc plots\n", + "- Presently only `type='candle'` and `type='ohlc'` are supported.\n", + "- If there is enough demand, we will consider also supporting types 'hollow_and_filled', 'renko', and 'point_and_figure'." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHaCAYAAABCYPJ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMIklEQVR4nO3de1xUdf7H8fcwIiAGgil4CZQkQzFjXWg1TZNou4iyXkrLtPrZZdvs6i3tbpmWWrapa7ql0qa7mbapZWWZbtaWuosLViyEaa0GiiRx0YGZ8/vDmEAQAefMEXg9Hw8ezJzz5Xy/8+Fw5s25jc0wDEMAAACAiXysHgAAAACaPkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmK5FXRq5XC73Y5vNZtpgAAAAzhaVb2Xu48N+ujNVp9ApST/99JOZ4wAAADgrnXPOOVYPoUmoc+iUJH9//2p7Op1Op7KyshQdHS273e7RweHUqLv3UXNrUHdrUHfvo+bWqK3uhmHo2LFjFo2s6alT6KwImjabrVrotNlsMgyjxnkwD3X3PmpuDepuDerufdTcGnWpO78Pz+AEBQAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANPV67PXcXYoLj+ukPcnSpIOn/+CguytLB4RYJZi+fuHqHdv6dixw5KCrB4QAKCB2NMJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAA4AHbt2/X6NGjFRMTo5CQEG3cuLHK/NmzZyshIUGdOnVSly5dlJKSop07d1ZpM2bMGMXGxio8PFwXXnih7rjjDh08eLDWfo8dO6ZJkyYpKipKnTt31rhx45SXl+fx13emCJ0AAAAeUFJSotjYWD333HM1zj///PP17LPPavv27Xr33XcVERGh4cOH6/Dhw+42AwYM0KuvvqovvvhCK1as0N69ezV+/Pha+50+fbo2bdqk5cuXa8OGDfrhhx900003efS1eUKL+jR2Op2y2WzVplX+DvNVrrXT5aT2XsK6bgWnfH1/fuR0SqL23sL67n3U3Bq11d0wDElSYWFhlfzj5+cnPz+/au2TkpKUlJR0yr5GjRpV5flTTz2l1NRU7dmzRwMHDpQk3XXXXe75ERERuu+++zR27FiVlZXJt2KDWMnRo0f12muvaenSpbrsssskSS+99JIuueQS7dixQ/Hx8accj7fVK3RmZWW5fwEny87O9siAcHqlrjL345xvchTgU30lhHlY173Hx6dUvXqdeJyTkyOXK8DaATVDrO/eR82tUVPdbTabIiMjFRsbq6KiIvf0qVOnatq0aWfUn8Ph0IoVKxQUFKTY2Nga2xQUFGjNmjVKSEioMXBK0u7du1VWVqZBgwa5p11wwQXq3Llz4w6d0dHRNe7pzM7OVrdu3WS32z06ONSsuPy4tP/E46jzoxTUspW1A2omWNetUOx+FBUVJbs9yMKxNC+s795Hza1RW90Nw5DD4VBGRka1PZ0NtWnTJk2YMEElJSUKDw/XunXr1LZt2yptHnvsMS1btkwlJSWKj4/X6tWrT7m83NxctWzZUsHBwVWmt2/fXrm5uQ0epxnqFTrtdnu10Fl5Hn8k3mE3fqmz3Ye6exvrujdVWtepuyWou/dRc2vUVPeKo7tBQUGnzD/1NWDAAG3btk35+flauXKlbrnlFm3evFnt2rVzt7nnnnt000036bvvvtOcOXN055136q9//avHxmAVLiQCAADwksDAQEVFRSk+Pl5//OMf1aJFC6WmplZp07ZtW3Xr1k2XX365/vznP+uDDz7Qjh07alxeWFiYHA6Hjh49WmV6Xl6ewsLCTHsdDUHoBAAAsIjL5ZLD4ah1vqRTtundu7d8fX21detW97SsrCx9//33Z9X5nFI9D68DAACgZkVFRdq7d6/7+b59+5Senq42bdooNDRU8+bN09VXX62wsDAdOXJEy5Yt08GDBzVs2DBJ0s6dO/Wvf/1Lffv2VXBwsL799ls9/fTT6tq1qztAHjhwQCkpKVq8eLH69Omj4OBgjR07VjNmzFBISIjOOeccTZkyRfHx8YROAACApigtLU3Jycnu5zNmzJB04obv8+fPV1ZWllavXq38/HyFhoYqLi5O77zzjmJiYiRJAQEB2rBhg2bPnq2SkhKFhYUpMTFRkyZNcl+8VF5erqysLJWWlrr7mTVrlnx8fDRu3Dg5HA4NHjxYc+fO9eIrrxtCJwAAgAf0799fBQUFp5x/8rmbJ+vZs6fefvvtWttERERU68Pf319z5849K4NmZZzTCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdC2sHgDQKJSWym/g5bpI0vGPNkutW1s9IsA0xcVSSIi/pN46fPiYgoKsHhGApoA9nQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAPCA7du3a/To0YqJiVFISIg2btxYZf7s2bOVkJCgTp06qUuXLkpJSdHOnTvd8/fv36+JEyeqd+/e6tChg+Li4vTMM8/I4XDU2u+QIUMUEhJS5ev+++835TWeiRZWDwAAAKApKCkpUWxsrMaOHaubbrqp2vzzzz9fzz77rLp06aLS0lItXrxYw4cP17/+9S+de+65+u9//yuXy6Xnn39eUVFR+vLLL3XfffeppKREM2fOrLXv8ePH66GHHnI/DwgI8PjrO1OETgAAAA9ISkpSUlLSKeePGjWqyvOnnnpKqamp2rNnjwYOHKgrrrhCV1xxhXt+ly5dlJ2drVdeeeW0oTMgIEBhYWFn9gJMVq/Q6XQ6ZbPZqk2r/B3mq1xrp8tJ7b3B6XT/sTidTomae4lTvr4/P3I6JVF3bzixevv+/NjJ6u4lvJ9ao7a6G4YhSSosLKySf/z8/OTn53dG/TocDq1YsUJBQUGKjY09ZbvCwkKFhIScdnlvvPGG/va3v6l9+/a66qqrNHnyZLVq1eqMxuhp9QqdWVlZ7l/AybKzsz0yIJxeqavM/TjnmxwF+PhaOJrmwXb8uHr9/PibnBwZZ7ixQd34+JSq18+Fz8nJkct19h0uaopKS32kn9f4nJwcBQS4rB1QM8P7qTVqqrvNZlNkZKRiY2NVVFTknj516lRNmzatQf1s2rRJEyZMUElJicLDw7Vu3Tq1bdu2xrY5OTl6+eWXT7uXc+TIkTrvvPMUHh6uPXv26IknnlB2drZSU1MbNEaz1Ct0RkdH17inMzs7W926dZPdbvfo4FCz4vLj0v4Tj6POj1JQy7PrP5kmqbTU/fD8qCjZW7e2cDDNSbH7UVRUlOz2IAvH0nwU/1J2RUVFKSiIbbs38H5qjdrqbhiGHA6HMjIyqu3pbKgBAwZo27Ztys/P18qVK3XLLbdo8+bNateuXZV2Bw4c0MiRI5WSkqLx48fXusybb77Z/bhnz54KDw/XsGHDtHfvXnXt2rXBY/W0eoVOu91eLXRWnscfiXfYjV/qbPeh7l5Rqcas695E3a1QuczU3fuouTVqqnvF0d2goKBT5p/6CgwMVFRUlKKiohQfH68+ffooNTVVDzzwgLvNwYMHNXToUCUkJOiFF16odx99+vSRdGJP6dkUOrllEgAAgEVcLleVWyIdOHBAycnJ6t27txYuXCgfn/pHtfT0dEk66y4s4up1AAAADygqKtLevXvdz/ft26f09HS1adNGoaGhmjdvnq6++mqFhYXpyJEjWrZsmQ4ePKhhw4ZJ+iVwnnfeeZo5c6YOHz7sXlZFgDxw4IBSUlK0ePFi9enTR3v37tWaNWuUlJSk0NBQZWRkaMaMGerXr1+tFyhZgdAJAADgAWlpaUpOTnY/nzFjhiRpzJgxmj9/vrKysrR69Wrl5+crNDRUcXFxeueddxQTEyNJ+vjjj5WTk6OcnBz17NmzyrILCgokSeXl5crKylLpz9ca+Pr66uOPP9bixYtVUlKiTp06KTk5WZMmTfLGS64XQicAAIAH9O/f3x0Oa3K6q8lvuOEG3XDDDbW2iYiIqNJH586dq33y0dmKczoBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmK6F1QPAmSl2Hpe93G5Z/4Et/CzrG4D5ioslu0WbmMBAa/oFYA5CZyMX+fFUS/t3XPOypf0DMFdkpL9lfTscZZb1DcDzOLwOAAAA07Gns5HbN2iOglq2snoYAJqoffuOKSjIulN4ADQdhM5GLtDux3mVAEwTGMi5lQA8g8PrAAAAMB2hEwAAAKYjdAIAAMB0hE4AAAAP2L59u0aPHq2YmBiFhIRo48aNVebPnj1bCQkJ6tSpk7p06aKUlBTt3LnTPX///v2aOHGievfurQ4dOiguLk7PPPOMHA5Hrf0eO3ZMkyZNUlRUlDp37qxx48YpLy/PlNd4JgidAAAAHlBSUqLY2Fg999xzNc4///zz9eyzz2r79u169913FRERoeHDh+vw4cOSpP/+979yuVx6/vnn9dlnn+npp5/Wq6++qpkzZ9ba7/Tp07Vp0yYtX75cGzZs0A8//KCbbrqpQa/B4XAoKytL5eXlDfr52nD1OoDTKG6mfQNA/SQlJSkpKemU80eNGlXl+VNPPaXU1FTt2bNHAwcO1BVXXKErrrjCPb9Lly7Kzs7WK6+8csrgefToUb322mtaunSpLrvsMknSSy+9pEsuuUQ7duxQfHx8ncZeUlKiqVOnatWqVZKknTt3qkuXLpoyZYo6dOig+++/v07LqU29QqfT6ZTNZqs2rfJ3mK9yrZ0uJ7X3BqfT/cfidDqlZlRzf/8Qq4cgqWK9bz51t9KJ1dv358fO5rS6W4r3U2vUVnfDMCRJhYWFVfKPn5+f/PzO7HaFDodDK1asUFBQkGJjY0/ZrrCwUCEhp94O7969W2VlZRo0aJB72gUXXKDOnTvXK3Q++eSTysjI0Pr166uE40GDBmn27NneD51ZWVnuX8DJsrOzz3gwqJtS1y8fDZfzTY4CfHwtHE3zYDt+XL1+fvxNTo6MM9zYNCa9e1s9ghNycnLkcgVYPYxmobTUR/p5jc/JyVFAgMvaATUzvJ9ao6a622w2RUZGKjY2VkVFRe7pU6dO1bRp0xrUz6ZNmzRhwgSVlJQoPDxc69atU9u2bWtsm5OTo5dffrnWw+u5ublq2bKlgoODq0xv3769cnNz6zyujRs36pVXXlF8fHyVgH3hhRfq22+/rfNyalOv0BkdHV3jns7s7Gx169ZNdjufWuENxeXHpf0nHkedH8UnEnlDaan74flRUbK3bm3hYLzr2LHDFvZeLH//SElSVFSU7PYgC8fSfBRXOqshKiqKTyTyEt5PrVFb3Q3DkMPhUEZGRrU9nQ01YMAAbdu2Tfn5+Vq5cqVuueUWbd68We3atavS7sCBAxo5cqRSUlI0fvz4BvdXV/n5+dXGIEnFxZ47zaleodNut1cLnZXn8UfiHXbjlzrbfai7V1SqcfNb160Mes257tapXGbq7n3U3Bo11b3i6G5QUNAp8099BQYGKioqSlFRUYqPj1efPn2UmpqqBx54wN3m4MGDGjp0qBISEvTCCy/UurywsDA5HA4dPXq0yt7OvLw8hYWF1XlcF198sd5//33dfvvtkuR+vampqUpISKjHKzw1LiQCAACwiMvlqnJLpAMHDmjo0KHq3bu3Fi5cKB+f2m801Lt3b/n6+mrr1q0aOnSopBOnQ37//fd1Pp9Tkh555BFdd911+vrrr1VeXq4//elPyszM1BdffKENGzY07MWdhFsmAQAAeEBRUZHS09OVnp4uSdq3b5/S09P13Xffqbi4WE8++aR27Nih/fv3Ky0tTXfffbcOHjyoYcOGSToROJOTk9W5c2fNnDlThw8fVm5ubpVzMw8cOKCEhATt2rVLkhQcHKyxY8dqxowZ+sc//qG0tDT94Q9/UHx8fL1CZ9++fbVt2zY5nU716NFDW7Zs0bnnnqv33ntPF198sUfqw55OAAAAD0hLS1NycrL7+YwZMyRJY8aM0fz585WVlaXVq1crPz9foaGhiouL0zvvvKOYmBhJ0scff6ycnBzl5OSoZ8+eVZZdUFAgSSovL1dWVpZKK11rMGvWLPn4+GjcuHFyOBwaPHiw5s6dW+/xd+3aVQsWLKj3z9WVzTjV5eiVGIahwsJCBQQE1HghUWZmprp37845KF5SXH5cIe9PlCQdTnxBQX5cSGS60lK1GHi5JOn4R5ub1YVE1iqWr++JW4UcO3aYC4m8pLhYCgk5cVeMw4ePcSGRl/B+ao3a6m4YhkpLSz16TufZ6v3335fdbldiYmKV6R9++KFcLlet9x+tKw6vAwAANHNPPPHEKe9V+sQTT3ikDw6vo3GpdDihWfQLAIAX5OTk6MILL6w2/YILLtDevXs90gehE41KxSFuAADgOUFBQfr2228VERFRZXpOTo5atfLMaXwcXgcAAGjmrr76aj300ENV9mrm5OTo4Ycf1tVXX+2RPtjTiUalfOsWazouLVWLq66xpm8AAEz2xBNPaNSoUUpISFDHjh0lnbg9U9++fWv9GM76IHSicQngs7cBAPC04OBgvffee9qyZYsyMjLk7++vnj176tJLL/VYH4ROAAAAyGazafDgwRo8eLApyyd0AgAANENLlizR+PHj5e/vryVLltTa9o477jjj/gidAAAAzdCiRYs0atQo+fv7a9GiRadsZ7PZCJ0AAABomN27d9f42CzcMgkAAKAZKysrU1xcnDIzM03thz2dABqJYklWfh51oIV9A4B5fH19dfz4cdP7IXQCaBT8/SMt7b+szGFp/wBgpv/7v//TggUL9OKLL6pFC3PiIaETAACrlZbKb+DlukjS8Y82S61bWz0iNDP//ve/tW3bNm3ZskU9evSo9tGXqampZ9wHoRNAo3Ds2D7Z7UFWDwMAmqTg4GAlJyeb2gehE0AjESjOqwQAz3K5XHrxxReVnZ2tsrIyDRgwQNOmTVOACZ8AyNXrAAAAzdS8efM0c+ZMtW7dWh06dNDLL7+syZMnm9IXoRMAAKCZWr16tebOnas333xTf/nLX7Rq1Sq98cYbcrlcHu+L0AkAANBMff/990pKSnI/HzRokGw2mw4ePOjxvgidAAAAzVR5ebn8/f2rTPP19VV5ebnH++JCIgAAgGbKMAzddddd8vPzc087duyYHnjggSq3TeKWSQAAAGiwMWPGVJt23XXXmdIXoRMAAKCZWrhwodf64pxOAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB03BweAABJKi1tnn0DXkLoBABAUouBl1s9BKBJ4/A6AAAATMeeTgAAJJVv3WJd56WlanHVNdb1D3gBoRMAAEkKCLB6BECTxuF1AAAAmI7QCQAAANMROgEAAGA6QicAAIAHbN++XaNHj1ZMTIxCQkK0cePGKvNnz56thIQEderUSV26dFFKSop27txZpc3cuXN15ZVXqmPHjoqMjKxTv3fddZdCQkKqfI0cOdJjr8tTCJ0AAAAeUFJSotjYWD333HM1zj///PP17LPPavv27Xr33XcVERGh4cOH6/Dhw+42ZWVlSklJ0a233lqvvhMTE/X111+7v5YtW3ZGr8UMXL0OAADgAUlJSUpKSjrl/FGjRlV5/tRTTyk1NVV79uzRwIEDJUkPPfSQJOn111+vV99+fn4KCwur54i9q16h0+l0ymazVZtW+TvMV7nWTpeT2nuD0+n+Y3E6nRI19xKnfH1/fuR0SqLu3nBi9fb9+bGT1d0b2MZYprYcYxiGJKmwsLBK/vHz85Ofn98Z9etwOLRixQoFBQUpNjb2jJYlSZ988omio6PVpk0bDRgwQA8//LBCQ0PPeLmeVK/QmZWV5f4FnCw7O9sjA8LplbrK3I9zvslRgI+vhaNpHmzHj6vXz4+/ycmRcYYbG9RH2s/fD/78BbOVlvpIP6/xOTk5CghwWTugZoBtjPVqyjE2m02RkZGKjY1VUVGRe/rUqVM1bdq0BvWzadMmTZgwQSUlJQoPD9e6devUtm3bBo9bOnFofciQIYqMjNS3336rmTNnatSoUXr//fdlt9vPaNmeVK/QGR0dXeOezuzsbHXr1u2semFNWXH5cWn/icdR50cpqGUrawfUHJSWuh+eHxUle+vWFg6meWEb433Fxb88joqKUlAQdTcd2xjL1LaNMQxDDodDGRkZ1fZ0NtSAAQO0bds25efna+XKlbrlllu0efNmtWvXrsHLHDFihPtxz5491bNnT8XFxemTTz5xH7Y/G9QrdNrt9mqhs/I83hC8w278Ume7D3X3iko1Zl23BnX3nsplpu5ewjbGcjXVveLoblBQ0CnzT30FBgYqKipKUVFRio+PV58+fZSamqoHHnjAI8uXpC5duqht27bKyck5q0InV68DAABYxOVyyeFweHSZ//vf/3TkyJGz7sIiQicAAIAHFBUVKT09Xenp6ZKkffv2KT09Xd99952Ki4v15JNPaseOHdq/f7/S0tJ099136+DBgxo2bJh7Gd99953S09P1/fffy+VyuZdX+ZzShIQEbdiwwd3nI4884l7u1q1bdeONNyoqKkqJiYneLcBpcMskAAAAD0hLS1NycrL7+YwZMyRJY8aM0fz585WVlaXVq1crPz9foaGhiouL0zvvvKOYmBj3zzzzzDNatWqV+/lll10mSVq/fr369+8v6cSF3YWFhZJOnBbw5ZdfavXq1Tp69KjCw8M1ePBgTZ8+/YyvsPc0QicAAIAH9O/fXwUFBaecn5qaetplLFq0SIsWLaq1TeU+AgIC9Oabb9Z9kBbi8DoAAABMx57OBiouP94s+4ZO3NrEyitLAwKs6xsAgAYidDZQyPsTrR4CLOJ3bfLpG5mo/It/Wto/AAANweF1AAAAmI49nQ1UcOUfLeu7uPy4On80ybL+m7vjG9fzaSEAANQTobOBAlucXbchgBcFBHBeJQAA9cThdQAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACm4z6djVBgCz+V/naxMjMzuV+otwQE6Phn25WZmanu3KMTAIB6Y08nAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAAB6wfft2jR49WjExMQoJCdHGjRurzJ89e7YSEhLUqVMndenSRSkpKdq5c2eVNnPnztWVV16pjh07KjIysk79GoahWbNm6cILL1SHDh2UkpKib775xmOvy1MInQAAnE1KS639QoOVlJQoNjZWzz33XI3zzz//fD377LPavn273n33XUVERGj48OE6fPiwu01ZWZlSUlJ066231rnfBQsWaMmSJZo/f74++OADtWrVSiNGjNCxY8fO+DV5Uov6NHY6nbLZbNWmVf4O76Du3kfNrUHdve9EqX1/fuwUpfcCp9P9hux3bbKlQzn+2XZL+/e22rYxhmFIkgoLC6vkHz8/P/n5+VVrn5SUpKSkpFP2NWrUqCrPn3rqKaWmpmrPnj0aOHCgJOmhhx6SJL3++ut1Gr9hGPrTn/6kSZMm6ZprrpEkLV68WN27d9fGjRs1YsSIOi3HG+oVOrOysty/gJNlZ2d7ZECoH+rufdTcGtTde0pLfST1kiTl5OQoIMBl7YCaAdvx4z9X3HqZmZlWD8ESNW1jbDabIiMjFRsbq6KiIvf0qVOnatq0aWfUn8Ph0IoVKxQUFKTY2NgGL2ffvn3Kzc3VoEGD3NOCg4PVp08f7dixo/GGzujo6Br3dGZnZ6tbt26y2+0eHRxOjbp7HzW3BnX3vuLiXx5HRUUpKIi6m67SYe2St/8ue+tAy4bSPSDAsr6tUNs2xjAMORwOZWRkVNvT2VCbNm3ShAkTVFJSovDwcK1bt05t27Zt8PJyc3MlSe3atasyvX379srLy2vwcs1Qr9Bpt9urhc7K83hD8D7q7n3U3BrU3Xsql5m6e0mlGttbB8reurWFg2mealrXK47uBgUFnTL/1NeAAQO0bds25efna+XKlbrlllu0efPmaqGxKeJCIgAAAC8JDAxUVFSU4uPj9cc//lEtWrRQampqg5cXFhYmSTp06FCV6Xl5eWrfvv0ZjdXTCJ0AAAAWcblccjgcDf75yMhIhYWFaevWre5phYWF2rVrl+Lj4z0xRI+p1+F1AAAA1KyoqEh79+51P9+3b5/S09PVpk0bhYaGat68ebr66qsVFhamI0eOaNmyZTp48KCGDRvm/pnvvvtOP/74o77//nu5XC6lp6dLkrp27arWP592kZCQoEcffVRDhgyRzWbTnXfeqblz5yoqKkqRkZGaNWuWwsPDde2113q3AKdB6AQAAPCAtLQ0JSf/csurGTNmSJLGjBmj+fPnKysrS6tXr1Z+fr5CQ0MVFxend955RzExMe6feeaZZ7Rq1Sr388suu0yStH79evXv31/SibsJFRYWutvce++9Kikp0f3336+jR4/qN7/5jdasWSN/f39TX2992YxT3QOpEsMwVFhYqICAgBqvXs/MzFT37t052dyLqLv3UXNrUHfvKy6WQkJO3Kfz8OFjXL3uDaWlajHwcknS8Y82cyGRF9W2jTEMQ6WlpR69kKg545xOAAAAmI7D6wBwFqp8r8zm1DeApovQCQBnoYrD2wDQVHB4HQAAAKZjTycAnIUKCsos67u4WOrcmT2tADyL0AkAZ6FA6z56GwBMweF1AAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiuhdUDAACg2QsI0PHPtiszM1PdAwKsHg1gCvZ0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAEAVgYFSaekxpaXtVmCg1aMB0FQQOgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAHjA9u3bNXr0aMXExCgkJEQbN26sMn/27NlKSEhQp06d1KVLF6WkpGjnzp1V2hQUFOi2225TRESEIiMjNXHiRBUVFdXa75AhQxQSElLl6/777/f46ztThE4AAAAPKCkpUWxsrJ577rka559//vl69tlntX37dr377ruKiIjQ8OHDdfjwYXeb2267TV9//bXWrl2r1atX69NPP9V999132r7Hjx+vr7/+2v31xBNPeOpleUwLqwcAAADQFCQlJSkpKemU80eNGlXl+VNPPaXU1FTt2bNHAwcOVGZmpj788EN99NFHiouLkyTNmTNH1113nWbOnKkOHTqcctkBAQEKCwvzzAsxSb1Cp9PplM1mqzat8nd4B3X3PmpuDepuDerufdTcGrXV3TAMSVJhYWGV/OPn5yc/P78z6tfhcGjFihUKCgpSbGysJGnHjh0KDg52B05JGjRokHx8fLRr1y4NGTLklMt744039Le//U3t27fXVVddpcmTJ6tVq1ZnNEZPq1fozMrKcv8CTpadne2RAaF+qLv3UXNrUHdrUHfvo+bWqKnuNptNkZGRio2NrXJe5dSpUzVt2rQG9bNp0yZNmDBBJSUlCg8P17p169S2bVtJUm5urtq1a1elfYsWLRQSEqLc3NxTLnPkyJE677zzFB4erj179uiJJ55Qdna2UlNTGzRGs9QrdEZHR9e4pzM7O1vdunWT3W736OBwatTd+6i5Nai7Nai791Fza9RWd8Mw5HA4lJGRUW1PZ0MNGDBA27ZtU35+vlauXKlbbrlFmzdvrhY26+Pmm292P+7Zs6fCw8M1bNgw7d27V127dm3wcj2tTqGz8i7nk0OnzWaTj4+PbDZbtXkwD3X3PmpuDepuDerufdTcGrXVveLobmBgoFq08MxlMIGBgYqKilJUVJTi4+PVp08fpaam6oEHHlBYWJgOHTpUpX15ebkKCgrqdb5mnz59JEk5OTmNL3RWcDgcNU6PiIhQWVmZysrKPDIo1A119z5qbg3qbg3q7n3U3BpW1t3lcrnzVXx8vI4ePaq0tDRdfPHFkqRt27bJ5XK5g2RdpKenS9JZd2FRvUKnv79/jYfXs7KyFB0dzeEAL6Lu3kfNrUHdrUHdvY+aW6O2uhuGoWPHjtV5WUVFRdq7d6/7+b59+5Senq42bdooNDRU8+bN09VXX62wsDAdOXJEy5Yt08GDBzVs2DBJUvfu3ZWYmKh7771X8+fPV1lZmaZMmaLhw4e7r1w/cOCAUlJStHjxYvXp00d79+7VmjVrlJSUpNDQUGVkZGjGjBnq16+f+wKls0WdQmfFL6GmXc82m02GYXA4wMuou/dRc2tQd2tQd++j5taoS93r+k9AWlqakpOT3c9nzJghSRozZozmz5+vrKwsrV69Wvn5+QoNDVVcXJzeeecdxcTEuH9m6dKlmjx5slJSUmSz2TR06FDNnj3bPb+8vFxZWVkqLS2VJPn6+urjjz/W4sWLVVJSok6dOik5OVmTJk2qdy3Mxn06AQAAPKB///4qKCg45fy6XE0eEhKiZcuWnXJ+RERElT46d+5c7ZOPzlZ8IhEAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAEzHJxIBgMlu2vmy8h3FVg+jngy5XIZ8Pt8kqfF8JGPbloFK/fXtVg8DQA0InQBgsnxHsQL8/KweRrOQf7yxhXug+eDwOgAAAExH6AQAAIDpOLwOAGhyfO68SzpyxOph1IuPpB6GSz62Rrg/KDRUrj8tsnoUOMsROgEATc+RI7J16mj1KOrNbvUAGsj43wGrh4BGoBH+OwUAAIDGhj2dsExjO/zFoS8AABqO0AnrNMLDXxz6AgCgYRrhLhsAAAA0NoROAAAAmI7QCQAAANMROgEAADxg/vz5Gjx4sM477zxFR0frxhtvVFZWVpU2x44d06RJkxQVFaXOnTtr3LhxysvLq9Lmu+++03XXXaeOHTsqOjpajzzyiMrLy6u0+eSTTzRw4ECFhYXpV7/6lV5//fVq41m6dKkuuugihYeH64orrtCuXbs8/6LrgdAJAADgAZ9++qkmTJig999/X2vXrlVZWZmGDx+u4uJid5vp06dr06ZNWr58uTZs2KAffvhBN910k3u+0+nU9ddfr7KyMr333ntatGiRVq1apVmzZrnb7Nu3T9dff70GDBigbdu26c4779Q999yjDz/80N1m7dq1evjhhzV16lR9/PHHio2N1YgRI3To0CHvFKMGXL0ONCM37XxZ+Y7i0zc8qxhyuQz5fL5Jks3qwdRL25aBSv317VYPA4CXrFmzpsrzRYsWKTo6Wmlpabr00kt19OhRvfbaa1q6dKkuu+wySdJLL72kSy65RDt27FB8fLw++ugjZWZm6q233lL79u3Vq1cvTZ8+XY8//rimTZumli1b6pVXXlFERISeeuopSVL37t31z3/+U4sXL1ZiYqK773HjxunGG2+UdGIv7Pvvv6/XXntN999/vxer8ot6hU6n0ymbzVZtWuXv8I6mUHd2s3uX0+lUvqNIAX7+Vg+l2cg/XvTz36hh9VCaEUNOp5PtiwUa6/tRbe+nhnHib7ewsLBK/vHz85Ofn99pl11YWChJCgkJkSTt3r1bZWVlGjRokLvNBRdcoM6dO7tD544dO9SjRw+1b9/e3SYxMVEPPvigvv76a1100UXasWNHlWVUtHnooYckSQ6HQ2lpaVXCpY+PjwYOHKgdO3acdtxmqVfozMrKcv8CTpadne2RAaF+GnPdexiuRnvfy8bGZbiUmZkpl4vw400ul0Hdvayi5mxfvKtiG9OY1fR+arPZFBkZqdjYWBUVFbmnT506VdOmTat1eS6XSw899JAuueQS9ejRQ5KUm5urli1bKjg4uErb9u3bKzc3V5KUl5dXJXBKUrt27dw/X9GmYlrlNj/99JNKS0v1448/yul01tjm5HNMvaleoTM6OrrGPZ3Z2dnq1q2b7Hb+xL2lKdS9UX6yTyPlY/NR9+7dfz5EDW/x8bFRdy9z15zti1dVbGMao9reTw3DkMPhUEZGRrU9naczadIkffXVV3r33Xc9PubGql6h0263Vwudlec11vDTmFF31NWJ9aRxnRPZ+Nmou9fZ2CZapLHXvab304qju0FBQafMPzWZPHmy3nvvPb3zzjvq1KmTe3pYWJgcDoeOHj1aZW9nXl6ewsLCJJ3Y63nyVeYVF/9UbnPyBUGHDh3SOeeco4CAAPdrqanNyXtRvYkLicTFFd7GxRUAgKbIMAxNmTJFGzdu1Pr16xUZGVllfu/eveXr66utW7dq6NChkk6cuvj9998rPj5ekhQfH6958+bp0KFD7sPjW7Zs0TnnnOPemxwfH68PPvigyrK3bNmihIQESVLLli118cUXa+vWrbr22mslnTjcv23bNk2YMMG8ApwGoVNSvqNYAXXYVQ7PyD/e2AI+AACnN2nSJK1Zs0avv/66Wrdu7T4HMygoSAEBAQoODtbYsWM1Y8YMhYSE6JxzztGUKVMUHx/vDp2DBw9W9+7ddeedd+rxxx9XXl6enn76aU2YMMF9WP/WW2/VsmXL9Oijj2rs2LHatm2b3nrrLf31r391j+Wuu+7SXXfdpbi4OP3qV7/S4sWLVVxc7L6a3QqETgAAAA945ZVXJElDhgypMn3hwoW64YYbJEmzZs2Sj4+Pxo0bJ4fDocGDB2vu3Lnutna7XatXr9aDDz6o3/72t2rVqpXGjBmj6dOnu9tERkbqr3/9q6ZPn64lS5aoY8eOevHFF923S5Kk4cOH6/Dhw5o1a5by8vLUq1cvrVmzhsPrAAAAjV1BQcFp2/j7+2vu3LlVgubJIiIi9MYbb9S6nP79+2vbtm21trn99tt1++0NO53t008/1fLly/Xtt99q+fLl6tixo1avXq3IyEj17du3Qcvk8j4AAAC4vf322xo5cqQCAgL0n//8Rw6HQ9KJ+47Onz+/wcsldAIAAMBt7ty5mj9/vhYsWCBfX1/39N/85jf6z3/+0+DlEjoBAADglp2drX79+lWbHhQUpKNHjzZ4uYROAAAAuLVv3145OTnVpv/zn/9Uly5dGrxcQicAAADcxo0bp4ceekg7d+6UzWbTwYMH9be//U2PPPKIbr311gYvl6vXAQAA4Hb//ffL5XIpJSVFJSUluvbaa+Xn56e77767wVfDS4ROAAAAVGKz2TRp0iTdc889ysnJUXFxsbp3767WrVuf0XIJnQAAAKimZcuWuvDCCz22PEInAAAA3I4dO6aXX35Z//jHP3T48GG5XK4q87du3dqg5RI6AQAA4DZx4kRt2bJFQ4cOVZ8+fWSz2TyyXEInAAAA3N577z397W9/029+8xuPLpdbJgEAAMCtY8eOZ3zRUE0InQAAAHCbOXOmHn/8ce3fv9+jy+XwOgAAANzi4uJ0/PhxxcXFqVWrVmrRompc3Lt3b4OWS+gEAACA24QJE3Tw4EE98sgjat++PRcSAQAAwPO++OILvffee+rVq5dHl8s5nQAAAHCLjo7WsWPHPL5cQicAAADcHnvsMT388MP65JNPdOTIERUWFlb5aigOrwMAAMBt5MiRkqRhw4ZVmW4Yhmw2m/Lz8xu0XEInAAAA3NavX2/Kcjm8DgAA4AHbt2/X6NGjFRMTo5CQEG3cuLHK/LvuukshISFVvir2KlYoKCjQbbfdpoiICEVGRmrixIkqKiqq0iYjI0NXX321wsPD1bNnTy1YsKDaWN566y0lJCQoPDxc/fr10/vvv1/n13HppZfW+tVQ7OkEAADwgJKSEsXGxmrs2LG66aabamyTmJiohQsXup/7+flVmX/bbbcpNzdXa9euVVlZme6++27dd999WrZsmSSpsLBQI0aM0MCBAzV//nx9+eWXmjhxooKDg3XzzTdLkj7//HNNmDBBjz76qH77299qzZo1Gjt2rD7++GP16NHjtK9j+/bttc5vaPAkdAIAAHhAUlKSkpKSam3j5+ensLCwGudlZmbqww8/1EcffaS4uDhJ0pw5c3Tddddp5syZ6tChg9544w05HA699NJLatmypWJiYpSenq5Fixa5Q+eSJUuUmJioe+65R5I0Y8YMffzxx1q6dKmef/75076O5OTkatMq36vTK+d0Op3OajcIdTqdVb43TobVA2hmDDmdTs7t8LITf6Os695lUHevY/tilcaaA2rLMYZx4m+3sLCwSv7x8/Ortoeyrj755BNFR0erTZs2GjBggB5++GGFhoZKknbs2KHg4GB34JSkQYMGycfHR7t27dKQIUO0Y8cO9evXTy1btnS3SUxM1IIFC/Tjjz+qTZs2+uKLL/SHP/yhSr+DBw+udrj/VE7+xKHy8nL95z//0axZs/Twww836HVL9QydWVlZ7l/AybKzsxs8CKu5XLwheJPLZSgzM1M9DJfsVg+mmXAZLmVmZrKue1nFuk7dvYftizUqtjGNWU05xmazKTIyUrGxsVXOq5w6daqmTZtW7z4SExM1ZMgQRUZG6ttvv9XMmTM1atQovf/++7Lb7crNzVW7du2q/EyLFi0UEhKi3NxcSVJeXp4iIiKqtKn4mdzcXLVp00Z5eXnVltOuXTvl5eXVaZzBwcHVpl1++eVq2bKle69pQ9QrdEZHR9e4pzM7O1vdunWT3d44/8R9Pt9k9RCaFR8fm7p37y4fG/sivMXH5nOi5qzrXuVe16m717B9sUbFNqYxqi3HGIYhh8OhjIyMans6G2LEiBHuxz179lTPnj0VFxenTz75RAMHDmzYC/Cidu3andFOxnqFTrvdfsrP37Tb7Y02dEqe+UxR1JWtEa8rjdeJmrOue5eNunsd2xerNPa615RjKo7uBgUFeezzxyvr0qWL2rZtq5ycHA0cOFBhYWE6dOhQlTbl5eUqKChwnwfavn37am0qnp+uTfv27es0royMjCrPDcNQbm6uXnjhBcXGxtb9BZ6EC4kAAAAs8L///U9Hjhxxh8X4+HgdPXpUaWlpuvjiiyVJ27Ztk8vlUp8+fdxtnnrqKZWVlcnX11eStGXLFvd5opKUkJCgrVu36ve//727ry1btig+Pr5O47rssstks9mqnVL561//Wi+99FKDXy+hEwAAwAOKioqqXISzb98+paenq02bNgoJCdGcOXM0dOhQhYWFae/evXrssccUFRWlxMRESVL37t2VmJioe++9V/Pnz1dZWZmmTJmi4cOHq0OHDpJOfFrQs88+q4kTJ+ree+/VV199pSVLlujpp59293vHHXdoyJAheumll3TllVdq7dq1SktL0wsvvFCn15GWllbluY+Pj84991z5+/ufUX0InQAAAB6QlpZW5XZDM2bMkCSNGTNG8+bN05dffqnVq1fr6NGjCg8P1+DBgzV9+vQq54guXbpUkydPVkpKimw2m4YOHarZs2e75wcHB+vNN9/U5MmTdfnll6tt27aaPHmy+3ZJknTJJZdo6dKlevrppzVz5kxFRUXptddeq9M9OiVVu1DJUwidAAAAHtC/f38VFBSccv6bb7552mWEhIS4bwR/KrGxsXr33XdrbZOSkqKUlJTT9ldhyZIldW57xx131LltZYROAACAZm7RokV1amez2QidAAAAaJjdu3eb3gc3MgMAAECNDMM45QcD1RehEwAAAFWsXr1a/fr1U4cOHdShQwddeumlWr169Rktk8PrAAAAcFu4cKFmzZqlCRMm6JJLLpEk/fOf/9SDDz6oI0eO6K677mrQcgmdAAAAcHv55Zc1b948jR492j3tmmuuUUxMjGbPnt3g0MnhdQAAALjl5uYqISGh2vSEhATl5uY2eLmETgAAALh17dpV69atqzZ93bp1ioqKavByObwOAAAAffnll+rRo4emT5+uW265RZ999pn7nM7PP/9cW7du1auvvtrg5bOnEwAAAOrfv7+uuOIK5efn6+9//7tCQ0O1ceNGbdy4UaGhofrwww81ZMiQBi+fPZ0AAADQhg0b9Prrr+vRRx+Vy+VScnKynn76aV166aUeWT57OgEAAKB+/frppZde0ldffaU5c+Zo//79Gjp0qH7961/rhRdeOKOLiCRCJwAAACoJDAzUjTfeqI0bN2rHjh0aNmyYli1bpl69emnMmDENXi6hEwAAADWKiorSAw88oEmTJql169Z6//33G7wszukEAABANdu3b9df/vIXrV+/XjabTb/73e80duzYBi+P0AkAAABJ0sGDB/X6669r1apVysnJUUJCgmbPnq2UlBQFBgae0bIJnQAAANDIkSO1detWtW3bVtdff73Gjh2r6Ohojy2f0AkAAAD5+vpqxYoV+u1vfyu73e7x5RM6AQAAoFWrVpm6fK5eBwAA8IDt27dr9OjRiomJUUhIiDZu3FhlvmEYmjVrli688EJ16NBBKSkp+uabb6q0KSgo0G233aaIiAhFRkZq4sSJKioqqtImIyNDV199tcLDw9WzZ08tWLCg2ljeeustJSQkKDw8XP369Tujq849hdAJAADgASUlJYqNjdVzzz1X4/wFCxZoyZIlmj9/vj744AO1atVKI0aM0LFjx9xtbrvtNn399ddau3atVq9erU8//VT33Xefe35hYaFGjBih8847T1u2bNGTTz6pOXPmaPny5e42n3/+uSZMmKCxY8dq69atuvbaazV27Fh9+eWXZr30OiF0AgAAeEBSUpIefvjhGj+f3DAM/elPf9KkSZN0zTXXKDY2VosXL9YPP/zg3iOamZmpDz/8UC+++KJ+/etfq2/fvpozZ47Wrl2rgwcPSpLeeOMNORwOvfTSS4qJidGIESN0++23a9GiRe6+lixZosTERN1zzz3q3r27ZsyYod69e2vp0qXeKcQp1OucTqfTKZvNVm1a5e+Nk2H1AJoZQ06nk/94vOzE3yjruncZ1N3r2L5YpbHmgNpyjGGc+NstLCyskn/8/Pzk5+dXr3727dun3NxcDRo0yD0tODhYffr00Y4dOzRixAjt2LFDwcHBiouLc7cZNGiQfHx8tGvXLg0ZMkQ7duxQv3791LJlS3ebxMRELViwQD/++KPatGmjL774Qn/4wx+q9D948OBqh/u9rV6hMysry/0LOFl2drZHBmQFl4s3BG9yuQxlZmaqh+GS56+NQ01chkuZmZms615Wsa5Td+9h+2KNim1MY1ZTjrHZbIqMjFRsbGyV8yqnTp2qadOm1Wv5FZ9b3q5duyrT27dvr7y8PHebk+e3aNFCISEh7p/Py8tTRERElTYVP5Obm6s2bdooLy+v2nLatWvn7scq9Qqd0dHRNe7pzM7OVrdu3Uy5vN4bfD7fZPUQmhUfH5u6d+8uHxv7IrzFx+Zzouas617lXtepu9ewfbFGxTamMaotxxiGIYfDoYyMjGp7OlF/9Qqddru9WuisPK+xhk6p5tcEs9ga8brSeJ2oOeu6d9mou9exfbFKY697TTmm4uhuUFDQKfNPXYWFhUmSDh06pPDwcPf0vLw89erVy93m0KFDVX6uvLxcBQUF7p9v3759tTYVz0/Xpn379mf0Gs4U/woCAACYLDIyUmFhYdq6dat7WmFhoXbt2qX4+HhJUnx8vI4ePaq0tDR3m23btsnlcqlPnz7uNp9++qnKysrcbbZs2aLo6Gi1adNGkpSQkFCln4o2Ff1YhdAJAADgAUVFRUpPT1d6erqkExcPpaen67vvvpPNZtOdd96puXPn6p133tGePXv0+9//XuHh4br22mslSd27d1diYqLuvfde7dq1S//85z81ZcoUDR8+XB06dJB04qMqW7ZsqYkTJ+qrr77S2rVrtWTJEt11113ucdxxxx368MMP9dJLL+m///2vZs+erbS0NN12223eL0olfCIRAACAB6SlpSk5Odn9fMaMGZKkMWPGaNGiRbr33ntVUlKi+++/X0ePHtVvfvMbrVmzRv7+/u6fWbp0qSZPnqyUlBTZbDYNHTpUs2fPds8PDg7Wm2++qcmTJ+vyyy9X27ZtNXnyZN18883uNpdccomWLl2qp59+WjNnzlRUVJRee+019ejRw/wi1ILQCQAA4AH9+/dXQUHBKefbbDZNnz5d06dPP2WbkJAQLVu2rNZ+YmNj9e6779baJiUlRSkpKbW28TYOrwMAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdC3q0sgwjCrfT55ns9lkGEaN8xuDAB9f+fv4Wj2M5sPHdWJ98feX/PysHk2zYPj7yzAM1nVv+3ldp+5exPbFEhXbmMaothxTOf/YbDYrhtek2Iw6rCUul0s//fSTN8YDAABwVjnnnHPk48PB4TNV59Dp/oGTkn5hYaFiY2OVkZGhoKAgz48QNaLu3kfNrUHdrUHdvY+aW6O2uleOSITOM1enw+u1Fdpms6moqEg2m41dz15E3b2PmluDuluDunsfNbdGbXXn9+BZxHYAAACYjtAJAAAA051x6PTz89PUqVPlx1WCXkXdvY+aW4O6W4O6ex81twZ19546XUgEAAAAnAkOrwMAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAnDGn02n1EJqVyh9PDTQWhM4mrqyszOohNDtFRUXKy8vT0aNHeSP2ovz8fP373/9Wenq6jhw5YvVwmoXMzEzNnz9fkmS321nfveTf//63xo4dq+PHj1s9FKBe6vTZ62icsrOz9eqrr2rs2LGKiYmxejjNwldffaXJkycrPz9fDodD48eP17hx49SmTRurh9ak7dmzR3fccYfKy8tVVFSkxMREPf744woJCbF6aE3WsWPHNGLECB04cECHDh3SM8884w6edrvd6uE1Wenp6UpOTtaYMWO4mTkaHfZ0NlF79+7Vtddeq5UrV2rZsmXKzMy0ekhNXmZmpoYOHapevXrpySef1JVXXqmVK1fqq6++snpoTdrXX3+toUOHKjExUa+//rruvvtubdmyhb2dJmvZsqU6deqkG2+8UV988YWmTJki6cQeTw79miM9PV1XX321br31Vj333HOSpPLycjkcDvE5L2gM+ESiJqikpEQPPvigHA6HevXqpXXr1ikuLk6///3v1b17d6uH1yQdPXpUEyZM0Hnnnec+3ChJV111lbp27arFixdbOLqmq6CgQDfccIN69+6t2bNnu6f/7ne/0x133KGQkBB16NBBERERFo6y6brvvvsUHR0tu92uV199VVdccYWefvppbdu2TRdffLGCgoKsHmKTkZ+fr969e+vyyy9XamqqysrK9NBDD2nv3r06ePCgEhMTNW7cOEVHR1s9VOCUOLzeBPn7++uyyy6TzWbT6NGjde6552rp0qVavHgxwdMkubm5Ouecc/S73/1OkuRwONSyZUsNGDBAe/futXh0TdexY8c0atQoXXLJJe5pc+fO1datW/XDDz+oRYsWKigo0Ouvv66LLrrIwpE2LRWH0P38/FRaWqoHHnhAkvSXv/xFvXv3lmEY+uyzz+RyueTjwwE1T3A6nbr22mu1efNmbd++XS+88IJKSkp0+eWXKy8vT7t27dK///1vLVy4UJGRkVYPF6gRW4MmyMfHRyNGjND1118vSRo7dqz+7//+T2lpaVq8eLH7UHtZWZl++OEHK4faZFxwwQUaOXKkBgwYIElq0eLE/3Pnnnuujh07VqXtTz/95PXxNVUdOnTQsGHD1LNnT0nSqlWrNGfOHC1fvlwbN27Uyy+/rAsvvFCLFi3S8ePHOQTpIRVBcvDgwfrqq6/k4+OjO++8Uy1atFBeXp769OmjwMBA+fj4cKjdQ9q3b69nnnlGV155pZKTk2UYhlJTUzVp0iQ9++yzuvvuu5Wfn6/PPvvM6qECp0TobGIqrh5t2bKlbDab+/m4ceN0yy23uINnRkaGHn30UY0aNYorIM9QxR0CrrnmGkmSYRjuN+WKK9krws7zzz+vmTNnqry83JrBNiEV63bbtm3d06655hpt2rRJQ4cOVWhoqGJiYhQUFKSjR4/Kz89PNpvNquE2CRUBsqKOfn5++vLLLyVJ99xzjw4cOKBbbrlFOTk5uvvuuyWJPZ0eULGuh4aG6oknntDjjz+uW2+9VaGhoe7fyTXXXCOHw6Hdu3dbOVSgVhxebwL279+v3bt3Kzk52X0Sf8WGvvLz8ePHy2azafny5brhhhtUUFCg9evXcwVkA1Suua+vb5Wa22w2GYYhm82mwMBABQUFyWazadasWe5DvxV7QlE/ta3rTqdTwcHB6tOnj6QT4d8wDAUEBCgqKkoul0s2m43gWU+Va16x57Ki5nFxcYqIiNDIkSP15Zdfav369erYsaMWL16szZs3Kzc3V2FhYRa/gsbp5HW94pSG9u3ba/z48WrVqpWkE6He6XSqpKREkZGRnEaCsxrvfI1cdna2rrrqKp1zzjkqLi7W6NGjq70xVH4+btw4rVq1Sj/99JM2bdrkPiyJuqtLzSv4+/urbdu2mjNnjv74xz/qo48+Uq9evSwaeeN2urqffJsel8ulOXPmaMuWLXr77bfZ49YAp6t5cHCwDh8+rP379+vNN9/UBRdcIEm6/fbbNWHCBG5Z1UA11b1y8AwODq7S3sfHRwsXLtQ333yjfv36WTRq4PS4er0RO3z4sO644w7ZbDYFBwfr+++/1/jx43XDDTdIUrUQVF5erkmTJmnlypX6xz/+QeBsgPrWfOHChXrkkUfUqlUrbdiwQRdffLFFI2/c6lv3jz/+WBs2bNBbb72ltWvXsvenAU5X87KyMvn6+qqkpES5ubnq2rWrJLn38qNh6ruuf/jhh1q/fr3+/ve/6+233+afWpzV2NPZiB0/flytW7fWzTffrA4dOuiFF17QihUrJEk33HBDtb1vLVq0UN++fTV+/HgCZwPVpeaV33Tbtm2ryMhIrV69mrsGnIH61v3w4cOy2+3auHEjdW+g09Xc19dX5eXlatWqlTtwSiJwnqH6rusV54y/++67uvDCC60cOnBa7Ols5A4ePKgOHTpIkr788kstWLBA3377rcaNG6cbb7xR0ok9nJxD6Dl1qXnFXiBJnNfmIXWpe8WtqqQT96utOO8NDcP2xRr1XdeLi4sVGBho2XiBuuIkp0auYsPkdDrVo0cP3X///erSpYtWrlyp119/XZL04IMP6tVXX7VymE1KXWo+adIkLV26VJIInB5Sl7pPnjxZf/7znyWJwOkBbF+sUd91ncCJxoI9nU3Q119/reeff17fffedbDabPvvsM23evFm/+tWvrB5ak0XNrUHdvY+aW4O6oykgdDZSpztZPz09Xddff71KSkq0YcMGxcbGenF0TRM1twZ19z5qbg3qjqaOw+uNRMXNgfPz8yXVfrK+w+Fw3xbpnXfeYcPUQNTcGtTd+6i5Nag7mhtC51kuOztbGzZskN1u11tvvaU777xThw4dqvVnfvrpJ+3YsUNvv/22evTo4aWRNh3U3BrU3fuouTWoO5otA2ctp9NpPPPMM0ZISIjx8MMPGyEhIcaqVatq/RmXy2UYhmEcP37cG0Nscqi5Nai791Fza1B3NGec09kIjBo1Sh999JFuvfVWPffcczV+8s3JDG7QfEaouTWou/dRc2tQdzRHHF4/S1X8L1BWVqbQ0FD169dPr7zyit588033zYFP/n+h8nM2TPVHza1B3b2PmluDuqPZ89IeVdRDxaGUf/3rX8YHH3xg/PTTT4ZhGMZjjz1mhIaGGm+88UaVdvv27bNmoE0INbcGdfc+am4N6g4YBns6zzLGz4dP3n77bY0aNUq7du3SgQMHJJ24CfPEiRN15513as2aNbLZbJo3b56mTJmi4uJii0feeFFza1B376Pm1qDuwM8sjbyo0WeffWZEREQYr776qlFaWlplXmFhofHUU08ZISEhxpVXXml06NDBSEtLs2ikTQc1twZ19z5qbg3qDnAh0VnF+Pm/4VmzZmnPnj36y1/+4p7ndDplt9vdzz/44APl5OToyiuvVNeuXa0YbpNAza1B3b2PmluDugO/aGH1APDLRqniJPEffvjBfdPgiisaKzZMu3fvVvfu3ZWUlMSVjGeAmluDunsfNbcGdQeq45xOC5WWlur48eP6/vvvdfz4cff0jh076vPPP1d+fr77ikbpxM2B165dq88//1wSVzI2BDW3BnX3PmpuDeoO1MKbx/Lxi6+//tq46aabjL59+xrnnnuuMWDAAOORRx4xDMMwioqKjMsuu8zo27evkZuba7hcLqOsrMx44oknjJ49exrfffedxaNvnKi5Nai791Fza1B3oHac02mBPXv26JprrtF1112niy66SCEhIVq1apU2b96syy+/XMuXL1dWVpbuv/9+ZWdn68ILL5Svr6+++uorrV27VhdddJHVL6HRoebWoO7eR82tQd2B0yN0etnhw4c1YsQIDR48WI899liV6evWrdNjjz2m5ORkLVmyRIZhaOnSpTp8+LBat26t5ORkTi5vAGpuDerufdTcGtQdqCPL9rE2U7t37zb69u1r7NmzxygvLzcM48Rn8RqGYfz444/Gc889Z3To0MFYv369lcNsUqi5Nai791Fza1B3oG64kMjLMjIytHfvXvXo0UN2u12GYbg/bzc4OFijRo2Sr6+v9u7dW+XnDHZINxg1twZ19z5qbg3qDtQNodPLKg6jvP3225KqX6kYGRmpLl266ODBg1Wmc0Vjw1Fza1B376Pm1qDuQN0QOr0sIiJC55xzjlavXq39+/e7p7tcLknSjz/+KH9/f/Xu3duqITY51Nwa1N37qLk1qDtQN4ROL+vUqZPmzZunDz/8ULNmzdJXX30lSe5DMQsXLtQPP/ygvn37WjnMJoWaW4O6ex81twZ1B+qGq9ct4HQ6tXLlSk2ZMkVdu3bVJZdcorCwMO3bt0+bN2/W3//+d26f4WHU3BrU3fuouTWoO3B6hE4L7dy5Uy+++KKysrIUHBys2NhY3X777brgggusHlqTRc2tQd29j5pbg7oDp0botJjT6ZSPj49sNpv783hhLmpuDerufdTcGtQdqBl/CRar2DBJXMnoLdTcGtTd+6i5Nag7UDP2dAIAAMB07OkEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAw3f8DD4CNpgvAyDsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mco = [None,None,'yellow','blue',None]\n", + "mpf.plot(df,volume=True,style='yahoo',type='ohlc',marketcolor_overrides=mco)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "#### We can also fully customize indivual candles using a marketcolors object.\n", + "#### Notice that with the approach, we do not have to know whether a candle is up or down;
a single marketcolors object can specify different colors for up candles and down candles:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHaCAYAAABCYPJ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQH0lEQVR4nO3de1xUdf7H8fcwIF5BMAUzAUkilDLXBVfTNM12Ky+sl9Lykv3ssm129ZZ2t0xLLdvUNf11kVbdMm1Ty8oy3awtdZcWL7mwKtpPBEWCEHVg5vz+ICYRRMA55wi8nj18THPOl/P9ns8MZ96c2zgMwzAEAAAAmMjP7gEAAACg7iN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOn8q9LI4/F4/9/hcJg2GAAAgAvF6bcy9/NjP935qlLolKSffvrJzHEAAABckJo1a2b3EOqEKodOSWrYsGG5PZ1ut1tpaWmKiYmR0+n06eBwdtTdetTcHtTdHtTdetTcHpXV3TAMnTx50qaR1T1VCp2lQdPhcJQLnQ6HQ4ZhVDgP5qHu1qPm9qDu9qDu1qPm9qhK3Xk9fIMTFAAAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6Kyl8vLy9PXXXysvL8/uoQCmKsrLlPvbhSrKy7R7KACA80DorKXy8vL0zTffEDpR5xXnH5axbZGK8w/bPRQAwHkgdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAMAHtmzZouHDhysuLk4hISFat25dmfkzZ85UYmKi2rRpo6ioKCUlJWnbtm1l2owYMULx8fEKDw/X5ZdfrrvvvluZmZmV9nvy5ElNmDBB0dHRuuSSSzR69GhlZ2f7fP3OF6ETAADABwoLCxUfH68XX3yxwvmXXnqpXnjhBW3ZskUfffSRIiIiNHjwYB09etTbpmfPnnrjjTf07bff6q233tK+ffs0ZsyYSvudOnWq1q9frzfffFNr167V4cOHNWrUKJ+umy/4V6ex2+2Ww+EoN+30R1jD4/F4H6m9NXiv24P3uj14v1uPmtujsrobhiFJys/PL5N/AgMDFRgYWK59v3791K9fv7P2NWzYsDLPn332WSUnJ2vnzp3q1auXJOnee+/1zo+IiNCDDz6okSNHqqioSAEBAeWWmZeXp7fffluLFy/WNddcI0l69dVX1bVrV23dulUJCQlnHY/VqhU609LSvC/AmdLT030yIFRN6W7zgwcP6tSpUzaPpn7hvW4t48hBSSXvdcfJpjaPpv7h/W49am6PiurucDgUGRmp+Ph4FRQUeKdPnjxZU6ZMOa/+XC6X3nrrLQUFBSk+Pr7CNrm5uVq5cqUSExMrDJyS9N1336moqEi9e/f2Trvssst0ySWX1O7QGRMTU+GezvT0dLVv315Op9Ong8PZlf6F1bZtW0VFRdk7mHqC97o9jjcs0H6VvNebRMbaPZx6g/e79ai5PSqru2EYcrlc2rFjR7k9nTW1fv16jRs3ToWFhQoPD9fq1avVokWLMm2efPJJLVmyRIWFhUpISNCKFSvOurysrCw1aNBAwcHBZaa3atVKWVlZNR6nGaoVOp1OZ7nQefo8fkms4+fn532k7tbivW4t3uv24v1uPWpuj4rqXnp0Nygo6Kz5p7p69uypzZs3KycnR0uXLtXYsWO1YcMGtWzZ0tvm/vvv16hRo3Tw4EHNmjVL99xzj/7617/6bAx24UIiAAAAizRp0kTR0dFKSEjQn/70J/n7+ys5OblMmxYtWqh9+/a69tpr9b//+7/69NNPtXXr1gqXFxYWJpfLpby8vDLTs7OzFRYWZtp61AShEwAAwCYej0cul6vS+ZLO2qZTp04KCAjQpk2bvNPS0tL0ww8/XFDnc0rVPLwOAACAihUUFGjfvn3e5xkZGUpNTVXz5s0VGhqqOXPm6IYbblBYWJiOHTumJUuWKDMzU4MGDZIkbdu2Tf/85z/VrVs3BQcHa//+/XruuefUrl07b4A8dOiQkpKStHDhQnXp0kXBwcEaOXKkpk2bppCQEDVr1kyTJk1SQkICoRMAAKAuSklJ0YABA7zPp02bJqnkhu9z585VWlqaVqxYoZycHIWGhqpz58768MMPFRcXJ0lq1KiR1q5dq5kzZ6qwsFBhYWHq27evJkyY4L14qbi4WGlpaTpx4oS3nxkzZsjPz0+jR4+Wy+VSnz59NHv2bAvXvGoInQAAAD7Qo0cP5ebmnnX+medunqljx4764IMPKm0TERFRro+GDRtq9uzZF2TQPB3ndAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hE6iivLw8ff3118rLy7N7KIDpivIy5f52oYryMu0eCoA6gtAJVFFeXp6++eYbQifqheL8wzK2LVJx/mG7hwKgjiB0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAPrBlyxYNHz5ccXFxCgkJ0bp168rMnzlzphITE9WmTRtFRUUpKSlJ27Zt884/cOCAxo8fr06dOql169bq3Lmznn/+eblcrkr77d+/v0JCQsr8e+ihh0xZx/Phb/cAAAAA6oLCwkLFx8dr5MiRGjVqVLn5l156qV544QVFRUXpxIkTWrhwoQYPHqx//vOfuuiii/Sf//xHHo9HL730kqKjo7Vr1y49+OCDKiws1PTp0yvte8yYMXr00Ue9zxs1auTz9TtfhE4AAAAf6Nevn/r163fW+cOGDSvz/Nlnn1VycrJ27typXr166brrrtN1113nnR8VFaX09HS9/vrr5wydjRo1UlhY2PmtgMmqFTrdbrccDke5aac/whoej8f7SO2tQc3tQd3tQd2tx+epPSqru2EYkqT8/Pwy+ScwMFCBgYHn1a/L5dJbb72loKAgxcfHn7Vdfn6+QkJCzrm8d999V++8845atWql3/3ud5o4caIaN258XmP0tWqFzrS0NO8LcKb09HSfDAhVk52dLUk6ePCgTp06ZfNo6gdqbg/jyEFJJXV3nGxq82jqD+puHz5P7VFR3R0OhyIjIxUfH6+CggLv9MmTJ2vKlCk16mf9+vUaN26cCgsLFR4ertWrV6tFixYVtt27d69ee+21c+7lHDp0qNq2bavw8HDt3LlTTz/9tNLT05WcnFyjMZqlWqEzJiamwj2d6enpat++vZxOp08Hh7Mr/Qurbdu2ioqKsncw9QQ1t8fxhgXar5K6N4mMtXs49QZ1tx6fp/aorO6GYcjlcmnHjh3l9nTWVM+ePbV582bl5ORo6dKlGjt2rDZs2KCWLVuWaXfo0CENHTpUSUlJGjNmTKXLvP32273/37FjR4WHh2vQoEHat2+f2rVrV+Ox+lq1QqfT6SwXOk+fxy+Jdfz8/LyP1N0a1Nwe1N0e1N0+fJ7ao6K6lx7dDQoKOmv+qa4mTZooOjpa0dHRSkhIUJcuXZScnKyHH37Y2yYzM1MDBw5UYmKiXn755Wr30aVLF0kle0ovpNDJLZMAAABs4vF4ytwS6dChQxowYIA6deqk+fPne/8ArI7U1FRJuuAuLOLqdQAAAB8oKCjQvn37vM8zMjKUmpqq5s2bKzQ0VHPmzNENN9ygsLAwHTt2TEuWLFFmZqYGDRok6ZfA2bZtW02fPl1Hjx71Lqs0QB46dEhJSUlauHChunTpon379mnlypXq16+fQkNDtWPHDk2bNk3du3ev9AIlOxA6AQAAfCAlJUUDBgzwPp82bZokacSIEZo7d67S0tK0YsUK5eTkKDQ0VJ07d9aHH36ouLg4SdIXX3yhvXv3au/everYsWOZZefm5kqSiouLlZaWphMnTkiSAgIC9MUXX2jhwoUqLCxUmzZtNGDAAE2YMMGKVa4WQicAAIAP9OjRwxsOK3Kuq8lvvfVW3XrrrZW2iYiIKNPHJZdcUu6bjy5UnNMJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJjO3+4B1AVpx7NUUHzS0j6zjh+WJO05flg/5ln7t0NT/4aKaRJmaZ9AfZWWJhUUWN+vJ9uhAEl79jjkl2tt302bSjEx1vYJwHyEzvOUdjxLHTc9bnm/jU5KsbHSX//zhk4csLx77ew1neAJmCwtTerYMcCWvls0itSQDk/qveRI5Zywfgw7dxYRPIE6htB5nkr3cDb3byR/h9Oyfo0AaX/HYjV2+quJZb1KxYZbPxafsHzPLlAfle7hnJycqoi445b2bciQ232drnTul0MZlvV7YHcTzRp1hS17dwGYi9DpI/4OpwL8LAydkvw8hpx+Tjks61WSx8rOAEhSRNxxxfzqJ0v7NGSouLhY/v7+cli7lQFQR3EhEQAAAExH6AQAAIDpCJ0AAAAwHaETAADAB7Zs2aLhw4crLi5OISEhWrduXZn5M2fOVGJiotq0aaOoqCglJSVp27Zt3vkHDhzQ+PHj1alTJ7Vu3VqdO3fW888/L5fLVWm/J0+e1IQJExQdHa1LLrlEo0ePVnZ2tinreD4InQAAAD5QWFio+Ph4vfjiixXOv/TSS/XCCy9oy5Yt+uijjxQREaHBgwfr6NGjkqT//Oc/8ng8eumll/T111/rueee0xtvvKHp06dX2u/UqVO1fv16vfnmm1q7dq0OHz6sUaNG1WgdXC6X0tLSVFxcXKOfrwxXrwMAAPhAv3791K9fv7POHzZsWJnnzz77rJKTk7Vz50716tVL1113na677jrv/KioKKWnp+v1118/a/DMy8vT22+/rcWLF+uaa66RJL366qvq2rWrtm7dqoSEhCqNvbCwUJMnT9by5cslSdu2bVNUVJQmTZqk1q1b66GHHqrScipTrdDpdrvlcDjKTTv9sb5xe0ruIWT8/M8yhuF9NBzW3c6kdB3dHk+9e809P7/Wnnq47qXS09P1008W37rnyG4FStq9e7ccRy3tWs2aNVP79u2t7fQ0bnfJ77bx83+WMn55NBzW9V26nm63R263xetss/r+eWqXyupu/PxZm5+fXyb/BAYGKjAw8Lz6dblceuuttxQUFKT4+PiztsvPz1dISMhZ53/33XcqKipS7969vdMuu+wyXXLJJdUKnc8884x27NihNWvWlAnHvXv31syZM60PnWlpad4X4Ezp6ennPZjaKONUyTkTbnex/DzWbyCt3ji5jZL+MvZnqHHgCUv7tlvp+TEHDx7UqVOnbB6N9TIyMjRo0CDL+23RSBrSQXov+X+UY8Nb7m9/+5siIyOt71hSRkYjSZfJ7XabcqirKord1vZbuk3LyMhQ48b1axtTqr5+ntqtoro7HA5FRkYqPj5eBad9Y8HkyZM1ZcqUGvWzfv16jRs3ToWFhQoPD9fq1avVokWLCtvu3btXr732WqWH17OystSgQQMFBweXmd6qVStlZWVVeVzr1q3T66+/roSEhDIB+/LLL9f+/furvJzKVCt0xsTEVLinMz09Xe3bt5fTad3N0S8UhfmNpEzJ6fSX08Kbw8sw5Ha7S2pu4Z5Oj8cheaTIqEjFBkVY1u+FoPSv2rZt2yoqKsrewdigsLBQkpQcnKw4/zjL+jVkyPNfj+5s7CdHY+ve67uLd2tU3ii1bNlSsbGxlvV7usLCkvV1Op3y97f4bCijJHD6O/1l5b3hSz9HIiMjFRtb//Z01ufPU7tUVnfDMORyubRjx45yezprqmfPntq8ebNycnK0dOlSjR07Vhs2bFDLli3LtDt06JCGDh2qpKQkjRkzpsb9VVVOTk65MUjS8eO++za0am3FnE5nudB5+rz6+Evi9Cu5FsshS7fLvxxSd1j7XSGlfTn9/Ord6+3382vtVw/XXfolDMQFxOlXAb+yrmNDKvazPvyU9mXntq20W8fP/1nJe0jdIUv7Lu3L6fRTPfw1k1R/P0/tVlHdS4/uBgUFnTX/VFeTJk0UHR2t6OhoJSQkqEuXLkpOTtbDDz/sbZOZmamBAwcqMTFRL7/8cqXLCwsLk8vlUl5eXpm9ndnZ2QoLC6vyuK666ip98sknuuuuuyTJu77JyclKTEysxhqeHRcSAQAA2MTj8ZS5JdKhQ4c0cOBAderUSfPnz/fu8DibTp06KSAgQJs2bdLAgQMllZwO+cMPP1T5fE5Jevzxx3XzzTfr+++/V3Fxsf785z9rz549+vbbb7V27dqardwZuGUSAACADxQUFCg1NVWpqamSSs5NTk1N1cGDB3X8+HE988wz2rp1qw4cOKCUlBTdd999yszM9J4vf+jQIQ0YMECXXHKJpk+frqNHjyorK6vMuZmHDh1SYmKitm/fLkkKDg7WyJEjNW3aNP39739XSkqK/vjHPyohIaFaobNbt27avHmz3G63OnTooI0bN+qiiy7Sxx9/rKuuuson9WFPJwAAgA+kpKRowIAB3ufTpk2TJI0YMUJz585VWlqaVqxYoZycHIWGhqpz58768MMPFRdXcp78F198ob1792rv3r3q2LFjmWXn5uZKkoqLi5WWlqYTJ3650G7GjBny8/PT6NGj5XK51KdPH82ePbva42/Xrp3mzZtX7Z+rKkInAACAD/To0cMbDiuSnJxc6c/feuutuvXWWyttExERUa6Phg0bavbs2TUKmqU++eQTOZ1O9e3bt8z0zz77TB6Pp9L7j1YVh9cBAADquaeffvqs9yp9+umnfdIHoRMAAKCe27t3ry6//PJy0y+77DLt27fPJ31weB2104ED0s/3jbSK4/DhkseMDMmOm8M3bixF1K97owIArBEUFKT9+/cr4ozPmb1796px48Y+6YPQidrnwAH5D73Z8m4v8vfXwIta6KKpj8nfrm+HWfkOwRMA4HM33HCDHn30Ub399ttq166dpJLA+dhjj+mGG27wSR+ETtQ+P+/hNJo2lSz8lpZgGbqp4Lj8mzaRYfGNulVcLEdBgeV7dwEA9cPTTz+tYcOGKTExURdffLGkktszdevWrdKv4awOQidqL39/S0OnZPzSr9WhEwAAEwUHB+vjjz/Wxo0btWPHDjVs2FAdO3bU1Vdf7bM+CJ0AAACQw+FQnz591KdPH1OWT+gEAACohxYtWqQxY8aoYcOGWrRoUaVt77777vPuj9AJAABQDy1YsEDDhg1Tw4YNtWDBgrO2czgchE4AAADUzHfffVfh/5uFm8MDAADUY0VFRercubP27Nljaj+ETgAAgHosICBApyz40hMOrwOolt3Fu63t0JDcbrecHqeld6qyfD0BwEb/8z//o3nz5umVV16Rv0m3IyR0AqiSpk2bSpJG/TjK0n5bNJKGdJDe2yXlnLC0a0m/rDdgtry8PH399dcKDw9XaGio3cNBPfOvf/1Lmzdv1saNG9WhQ4dyX32ZnJx83n0QOgFUSUxMjHbu3KmCggJL+/Vk71LAmrEa+9Qb8mvVwdK+mzZtqpiYGEv7RP2Vl5enb775Rn369CF0wnLBwcEaMGCAqX0QOgFUmR0BrGC/W3vXSLGxsWoa1dny/gGgLvN4PHrllVeUnp6uoqIi9ezZU1OmTFGjRo183hcXEgEAANRTc+bM0fTp09W0aVO1bt1ar732miZOnGhKX4ROAACAemrFihWaPXu23nvvPf3lL3/R8uXL9e6778rj8fi8L0InAABAPfXDDz+oX79+3ue9e/eWw+FQZmamz/sidAIAANRTxcXFatiwYZlpAQEBKi4u9nlfXEgEAABQTxmGoXvvvVeBgYHeaSdPntTDDz9c5rZJ3DIJAAAANTZixIhy026++WZT+iJ0AgAA1FPz58+3rC/O6QQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOn4RiIAAM504IBUWGhpl47Dh0seMzKkU6cs7VuNG0sREdb2iXqH0AkAwOkOHJD/UHO+e7oyF/n7a+BFLXTR1MfkX1xsef/FK98heMJUhE4AAE738x5Oo2lTyd+6j8lgGbqp4Lj8mzaRIYdl/aq4WI6CAsv37KL+IXQCAFARf39LQ6dk/NKvlaETsAgXEgEAAMB0hE4AAACYjtAJAAAA0xE6AQAAfGDLli0aPny44uLiFBISonXr1pWZP3PmTCUmJqpNmzaKiopSUlKStm3bVqbN7Nmzdf311+viiy9WZGRklfq99957FRISUubf0KFDfbZevkLoBAAA8IHCwkLFx8frxRdfrHD+pZdeqhdeeEFbtmzRRx99pIiICA0ePFhHjx71tikqKlJSUpLuuOOOavXdt29fff/9995/S5YsOa91MQNXrwMAAPhAv3791K9fv7POHzZsWJnnzz77rJKTk7Vz50716tVLkvToo49KkpYtW1atvgMDAxUWFlbNEVurWqHT7XbL4XCUm3b6Y33j9ngkldzowrCyY8PwPhoO626tUbqObo/Httfc8XPNra76aSWXw2Hpq63S9fR4PDLq2e+a5+fX22Pje84ubnfJ77bx83+WMn55NCx8v5eup9vtkdtt9e9Zifq3jam/2xep8hxj/Pyi5Ofnl8k/gYGBCgwMPK9+XS6X3nrrLQUFBSk+Pv68liVJX375pWJiYtS8eXP17NlTjz32mEJDQ897ub5UrdCZlpbmfQHOlJ6e7pMB1TYZp7IlSW53sfw81m8grf4Qdhsl/WXsz1DjwBOW9l2q0f4MxUgqLrZn4+h2W/9NISp2K0Aldben6vYxjp+Q49d362DOCTlO7rF7OJbKyGgk6TK53W4V2/ANNZJUbPH7vXSblpGRocaN2cZYoh5vX05XUY5xOByKjIxUfHy8CgoKvNMnT56sKVOm1Kif9evXa9y4cSosLFR4eLhWr16tFi1a1HjcUsmh9f79+ysyMlL79+/X9OnTNWzYMH3yySdyOp3ntWxfqlbojImJqXBPZ3p6utq3b39BrZhVCvMbSZmS0+kvp5+F628YcrvdJTW3cE+nx+OQPFJkVKRig+z5urTStfX3d1p642bDKPkwcDr9rSx5GZFRkTJiY+3p3CZud3ulN2lZL7cxhYUlbzSn0yl/S29SLskoCZz+Tn9L71Ne+hpHRkYqNtamPZ0/P9a3bUx93L5IlecYwzDkcrm0Y8eOcns6a6pnz57avHmzcnJytHTpUo0dO1YbNmxQy5Yta7zMIUOGeP+/Y8eO6tixozp37qwvv/zSe9j+QlCt3yan01kudJ4+r759IEiS06/kWiyHrP3+CO8hdYfD0n5L+3L6+dn3evuVXv9mbdVLD3eVlN7qT4SS/vz8/KR6+Hsm1c9tTOnqOn7+z0reQ+oOWdp3aV9Op599b/V6t41h+yJVvI0pPbobFBR01vxTXU2aNFF0dLSio6OVkJCgLl26KDk5WQ8//LBPli9JUVFRatGihfbu3XtBhU6uXgcAALCJx+ORy+Xy6TL/7//+T8eOHbvgLiwidAIAAPhAQUGBUlNTlZqaKqnk3OTU1FQdPHhQx48f1zPPPKOtW7fqwIEDSklJ0X333afMzEwNGjTIu4yDBw8qNTVVP/zwgzwej3d5p59TmpiYqLVr13r7fPzxx73L3bRpk2677TZFR0erb9++1hbgHLhlEgAAgA+kpKRowIAB3ufTpk2TJI0YMUJz585VWlqaVqxYoZycHIWGhqpz58768MMPFRcX5/2Z559/XsuXL/c+v+aaayRJa9asUY8ePSSVXNidn58vqeS0gF27dmnFihXKy8tTeHi4+vTpo6lTp573Ffa+RugEAADwgR49eig3N/es85OTk8+5jAULFmjBggWVtjm9j0aNGum9996r+iBtxOF1AAAAmI7QCQAAANNxeN1Hig235Dl3O18xVHKjdo/H2hupFBsX0LdVWH6zbEPy3iza4lsm2XRjcAAAfIXQeZ6a+jeUJP1YbO33ODQ6KcXuk/a0k040tLRrSb+sty0aN5YkOU67ks8KP/r764uLWqj30Rw1tysE/rzuAADUNoTO8xTTJEw7e01XQfFJS/vNOnhIq9a/oWd+O1ZhbS+2tO+m/g0V08TGe39FRKh45TtSYaGl3R49fFgfLFum+IcfUtPwcEv7llQSOCPs+RYoAADOF6HTB+wIYPuOlRzLj20SrnbBkZb3bzsbwpfx860njMhIqV07y/sHAKA240IiAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdNZSwcHB6tq1q4KDg+0eSr1BzQEAqDlCZy0VHBysbt26EYAsRM0BAKg5QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAADwgS1btmj48OGKi4tTSEiI1q1bV2b+zJkzlZiYqDZt2igqKkpJSUnatm1bmTazZ8/W9ddfr4svvliRkZFV6tcwDM2YMUOXX365WrduraSkJP33v//12Xr5CqETAADABwoLCxUfH68XX3yxwvmXXnqpXnjhBW3ZskUfffSRIiIiNHjwYB09etTbpqioSElJSbrjjjuq3O+8efO0aNEizZ07V59++qkaN26sIUOG6OTJk+e9Tr7kX53GbrdbDoej3LTTH2EN6m49am6P+lx3t7tke2v8/J+ljF8eDYd1fZeup9vtkdtt8Tr/zOHxlPxPcbFkYd0NQ5LbLcOQzvioNVdxye+Wx+ORUS9/z86+jTGMktc/Pz+/TP4JDAxUYGBgufb9+vVTv379ztrXsGHDyjx/9tlnlZycrJ07d6pXr16SpEcffVSStGzZsiqN3zAM/fnPf9aECRN04403SpIWLlyo2NhYrVu3TkOGDKnScqxQrdCZlpbmfQHOlJ6e7pMBoXqou/WouT3qY90zMhpJukxut1vFxcW2jKHYbW2/pR/8GRkZatz4hKV9l2pwOEuXS3IUFFjab56/v764qIV6H81Rcxte772Hs+SyvNcLR0XbGIfDocjISMXHx6vgtPfD5MmTNWXKlPPqz+Vy6a233lJQUJDi4+NrvJyMjAxlZWWpd+/e3mnBwcHq0qWLtm7dWntDZ0xMTIV7OtPT09W+fXs5nU6fDg5nR92tR83tUZ/rXlhYsr11Op3y96/W5vr8GSWB09/pL1m41630NY6MjFRsrD17OhUbK9c7K6TCQku7zcrM1Ad//aviHrhfjVu3trRvNW6sdm3bWtvnBaKybYxhGHK5XNqxY0e5PZ01tX79eo0bN06FhYUKDw/X6tWr1aJFixovLysrS5LUsmXLMtNbtWql7OzsGi/XDNXaijmdznKh8/R59e0D4UJA3a1Hze1RH+teurqOn/+zkveQukOW9l3al9PpJ1tf7qgoy7v0a9So5DE6Wn7t2lnef31X0Tam9OhuUFDQWfNPdfXs2VObN29WTk6Oli5dqrFjx2rDhg3lQmNdxIVEAAAAFmnSpImio6OVkJCgP/3pT/L391dycnKNlxcWFiZJOnLkSJnp2dnZatWq1XmN1dcInQAAADbxeDxyuWp+Nm1kZKTCwsK0adMm77T8/Hxt375dCQkJvhiiz1h8khAAAEDdVFBQoH379nmfZ2RkKDU1Vc2bN1doaKjmzJmjG264QWFhYTp27JiWLFmizMxMDRo0yPszBw8e1I8//qgffvhBHo9HqampkqR27dqpadOmkqTExEQ98cQT6t+/vxwOh+655x7Nnj1b0dHRioyM1IwZMxQeHq6bbrrJ2gKcA6ETAADAB1JSUjRgwADv82nTpkmSRowYoblz5yotLU0rVqxQTk6OQkND1blzZ3344YeKi4vz/szzzz+v5cuXe59fc801kqQ1a9aoR48ekkruJpSfn+9t88ADD6iwsFAPPfSQ8vLy9Jvf/EYrV65Uw4YNTV3f6iJ0AgAA+ECPHj2Um5t71vlVOXdzwYIFWrBgQaVtzuzD4XBo6tSpmjp1atUGahPO6QQAAIDpCJ0AAAAwHYfXAeACd2B3E8v7NGTI7XaX3J/Zwvt02rGuAKxB6ASAC9TPF6pq1qgrLO+7RaNMDemwSO/tuls5Jyz+dhz9su4A6g5CJwBcoGJipJ07i2TxV4BLkjzZGQpY87TGPvU7+bW6yNK+mzYtWXcAdQuhEwAuYHaFr4L9hvaukWJjDTWNsmcMAOoWLiQCAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAXACCg4PVtWtXBQcH2z0UwBSETgAALgDBwcHq1q0boRN1FqETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAUI5/ULgcv75b/kHhdg8FQB1B6AQAlBMQ3FrOxD8oILi13UMBUEcQOgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAwAe2bNmi4cOHKy4uTiEhIVq3bl2Z+TNnzlRiYqLatGmjqKgoJSUladu2bWXa5Obm6s4771RERIQiIyM1fvx4FRQUVNpv//79FRISUubfQw895PP1O1+ETgAAAB8oLCxUfHy8XnzxxQrnX3rppXrhhRe0ZcsWffTRR4qIiNDgwYN19OhRb5s777xT33//vVatWqUVK1boq6++0oMPPnjOvseMGaPvv//e++/pp5/21Wr5jL/dAwAAAKgL+vXrp379+p11/rBhw8o8f/bZZ5WcnKydO3eqV69e2rNnjz777DN9/vnn6ty5syRp1qxZuvnmmzV9+nS1bn32W5g1atRIYWFhvlkRk1QrdLrdbjkcjnLTTn+ENai79ai5Pai7Pai79ai5PSqru2EYkqT8/Pwy+ScwMFCBgYHn1a/L5dJbb72loKAgxcfHS5K2bt2q4OBgb+CUpN69e8vPz0/bt29X//79z7q8d999V++8845atWql3/3ud5o4caIaN258XmP0tWqFzrS0NO8LcKb09HSfDAjVQ92tR83tQd3tQd2tR83tUVHdHQ6HIiMjFR8fX+a8ysmTJ2vKlCk16mf9+vUaN26cCgsLFR4ertWrV6tFixaSpKysLLVs2bJMe39/f4WEhCgrK+usyxw6dKjatm2r8PBw7dy5U08//bTS09OVnJxcozGapVqhMyYmpsI9nenp6Wrfvr2cTqdPB4ezo+7Wo+b2oO72oO7Wo+b2qKzuhmHI5XJpx44d5fZ01lTPnj21efNm5eTkaOnSpRo7dqw2bNhQLmxWx+233+79/44dOyo8PFyDBg3Svn371K5duxov19eqFDpP3+V8Zuh0OBzy8/OTw+EoNw/moe7Wo+b2oO72oO7Wo+b2qKzupUd3mzRpIn9/31wG06RJE0VHRys6OloJCQnq0qWLkpOT9fDDDyssLExHjhwp0764uFi5ubnVOl+zS5cukqS9e/fWvtBZyuVyVTg9IiJCRUVFKioq8smgUDXU3XrU3B7U3R7U3XrU3B521t3j8XjzVUJCgvLy8pSSkqKrrrpKkrR582Z5PB5vkKyK1NRUSbrgLiyqVuhs2LBhhYfX09LSFBMTw+EAC1F361Fze1B3e1B361Fze1RWd8MwdPLkySovq6CgQPv27fM+z8jIUGpqqpo3b67Q0FDNmTNHN9xwg8LCwnTs2DEtWbJEmZmZGjRokCQpNjZWffv21QMPPKC5c+eqqKhIkyZN0uDBg71Xrh86dEhJSUlauHChunTpon379mnlypXq16+fQkNDtWPHDk2bNk3du3f3XqB0oahS6Cx9ESra9exwOGQYBocDLEbdrUfN7UHd7UHdrUfN7VGVulf1j4CUlBQNGDDA+3zatGmSpBEjRmju3LlKS0vTihUrlJOTo9DQUHXu3Fkffvih4uLivD+zePFiTZw4UUlJSXI4HBo4cKBmzpzpnV9cXKy0tDSdOHFCkhQQEKAvvvhCCxcuVGFhodq0aaMBAwZowoQJ1a6F2bhPJwAAgA/06NFDubm5Z51flavJQ0JCtGTJkrPOj4iIKNPHJZdcUu6bjy5UfCMRAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMxzcSAYDJRm17TTmu43YPo5oMeTyG/L5ZL6n2fCVjiwZNlPzru+weBoAKEDoBwGQ5ruNqFBho9zDqhZxTtS3cA/UHh9cBAABgOkInAAAATMfhdQBAneN3z73SsWN2D6Na/CR1MDzyc9TC/UGhofL8eYHdo8AFjtAJAKh7jh2To83Fdo+i2px2D6CGjP87ZPcQUAvUwj+nAAAAUNuwpxO2qW2Hvzj0BQBAzRE6YZ9aePiLQ18AANRMLdxlAwAAgNqG0AkAAADTEToBAABgOkInAACAD8ydO1d9+vRR27ZtFRMTo9tuu01paWll2pw8eVITJkxQdHS0LrnkEo0ePVrZ2dll2hw8eFA333yzLr74YsXExOjxxx9XcXFxmTZffvmlevXqpbCwMP3qV7/SsmXLyo1n8eLFuvLKKxUeHq7rrrtO27dv9/1KVwOhEwAAwAe++uorjRs3Tp988olWrVqloqIiDR48WMePH/e2mTp1qtavX68333xTa9eu1eHDhzVq1CjvfLfbrVtuuUVFRUX6+OOPtWDBAi1fvlwzZszwtsnIyNAtt9yinj17avPmzbrnnnt0//3367PPPvO2WbVqlR577DFNnjxZX3zxheLj4zVkyBAdOXLEmmJUgKvXgXpk1LbXlOM6fu6GFxRDHo8hv2/WS3LYPZhqadGgiZJ/fZfdwwBgkZUrV5Z5vmDBAsXExCglJUVXX3218vLy9Pbbb2vx4sW65pprJEmvvvqqunbtqq1btyohIUGff/659uzZo/fff1+tWrXSFVdcoalTp+qpp57SlClT1KBBA73++uuKiIjQs88+K0mKjY3VP/7xDy1cuFB9+/b19j169Gjddtttkkr2wn7yySd6++239dBDD1lYlV9UK3S63W45HI5y005/hDXqQt3ZzW4tt9utHFeBGgU2tHso9UbOqYKff0cNu4dSjxhyu91sX2xQWz+PKvs8NYyS3938/Pwy+ScwMFCBgYHnXHZ+fr4kKSQkRJL03XffqaioSL179/a2ueyyy3TJJZd4Q+fWrVvVoUMHtWrVytumb9++euSRR/T999/ryiuv1NatW8sso7TNo48+KklyuVxKSUkpEy79/PzUq1cvbd269ZzjNku1QmdaWpr3BThTenq6TwaE6qnNde9geGrtfS9rG4/h0Z49e+TxEH6s5PEY1N1ipTVn+2Kt0m1MbVbR56nD4VBkZKTi4+NVUFDgnT558mRNmTKl0uV5PB49+uij6tq1qzp06CBJysrKUoMGDRQcHFymbatWrZSVlSVJys7OLhM4Jally5beny9tUzrt9DY//fSTTpw4oR9//FFut7vCNmeeY2qlaoXOmJiYCvd0pqenq3379nI6+RW3Sl2oe638Zp9ays/hp9jY2J8PUcMqfn4O6m4xb83ZvliqdBtTG1X2eWoYhlwul3bs2FFuT+e5TJgwQbt379ZHH33k8zHXVtUKnU6ns1zoPH1ebQ0/tRl1R1WVvE9q1zmRtZ+DulvOwTbRJrW97hV9npYe3Q0KCjpr/qnIxIkT9fHHH+vDDz9UmzZtvNPDwsLkcrmUl5dXZm9ndna2wsLCJJXs9TzzKvPSi39Ob3PmBUFHjhxRs2bN1KhRI++6VNTmzL2oVuJCInFxhdW4uAIAUBcZhqFJkyZp3bp1WrNmjSIjI8vM79SpkwICArRp0yYNHDhQUsmpiz/88IMSEhIkSQkJCZozZ46OHDniPTy+ceNGNWvWzLs3OSEhQZ9++mmZZW/cuFGJiYmSpAYNGuiqq67Spk2bdNNNN0kqOdy/efNmjRs3zrwCnAOhU1KO67gaVWFXOXwj51RtC/gAAJzbhAkTtHLlSi1btkxNmzb1noMZFBSkRo0aKTg4WCNHjtS0adMUEhKiZs2aadKkSUpISPCGzj59+ig2Nlb33HOPnnrqKWVnZ+u5557TuHHjvIf177jjDi1ZskRPPPGERo4cqc2bN+v999/XX//6V+9Y7r33Xt17773q3LmzfvWrX2nhwoU6fvy492p2OxA6AQAAfOD111+XJPXv37/M9Pnz5+vWW2+VJM2YMUN+fn4aPXq0XC6X+vTpo9mzZ3vbOp1OrVixQo888oh++9vfqnHjxhoxYoSmTp3qbRMZGam//vWvmjp1qhYtWqSLL75Yr7zyivd2SZI0ePBgHT16VDNmzFB2drauuOIKrVy5ksPrAAAAtV1ubu452zRs2FCzZ88uEzTPFBERoXfffbfS5fTo0UObN2+utM1dd92lu+6q2elsX331ld58803t379fb775pi6++GKtWLFCkZGR6tatW42WyeV9AAAA8Prggw80dOhQNWrUSP/+97/lcrkkldx3dO7cuTVeLqETAAAAXrNnz9bcuXM1b948BQQEeKf/5je/0b///e8aL5fQCQAAAK/09HR179693PSgoCDl5eXVeLmETgAAAHi1atVKe/fuLTf9H//4h6Kiomq8XEInAAAAvEaPHq1HH31U27Ztk8PhUGZmpt555x09/vjjuuOOO2q8XK5eBwAAgNdDDz0kj8ejpKQkFRYW6qabblJgYKDuu+++Gl8NLxE6AQAAcBqHw6EJEybo/vvv1969e3X8+HHFxsaqadOm57VcQicAAADKadCggS6//HKfLY/QCQAAAK+TJ0/qtdde09///ncdPXpUHo+nzPxNmzbVaLmETgAAAHiNHz9eGzdu1MCBA9WlSxc5HA6fLJfQCQAAAK+PP/5Y77zzjn7zm9/4dLncMgkAAABeF1988XlfNFQRQicAAAC8pk+frqeeekoHDhzw6XI5vA4AAACvzp0769SpU+rcubMaN24sf/+ycXHfvn01Wi6hEwAAAF7jxo1TZmamHn/8cbVq1YoLiQAAAOB73377rT7++GNdccUVPl0u53QCAADAKyYmRidPnvT5cgmdAAAA8HryySf12GOP6csvv9SxY8eUn59f5l9NcXgdAAAAXkOHDpUkDRo0qMx0wzDkcDiUk5NTo+USOgEAAOC1Zs0aU5bL4XUAAAAf2LJli4YPH664uDiFhIRo3bp1Zebfe++9CgkJKfOvdK9iqdzcXN15552KiIhQZGSkxo8fr4KCgjJtduzYoRtuuEHh4eHq2LGj5s2bV24s77//vhITExUeHq7u3bvrk08+qfJ6XH311ZX+qyn2dAIAAPhAYWGh4uPjNXLkSI0aNarCNn379tX8+fO9zwMDA8vMv/POO5WVlaVVq1apqKhI9913nx588EEtWbJEkpSfn68hQ4aoV69emjt3rnbt2qXx48crODhYt99+uyTpm2++0bhx4/TEE0/ot7/9rVauXKmRI0fqiy++UIcOHc65Hlu2bKl0fk2DJ6ETAADAB/r166d+/fpV2iYwMFBhYWEVztuzZ48+++wzff755+rcubMkadasWbr55ps1ffp0tW7dWu+++65cLpdeffVVNWjQQHFxcUpNTdWCBQu8oXPRokXq27ev7r//fknStGnT9MUXX2jx4sV66aWXzrkeAwYMKDft9Ht1WnJOp9vtLneDULfbXeaxdjLsHkA9Y8jtdnNuh8VKfkd5r1vLoO6WY/til9qaAyrLMYZR8rubn59fJv8EBgaW20NZVV9++aViYmLUvHlz9ezZU4899phCQ0MlSVu3blVwcLA3cEpS79695efnp+3bt6t///7aunWrunfvrgYNGnjb9O3bV/PmzdOPP/6o5s2b69tvv9Uf//jHMv326dOn3OH+sznzG4eKi4v173//WzNmzNBjjz1Wo/WWqhk609LSvC/AmdLT02s8CLt5PHwgWMnjMbRnzx51MDxy2j2YesJjeLRnzx7e6xYrfa9Td+uwfbFH6TamNqsoxzgcDkVGRio+Pr7MeZWTJ0/WlClTqt1H37591b9/f0VGRmr//v2aPn26hg0bpk8++UROp1NZWVlq2bJlmZ/x9/dXSEiIsrKyJEnZ2dmKiIgo06b0Z7KystS8eXNlZ2eXW07Lli2VnZ1dpXEGBweXm3bttdeqQYMG3r2mNVGt0BkTE1Phns709HS1b99eTmft/BX3+2a93UOoV/z8HIqNjZWfg30RVvFz+JXUnPe6pbzvdepuGbYv9ijdxtRGleUYwzDkcrm0Y8eOcns6a2LIkCHe/+/YsaM6duyozp0768svv1SvXr1qtgIWatmy5XntZKxW6HQ6nWf9/k2n01lrQ6fkm+8URVU5avF7pfYqqTnvdWs5qLvl2L7YpbbXvaIcU3p0NygoyGffP366qKgotWjRQnv37lWvXr0UFhamI0eOlGlTXFys3Nxc73mgrVq1Ktem9Pm52rRq1apK49qxY0eZ54ZhKCsrSy+//LLi4+OrvoJn4EIiAAAAG/zf//2fjh075g2LCQkJysvLU0pKiq666ipJ0ubNm+XxeNSlSxdvm2effVZFRUUKCAiQJG3cuNF7nqgkJSYmatOmTfrDH/7g7Wvjxo1KSEio0riuueYaORyOcqdU/vrXv9arr75a4/UldAIAAPhAQUFBmYtwMjIylJqaqubNmyskJESzZs3SwIEDFRYWpn379unJJ59UdHS0+vbtK0mKjY1V37599cADD2ju3LkqKirSpEmTNHjwYLVu3VpSybcFvfDCCxo/frweeOAB7d69W4sWLdJzzz3n7ffuu+9W//799eqrr+r666/XqlWrlJKSopdffrlK65GSklLmuZ+fny666CI1bNjwvOpD6AQAAPCBlJSUMrcbmjZtmiRpxIgRmjNnjnbt2qUVK1YoLy9P4eHh6tOnj6ZOnVrmHNHFixdr4sSJSkpKksPh0MCBAzVz5kzv/ODgYL333nuaOHGirr32WrVo0UITJ0703i5Jkrp27arFixfrueee0/Tp0xUdHa233367SvfolFTuQiVfIXQCAAD4QI8ePZSbm3vW+e+99945lxESEuK9EfzZxMfH66OPPqq0TVJSkpKSks7ZX6lFixZVue3dd99d5banI3QCAADUcwsWLKhSO4fDQegEAABAzXz33Xem98GNzAAAAFAhwzDO+sVA1UXoBAAAQBkrVqxQ9+7d1bp1a7Vu3VpXX321VqxYcV7L5PA6AAAAvObPn68ZM2Zo3Lhx6tq1qyTpH//4hx555BEdO3ZM9957b42WS+gEAACA12uvvaY5c+Zo+PDh3mk33nij4uLiNHPmzBqHTg6vAwAAwCsrK0uJiYnlpicmJiorK6vGyyV0AgAAwKtdu3ZavXp1uemrV69WdHR0jZfL4XUAAABo165d6tChg6ZOnaqxY8fq66+/9p7T+c0332jTpk164403arx89nQCAABAPXr00HXXXaecnBz97W9/U2hoqNatW6d169YpNDRUn332mfr371/j5bOnEwAAAFq7dq2WLVumJ554Qh6PRwMGDNBzzz2nq6++2ifLZ08nAAAA1L17d7366qvavXu3Zs2apQMHDmjgwIH69a9/rZdffvm8LiKSCJ0AAAA4TZMmTXTbbbdp3bp12rp1qwYNGqQlS5boiiuu0IgRI2q8XEInAAAAKhQdHa2HH35YEyZMUNOmTfXJJ5/UeFmc0wkAAIBytmzZor/85S9as2aNHA6Hfv/732vkyJE1Xh6hEwAAAJKkzMxMLVu2TMuXL9fevXuVmJiomTNnKikpSU2aNDmvZRM6AQAAoKFDh2rTpk1q0aKFbrnlFo0cOVIxMTE+Wz6hEwAAAAoICNBbb72l3/72t3I6nT5fPqETAAAAWr58uanL5+p1AAAAH9iyZYuGDx+uuLg4hYSEaN26dWXmG4ahGTNm6PLLL1fr1q2VlJSk//73v2Xa5Obm6s4771RERIQiIyM1fvx4FRQUlGmzY8cO3XDDDQoPD1fHjh01b968cmN5//33lZiYqPDwcHXv3v28rjr3FUInAACADxQWFio+Pl4vvvhihfPnzZunRYsWae7cufr000/VuHFjDRkyRCdPnvS2ufPOO/X9999r1apVWrFihb766is9+OCD3vn5+fkaMmSI2rZtq40bN+qZZ57RrFmz9Oabb3rbfPPNNxo3bpxGjhypTZs26aabbtLIkSO1a9cus1a9SgidAAAAPtCvXz899thjFX4/uWEY+vOf/6wJEyboxhtvVHx8vBYuXKjDhw9794ju2bNHn332mV555RX9+te/Vrdu3TRr1iytWrVKmZmZkqR3331XLpdLr776quLi4jRkyBDdddddWrBggbevRYsWqW/fvrr//vsVGxuradOmqVOnTlq8eLE1hTiLap3T6Xa75XA4yk07/bF2MuweQD1jyO128xePxUp+R3mvW8ug7pZj+2KX2poDKssxhlHyu5ufn18m/wQGBiowMLBa/WRkZCgrK0u9e/f2TgsODlaXLl20detWDRkyRFu3blVwcLA6d+7sbdO7d2/5+flp+/bt6t+/v7Zu3aru3burQYMG3jZ9+/bVvHnz9OOPP6p58+b69ttv9cc//rFM/3369Cl3uN9q1QqdaWlp3hfgTOnp6T4ZkB08Hj4QrOTxGNqzZ486GB75/to4VMRjeLRnzx7e6xYrfa9Td+uwfbFH6TamNqsoxzgcDkVGRio+Pr7MeZWTJ0/WlClTqrX80u8tb9myZZnprVq1UnZ2trfNmfP9/f0VEhLi/fns7GxFRESUaVP6M1lZWWrevLmys7PLLadly5befuxSrdAZExNT4Z7O9PR0tW/f3pTL663g9816u4dQr/j5ORQbGys/B/sirOLn8CupOe91S3nf69TdMmxf7FG6jamNKssxhmHI5XJpx44d5fZ0ovqqFTqdTme50Hn6vNoaOqWK1wlmcdTi90rtVVJz3uvWclB3y7F9sUttr3tFOab06G5QUNBZ809VhYWFSZKOHDmi8PBw7/Ts7GxdccUV3jZHjhwp83PFxcXKzc31/nyrVq3KtSl9fq42rVq1Oq91OF/8KQgAAGCyyMhIhYWFadOmTd5p+fn52r59uxISEiRJCQkJysvLU0pKirfN5s2b5fF41KVLF2+br776SkVFRd42GzduVExMjJo3by5JSkxMLNNPaZvSfuxC6AQAAPCBgoICpaamKjU1VVLJxUOpqak6ePCgHA6H7rnnHs2ePVsffvihdu7cqT/84Q8KDw/XTTfdJEmKjY1V37599cADD2j79u36xz/+oUmTJmnw4MFq3bq1pJKvqmzQoIHGjx+v3bt3a9WqVVq0aJHuvfde7zjuvvtuffbZZ3r11Vf1n//8RzNnzlRKSoruvPNO64tyGr6RCAAAwAdSUlI0YMAA7/Np06ZJkkaMGKEFCxbogQceUGFhoR566CHl5eXpN7/5jVauXKmGDRt6f2bx4sWaOHGikpKS5HA4NHDgQM2cOdM7Pzg4WO+9954mTpyoa6+9Vi1atNDEiRN1++23e9t07dpVixcv1nPPPafp06crOjpab7/9tjp06GB+ESpB6AQAAPCBHj16KDc396zzHQ6Hpk6dqqlTp561TUhIiJYsWVJpP/Hx8froo48qbZOUlKSkpKRK21iNw+sAAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMJ1/VRoZhlHm8cx5DodDhmFUOL82aOQXoIZ+AXYPo/7w85S8Xxo2lAID7R5NvWA0bCjDMHivW+3n9zp1txDbF1uUbmNqo8pyzOn5x+Fw2DG8OsVhVOFd4vF49NNPP1kxHgAAgAtKs2bN5OfHweHzVeXQ6f2BM5J+fn6+4uPjtWPHDgUFBfl+hKgQdbceNbcHdbcHdbceNbdHZXU/PSIROs9flQ6vV1Zoh8OhgoICORwOdj1biLpbj5rbg7rbg7pbj5rbo7K68zr4FrEdAAAApiN0AgAAwHTnHToDAwM1efJkBXKVoKWou/WouT2ouz2ou/WouT2ou3WqdCERAAAAcD44vA4AAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAcN7cbrfdQ6hXTv96aqC2IHTWcUVFRXYPod4pKChQdna28vLy+CC2UE5Ojv71r38pNTVVx44ds3s49cKePXs0d+5cSZLT6eT9bpF//etfGjlypE6dOmX3UIBqqdJ3r6N2Sk9P1xtvvKGRI0cqLi7O7uHUC7t379bEiROVk5Mjl8ulMWPGaPTo0WrevLndQ6vTdu7cqbvvvlvFxcUqKChQ37599dRTTykkJMTuodVZJ0+e1JAhQ3To0CEdOXJEzz//vDd4Op1Ou4dXZ6WmpmrAgAEaMWIENzNHrcOezjpq3759uummm7R06VItWbJEe/bssXtIdd6ePXs0cOBAXXHFFXrmmWd0/fXXa+nSpdq9e7fdQ6vTvv/+ew0cOFB9+/bVsmXLdN9992njxo3s7TRZgwYN1KZNG91222369ttvNWnSJEklezw59GuO1NRU3XDDDbrjjjv04osvSpKKi4vlcrnE97ygNuAbieqgwsJCPfLII3K5XLriiiu0evVqde7cWX/4wx8UGxtr9/DqpLy8PI0bN05t27b1Hm6UpN/97ndq166dFi5caOPo6q7c3Fzdeuut6tSpk2bOnOmd/vvf/1533323QkJC1Lp1a0VERNg4yrrrwQcfVExMjJxOp9544w1dd911eu6557R582ZdddVVCgoKsnuIdUZOTo46deqka6+9VsnJySoqKtKjjz6qffv2KTMzU3379tXo0aMVExNj91CBs+Lweh3UsGFDXXPNNXI4HBo+fLguuugiLV68WAsXLiR4miQrK0vNmjXT73//e0mSy+VSgwYN1LNnT+3bt8/m0dVdJ0+e1LBhw9S1a1fvtNmzZ2vTpk06fPiw/P39lZubq2XLlunKK6+0caR1S+kh9MDAQJ04cUIPP/ywJOkvf/mLOnXqJMMw9PXXX8vj8cjPjwNqvuB2u3XTTTdpw4YN2rJli15++WUVFhbq2muvVXZ2trZv365//etfmj9/viIjI+0eLlAhtgZ1kJ+fn4YMGaJbbrlFkjRy5Ej9z//8j1JSUrRw4ULvofaioiIdPnzYzqHWGZdddpmGDh2qnj17SpL8/Uv+nrvooot08uTJMm1/+ukny8dXV7Vu3VqDBg1Sx44dJUnLly/XrFmz9Oabb2rdunV67bXXdPnll2vBggU6deoUhyB9pDRI9unTR7t375afn5/uuece+fv7Kzs7W126dFGTJk3k5+fHoXYfadWqlZ5//nldf/31GjBggAzDUHJysiZMmKAXXnhB9913n3JycvT111/bPVTgrAiddUzp1aMNGjSQw+HwPh89erTGjh3rDZ47duzQE088oWHDhnEF5HkqvUPAjTfeKEkyDMP7oVx6JXtp2HnppZc0ffp0FRcX2zPYOqT0vd2iRQvvtBtvvFHr16/XwIEDFRoaqri4OAUFBSkvL0+BgYFyOBx2DbdOKA2QpXUMDAzUrl27JEn333+/Dh06pLFjx2rv3r267777JIk9nT5Q+l4PDQ3V008/raeeekp33HGHQkNDva/JjTfeKJfLpe+++87OoQKV4vB6HXDgwAF99913GjBggPck/tIN/enPx4wZI4fDoTfffFO33nqrcnNztWbNGq6ArIHTax4QEFCm5g6HQ4ZhyOFwqEmTJgoKCpLD4dCMGTO8h35L94Sieip7r7vdbgUHB6tLly6SSsK/YRhq1KiRoqOj5fF45HA4CJ7VdHrNS/dclta8c+fOioiI0NChQ7Vr1y6tWbNGF198sRYuXKgNGzYoKytLYWFhNq9B7XTme730lIZWrVppzJgxaty4saSSUO92u1VYWKjIyEhOI8EFjU++Wi49PV2/+93v1KxZMx0/flzDhw8v98Fw+vPRo0dr+fLl+umnn7R+/XrvYUlUXVVqXqphw4Zq0aKFZs2apT/96U/6/PPPdcUVV9g08trtXHU/8zY9Ho9Hs2bN0saNG/XBBx+wx60GzlXz4OBgHT16VAcOHNB7772nyy67TJJ01113ady4cdyyqoYqqvvpwTM4OLhMez8/P82fP1///e9/1b17d5tGDZwbV6/XYkePHtXdd98th8Oh4OBg/fDDDxozZoxuvfVWSSoXgoqLizVhwgQtXbpUf//73wmcNVDdms+fP1+PP/64GjdurLVr1+qqq66yaeS1W3Xr/sUXX2jt2rV6//33tWrVKvb+1MC5al5UVKSAgAAVFhYqKytL7dq1kyTvXn7UTHXf65999pnWrFmjv/3tb/rggw/4oxYXNPZ01mKnTp1S06ZNdfvtt6t169Z6+eWX9dZbb0mSbr311nJ73/z9/dWtWzeNGTOGwFlDVan56R+6LVq0UGRkpFasWMFdA85Ddet+9OhROZ1OrVu3jrrX0LlqHhAQoOLiYjVu3NgbOCUROM9Tdd/rpeeMf/TRR7r88svtHDpwTuzprOUyMzPVunVrSdKuXbs0b9487d+/X6NHj9Ztt90mqWQPJ+cQ+k5Val66F0gS57X5SFXqXnqrKqnkfrWl572hZti+2KO67/Xjx4+rSZMmto0XqCpOcqrlSjdMbrdbHTp00EMPPaSoqCgtXbpUy5YtkyQ98sgjeuONN+wcZp1SlZpPmDBBixcvliQCp49Upe4TJ07U//7v/0oSgdMH2L7Yo7rvdQInagv2dNZB33//vV566SUdPHhQDodDX3/9tTZs2KBf/epXdg+tzqLm9qDu1qPm9qDuqAsInbXUuU7WT01N1S233KLCwkKtXbtW8fHxFo6ubqLm9qDu1qPm9qDuqOs4vF5LlN4cOCcnR1LlJ+u7XC7vbZE+/PBDNkw1RM3tQd2tR83tQd1R3xA6L3Dp6elau3atnE6n3n//fd1zzz06cuRIpT/z008/aevWrfrggw/UoUMHi0Zad1Bze1B361Fze1B31FsGLlhut9t4/vnnjZCQEOOxxx4zQkJCjOXLl1f6Mx6PxzAMwzh16pQVQ6xzqLk9qLv1qLk9qDvqM87prAWGDRumzz//XHfccYdefPHFCr/55kwGN2g+L9TcHtTdetTcHtQd9RGH1y9QpX8LFBUVKTQ0VN27d9frr7+u9957z3tz4DP/Xjj9ORum6qPm9qDu1qPm9qDuqPcs2qOKaig9lPLPf/7T+PTTT42ffvrJMAzDePLJJ43Q0FDj3XffLdMuIyPDnoHWIdTcHtTdetTcHtQdMAz2dF5gjJ8Pn3zwwQcaNmyYtm/frkOHDkkquQnz+PHjdc8992jlypVyOByaM2eOJk2apOPHj9s88tqLmtuDuluPmtuDugM/szXyokJff/21ERERYbzxxhvGiRMnyszLz883nn32WSMkJMS4/vrrjdatWxspKSk2jbTuoOb2oO7Wo+b2oO4AFxJdUIyf/xqeMWOGdu7cqb/85S/eeW63W06n0/v8008/1d69e3X99derXbt2dgy3TqDm9qDu1qPm9qDuwC/87R4AftkolZ4kfvjwYe9Ng0uvaCzdMH333XeKjY1Vv379uJLxPFBze1B361Fze1B3oDzO6bTRiRMndOrUKf3www86deqUd/rFF1+sb775Rjk5Od4rGqWSmwOvWrVK33zzjSSuZKwJam4P6m49am4P6g5Uwspj+fjF999/b4waNcro1q2bcdFFFxk9e/Y0Hn/8ccMwDKOgoMC45pprjG7duhlZWVmGx+MxioqKjKefftro2LGjcfDgQZtHXztRc3tQd+tRc3tQd6BynNNpg507d+rGG2/UzTffrCuvvFIhISFavny5NmzYoGuvvVZvvvmm0tLS9NBDDyk9PV2XX365AgICtHv3bq1atUpXXnml3atQ61Bze1B361Fze1B34NwInRY7evSohgwZoj59+ujJJ58sM3316tV68sknNWDAAC1atEiGYWjx4sU6evSomjZtqgEDBnByeQ1Qc3tQd+tRc3tQd6CKbNvHWk999913Rrdu3YydO3caxcXFhmGUfBevYRjGjz/+aLz44otG69atjTVr1tg5zDqFmtuDuluPmtuDugNVw4VEFtuxY4f27dunDh06yOl0yjAM7/ftBgcHa9iwYQoICNC+ffvK/JzBDukao+b2oO7Wo+b2oO5A1RA6LVZ6GOWDDz6QVP5KxcjISEVFRSkzM7PMdK5orDlqbg/qbj1qbg/qDlQNodNiERERatasmVasWKEDBw54p3s8HknSjz/+qIYNG6pTp052DbHOoeb2oO7Wo+b2oO5A1RA6LdamTRvNmTNHn332mWbMmKHdu3dLkvdQzPz583X48GF169bNzmHWKdTcHtTdetTcHtQdqBquXreB2+3W0qVLNWnSJLVr105du3ZVWFiYMjIytGHDBv3tb3/j9hk+Rs3tQd2tR83tQd2BcyN02mjbtm165ZVXlJaWpuDgYMXHx+uuu+7SZZddZvfQ6ixqbg/qbj1qbg/qDpwdodNmbrdbfn5+cjgc3u/jhbmouT2ou/WouT2oO1AxfhNsVrphkriS0SrU3B7U3XrU3B7UHagYezoBAABgOvZ0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmO7/AQ51/yYjNyW4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHaCAYAAABCYPJ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQIklEQVR4nO3de1xUdf7H8ffMgHgFwRTMBCSJUMpcF1xN0zTbrbywXkrLNPvZZdvs6i3tbpmWWrapa/rrIm26ZdqmlpVlullb6i4tXnJhVbSfCIoGIerAzPn9QUwiiIBzzhF4PXv4oDnny/l+z4fDmTfnNg7DMAwBAAAAJnLaPQAAAADUfYROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMF1AVRp5vV7f/zscDtMGAwAAcL449VHmTifH6c5VlUKnJP30009mjgMAAOC81KxZM7uHUCdUOXRKUsOGDcsd6fR4PEpPT1dsbKxcLpdfB4czo+7Wo+b2oO72oO7Wo+b2qKzuhmHoxIkTNo2s7qlS6CwNmg6Ho1zodDgcMgyjwnkwD3W3HjW3B3W3B3W3HjW3R1Xqzs/DP7hAAQAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSEzloqLy9PX3/9tfLy8uweCmCqorwseb5doKK8LLuHAgA4B4TOWiovL0/ffPMNoRN1XnH+QRlbFqo4/6DdQwEAnANCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAPxg06ZNGj58uOLj4xUaGqo1a9aUmT9jxgwlJSWpTZs2io6OVnJysrZs2VKmzYgRI5SQkKCIiAhdeumluuuuu5SVlVVpvydOnND48eMVExOjiy66SKNGjVJOTo7f1+9cEToBAAD8oLCwUAkJCXrhhRcqnH/xxRfr+eef16ZNm/TRRx8pMjJSgwcP1uHDh31tevbsqddff13ffvut3nzzTe3Zs0ejR4+utN8pU6Zo7dq1euONN7R69WodPHhQt956q1/XzR8CqtPY4/HI4XCUm3bqV1jD6/X6vlJ7a7Ct24Nt3R5s79aj5vaorO6GYUiS8vPzy+SfoKAgBQUFlWvfr18/9evX74x9DRs2rMzrZ555RikpKdq+fbt69eolSbrnnnt88yMjI/XAAw9o5MiRKioqUmBgYLll5uXl6a233tKiRYt01VVXSZJeeeUVde3aVZs3b1ZiYuIZx2O1aoXO9PR03w/gdBkZGX4ZEKqm9LD5/v37dfLkSZtHU7+wrVvLOLRfUsm27jjR1ObR1D9s79aj5vaoqO4Oh0NRUVFKSEhQQUGBb/qkSZM0efLkc+rP7XbrzTffVHBwsBISEipsc/ToUS1fvlxJSUkVBk5J+u6771RUVKTevXv7pl1yySW66KKLanfojI2NrfBIZ0ZGhtq3by+Xy+XXweHMSv/Catu2raKjo+0dTD3Btm6PYw0LtFcl23qTqDi7h1NvsL1bj5rbo7K6G4Yht9utbdu2lTvSWVNr167V2LFjVVhYqIiICK1cuVItWrQo0+aJJ57Q4sWLVVhYqMTERC1btuyMy8vOzlaDBg0UEhJSZnqrVq2UnZ1d43GaoVqh0+VylQudp87jl8Q6TqfT95W6W4tt3Vps6/Zie7ceNbdHRXUvPbsbHBx8xvxTXT179tTGjRuVm5urJUuWaMyYMVq3bp1atmzpa3Pffffp1ltv1f79+zVz5kzdfffd+utf/+q3MdiFG4kAAAAs0qRJE8XExCgxMVF/+tOfFBAQoJSUlDJtWrRoofbt2+vqq6/W//7v/+rTTz/V5s2bK1xeeHi43G638vLyykzPyclReHi4aetRE4ROAAAAm3i9Xrnd7krnSzpjm06dOikwMFAbNmzwTUtPT9cPP/xwXl3PKVXz9DoAAAAqVlBQoD179vheZ2ZmKi0tTc2bN1dYWJhmz56t6667TuHh4Tpy5IgWL16srKwsDRo0SJK0ZcsW/fOf/1S3bt0UEhKivXv36tlnn1W7du18AfLAgQNKTk7WggUL1KVLF4WEhGjkyJGaOnWqQkND1axZM02cOFGJiYmETgAAgLooNTVVAwYM8L2eOnWqpJIHvs+ZM0fp6elatmyZcnNzFRYWps6dO+vDDz9UfHy8JKlRo0ZavXq1ZsyYocLCQoWHh6tv374aP3687+al4uJipaen6/jx475+pk+fLqfTqVGjRsntdqtPnz6aNWuWhWteNYROAAAAP+jRo4eOHj16xvmnX7t5uo4dO+qDDz6otE1kZGS5Pho2bKhZs2adl0HzVFzTCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROoIry8vL09ddfKy8vz+6hAKYrysuS59sFKsrLsnsoAOoIQidQRXl5efrmm28InagXivMPytiyUMX5B+0eCoA6gtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAAD4waZNmzR8+HDFx8crNDRUa9asKTN/xowZSkpKUps2bRQdHa3k5GRt2bLFN3/fvn0aN26cOnXqpNatW6tz58567rnn5Ha7K+23f//+Cg0NLfPvwQcfNGUdz0WA3QMAAACoCwoLC5WQkKCRI0fq1ltvLTf/4osv1vPPP6/o6GgdP35cCxYs0ODBg/XPf/5TF1xwgf7zn//I6/XqxRdfVExMjHbs2KEHHnhAhYWFmjZtWqV9jx49Wo888ojvdaNGjfy+fueK0AkAAOAH/fr1U79+/c44f9iwYWVeP/PMM0pJSdH27dvVq1cvXXPNNbrmmmt886Ojo5WRkaHXXnvtrKGzUaNGCg8PP7cVMFm1QqfH45HD4Sg37dSvsIbX6/V9pfbWoOb2oO72oO7W4/3UHpXV3TAMSVJ+fn6Z/BMUFKSgoKBz6tftduvNN99UcHCwEhISztguPz9foaGhZ13eu+++q3feeUetWrXS7373O02YMEGNGzc+pzH6W7VCZ3p6uu8HcLqMjAy/DAhVk5OTI0nav3+/Tp48afNo6gdqbg/j0H5JJXV3nGhq82jqD+puH95P7VFR3R0Oh6KiopSQkKCCggLf9EmTJmny5Mk16mft2rUaO3asCgsLFRERoZUrV6pFixYVtt29e7deffXVsx7lHDp0qNq2bauIiAht375dTz31lDIyMpSSklKjMZqlWqEzNja2wiOdGRkZat++vVwul18HhzMr/Qurbdu2io6Otncw9QQ1t8exhgXaq5K6N4mKs3s49QZ1tx7vp/aorO6GYcjtdmvbtm3ljnTWVM+ePbVx40bl5uZqyZIlGjNmjNatW6eWLVuWaXfgwAENHTpUycnJGj16dKXLvO2223z/37FjR0VERGjQoEHas2eP2rVrV+Ox+lu1QqfL5SoXOk+dxy+JdZxOp+8rdbcGNbcHdbcHdbcP76f2qKjupWd3g4ODz5h/qqtJkyaKiYlRTEyMEhMT1aVLF6WkpOihhx7ytcnKytLAgQOVlJSkl156qdp9dOnSRVLJkdLzKXTyyCQAAACbeL3eMo9EOnDggAYMGKBOnTpp3rx5vj8AqyMtLU2Szrsbi7h7HQAAwA8KCgq0Z88e3+vMzEylpaWpefPmCgsL0+zZs3XdddcpPDxcR44c0eLFi5WVlaVBgwZJ+iVwtm3bVtOmTdPhw4d9yyoNkAcOHFBycrIWLFigLl26aM+ePVq+fLn69eunsLAwbdu2TVOnTlX37t0rvUHJDoROAAAAP0hNTdWAAQN8r6dOnSpJGjFihObMmaP09HQtW7ZMubm5CgsLU+fOnfXhhx8qPj5ekvTFF19o9+7d2r17tzp27Fhm2UePHpUkFRcXKz09XcePH5ckBQYG6osvvtCCBQtUWFioNm3aaMCAARo/frwVq1wthE4AAAA/6NGjhy8cVuRsd5PffPPNuvnmmyttExkZWaaPiy66qNwnH52vuKYTAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADBdgN0DqAvSj2WroPiEpX1mHzsoSdp17KB+zLP2b4emAQ0V2yTc0j6B+io9XSoosL5fb45DgZJ27XLIedTavps2lWJjre0TgPkIneco/Vi2Om54zPJ+G52Q4uKkv/7ndR3fZ3n32t5rGsETMFl6utSxY6AtfbdoFKUhHZ7QeylRyj1u/Ri2by8ieAJ1DKHzHJUe4Wwe0EgBDpdl/RqB0t6OxWrsClATy3qVig2Pfiw+bvmRXaA+Kj3COSnl32obf8zSvg0Z8nqu0WWuPXJor2X97t/ZRDNvvdyWo7sAzEXo9JMAh0uBTgtDpySn15DL6ZLDsl4lea3sDIAktY0/pthf/WRpn4YMeYo9cgW45LB2LwOgjuJGIgAAAJiO0AkAAADTEToBAABgOkInAACAH2zatEnDhw9XfHy8QkNDtWbNmjLzZ8yYoaSkJLVp00bR0dFKTk7Wli1bfPP37duncePGqVOnTmrdurU6d+6s5557Tm63u9J+T5w4ofHjxysmJkYXXXSRRo0apZycHFPW8VwQOgEAAPygsLBQCQkJeuGFFyqcf/HFF+v555/Xpk2b9NFHHykyMlKDBw/W4cOHJUn/+c9/5PV69eKLL+rrr7/Ws88+q9dff13Tpk2rtN8pU6Zo7dq1euONN7R69WodPHhQt956a43Wwe12Kz09XcXFxTX6/spw9zoAAIAf9OvXT/369Tvj/GHDhpV5/cwzzyglJUXbt29Xr169dM011+iaa67xzY+OjlZGRoZee+21MwbPvLw8vfXWW1q0aJGuuuoqSdIrr7yirl27avPmzUpMTKzS2AsLCzVp0iQtXbpUkrRlyxZFR0dr4sSJat26tR588MEqLacy1QqdHo9HDoej3LRTv9Y3Hm/JM4SMn/9ZxjB8Xw2HdY8zKV1Hj9db737m3p9/1t56uO6lMjIy9NNPFj+659BOBUnauXOnHIct7VrNmjVT+/btre30FB5Pye+28fN/ljJ++Wo4rOu7dD09Hq88HovX2Wb1/f3ULpXV3fj5vTY/P79M/gkKClJQUNA59et2u/Xmm28qODhYCQkJZ2yXn5+v0NDQM87/7rvvVFRUpN69e/umXXLJJbrooouqFTqffvppbdu2TatWrSoTjnv37q0ZM2ZYHzrT09N9P4DTZWRknPNgaqPMkyXXTHg8xXJ6rd9BWr1z8hgl/WXuzVTjoOOW9m230utj9u/fr5MnT9o8GutlZmZq0KBBlvfbopE0pIP0Xsr/KNeGTe5vf/uboqKirO9YUmZmI0mXyOvxylNsTxCxeh/j9ZT8cZeZmanGjevXPqZUfX0/tVtFdXc4HIqKilJCQoIKTvnEgkmTJmny5Mk16mft2rUaO3asCgsLFRERoZUrV6pFixYVtt29e7deffXVSk+vZ2dnq0GDBgoJCSkzvVWrVsrOzq7yuNasWaPXXntNiYmJZQL2pZdeqr1791Z5OZWpVuiMjY2t8EhnRkaG2rdvL5fLuoejny8K8xtJWZLLFSCXhQ+Hl2HI4/GU1NzCI51er0PySlHRUYoLjrSs3/NB6V+1bdu2VXR0tL2DsUFhYaEkKSUkRfEB8Zb1a8iQ979e3dHYKUdj67b1ncU7dWverWrZsqXi4uIs6/dUhYUl6+t0OeUKsHj/auiUfYx13TpdJbcaREVFKS6u/h3prM/vp3aprO6GYcjtdmvbtm3ljnTWVM+ePbVx40bl5uZqyZIlGjNmjNatW6eWLVuWaXfgwAENHTpUycnJGj16dI37q6rc3NxyY5CkY8f892lo1QqdLperXOg8dV59/CVxOUt2kA5Zul/+5ZS6w9rPCinty+V01ruft/Pnn7WzHq67JN86xwfG61eBv7KuY0MqdhYrwBVg7S/Zz33ZuW8r7dbx839W8p1Sd8jSvkv7crmcqoe/ZpLq7/up3Sqqe+nZ3eDg4DPmn+pq0qSJYmJiFBMTo8TERHXp0kUpKSl66KGHfG2ysrI0cOBAJSUl6aWXXqp0eeHh4XK73crLyytztDMnJ0fh4eFVHtcVV1yhTz75RHfeeack+dY3JSVFSUlJ1VjDM+NGIgAAAJt4vd4yj0Q6cOCABg4cqE6dOmnevHm+Ax5n0qlTJwUGBmrDhg0aOHCgpJLLIX/44YcqX88pSY899phuvPFGff/99youLtaf//xn7dq1S99++61Wr15ds5U7DY9MAgAA8IOCggKlpaUpLS1NUsm1yWlpadq/f7+OHTump59+Wps3b9a+ffuUmpqqe++9V1lZWb7r5Q8cOKABAwbooosu0rRp03T48GFlZ2eXuTbzwIEDSkpK0tatWyVJISEhGjlypKZOnaq///3vSk1N1R//+EclJiZWK3R269ZNGzdulMfjUYcOHbR+/XpdcMEF+vjjj3XFFVf4pT4c6QQAAPCD1NRUDRgwwPd66tSpkqQRI0Zozpw5Sk9P17Jly5Sbm6uwsDB17txZH374oeLjS66T/+KLL7R7927t3r1bHTt2LLPso0ePSpKKi4uVnp6u48d/udFu+vTpcjqdGjVqlNxut/r06aNZs2ZVe/zt2rXT3Llzq/19VUXoBAAA8IMePXr4wmFFUlJSKv3+m2++WTfffHOlbSIjI8v10bBhQ82aNatGQbPUJ598IpfLpb59+5aZ/tlnn8nr9Vb6/NGq4vQ6AABAPffUU0+d8VmlTz31lF/6IHQCAADUc7t379all15abvoll1yiPXv2+KUPTq+jdtq3T/r5uZFWcRw8WPI1M1Oy4+HwjRtLkfXr2agAAGsEBwdr7969ijztfWb37t1q3LixX/ogdKL22bdPAUNvtLzbCwICNPCCFrpgyqMKKC62vH9JKl7+DsETAOB31113nR555BG99dZbateunaSSwPnoo4/quuuu80sfhE7UPj8f4TSaNpUCrNuEQ2TohoJjCmjaRIbFD+pWcbEcBQWWH90FANQPTz31lIYNG6akpCRdeOGFkkoez9StW7dKP4azOgidqL0CAiwNnZLxS79Wh04AAEwUEhKijz/+WOvXr9e2bdvUsGFDdezYUVdeeaXf+iB0AgAAQA6HQ3369FGfPn1MWT6hEwAAoB5auHChRo8erYYNG2rhwoWVtr3rrrvOuT9CJwAAQD00f/58DRs2TA0bNtT8+fPP2M7hcBA6AQAAUDPfffddhf9vFh4ODwAAUI8VFRWpc+fO2rVrl6n9EDoBAADqscDAQJ204ENPOL0OoFp2Fu+0tkND8ng8cnldlj6pyvL1BAAb/c///I/mzp2rl19+WQEmPY6Q0AmgSpo2bSpJuvXHWy3tt0UjaUgH6b0dUu5xS7uW9Mt6A2bLy8vT119/rYiICIWFhdk9HNQz//rXv7Rx40atX79eHTp0KPfRlykpKefcB6ETQJXExsZq+/btKigosLRfb84OBa4aozFPvi5nqw6W9t20aVPFxsZa2ifqr7y8PH3zzTfq06cPoROWCwkJ0YABA0ztg9AJoMrsCGAFez3avUqKi4tT0+jOlvcPAHWZ1+vVyy+/rIyMDBUVFalnz56aPHmyGjVq5Pe+uJEIAACgnpo9e7amTZumpk2bqnXr1nr11Vc1YcIEU/oidAIAANRTy5Yt06xZs/Tee+/pL3/5i5YuXap3331XXq/X730ROgEAAOqpH374Qf369fO97t27txwOh7KysvzeF6ETAACgniouLlbDhg3LTAsMDFRxcbHf++JGIgAAgHrKMAzdc889CgoK8k07ceKEHnrooTKPTeKRSQAAAKixESNGlJt24403mtIXoRMAAKCemjdvnmV9cU0nAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMxycSAQBwun37pMJCS7t0HDxY8jUzUzp50tK+1bixFBlpbZ+odwidAACcat8+BQw157OnK3NBQIAGXtBCF0x5VAHFxZb3X7z8HYInTEXoBADgVD8f4TSaNpUCrHubDJGhGwqOKaBpExlyWNaviovlKCiw/Mgu6h9CJwAAFQkIsDR0SsYv/VoZOgGLcCMRAAAATEfoBAAAgOkInQAAADAdoRMAAMAPNm3apOHDhys+Pl6hoaFas2ZNmfkzZsxQUlKS2rRpo+joaCUnJ2vLli1l2syaNUvXXnutLrzwQkVFRVWp33vuuUehoaFl/g0dOtRv6+UvhE4AAAA/KCwsVEJCgl544YUK51988cV6/vnntWnTJn300UeKjIzU4MGDdfjwYV+boqIiJScn6/bbb69W33379tX333/v+7d48eJzWhczcPc6AACAH/Tr10/9+vU74/xhw4aVef3MM88oJSVF27dvV69evSRJjzzyiCTp7bffrlbfQUFBCg8Pr+aIrVWt0OnxeORwOMpNO/VrfePxeiWVPOjCsLJjw/B9NRzWPVqjdB09Xq9tP3PHzzW3uuqnlFwOh6U/bZWup9frlVHPfte8P/+8vTZuc3bxeEp+t42f/7OU8ctXw8LtvXQ9PR6vPB6rf89K1L99TP3dv0iV5xjj5x9Kfn5+mfwTFBSkoKCgc+rX7XbrzTffVHBwsBISEs5pWZL05ZdfKjY2Vs2bN1fPnj316KOPKiws7JyX60/VCp3p6em+H8DpMjIy/DKg2ibzZI4kyeMpltNr/Q7S6jdhj1HSX+beTDUOOm5p36Ua7c1UrKTiYnt2jh6P9Z8UomKPAlVSd3uqbh/j2HE5fn2X9ucel+PELruHY6nMzEaSLpHX45XHtu3d2n69npLAl5mZqcaN2cdYoh7vX05VUY5xOByKiopSQkKCCgoKfNMnTZqkyZMn16iftWvXauzYsSosLFRERIRWrlypFi1a1HjcUsmp9f79+ysqKkp79+7VtGnTNGzYMH3yySdyuVzntGx/qlbojI2NrfBIZ0ZGhtq3b39erZhVCvMbSVmSyxUgl9PC9TcMeTyekppbeKTT63VIXikqOkpxwfZ8XFrp2gYEuCx9cLNhlLwZuFwBVpa8jKjoKBlxcfZ0bhOPp70ymrSsl/uYwsKSDc3pcsoVYPG6GzplH2Ndt05Xya0GUVFRiouz6Ujnz1/r2z6mPu5fpMpzjGEYcrvd2rZtW7kjnTXVs2dPbdy4Ubm5uVqyZInGjBmjdevWqWXLljVe5pAhQ3z/37FjR3Xs2FGdO3fWl19+6Tttfz6o1m+Ty+UqFzpPnVff3hAkyeUs2UE6ZO3nR/hOqTsclvZb2pfL6bTv5+0svf/N2qqXnu4qKb3V7wg/hw+nU6qHv2dS/dzHlK6u4+f/rOQ7pe6QpX2X9uVyOe3b1OvdPob9i1TxPqb07G5wcPAZ8091NWnSRDExMYqJiVFiYqK6dOmilJQUPfTQQ35ZviRFR0erRYsW2r1793kVOrl7HQAAwCZer1dut9uvy/y///s/HTly5Ly7sYjQCQAA4AcFBQVKS0tTWlqapJJrk9PS0rR//34dO3ZMTz/9tDZv3qx9+/YpNTVV9957r7KysjRo0CDfMvbv36+0tDT98MMP8nq9vuWdek1pUlKSVq9e7evzscce8y13w4YNuuWWWxQTE6O+fftaW4Cz4JFJAAAAfpCamqoBAwb4Xk+dOlWSNGLECM2ZM0fp6elatmyZcnNzFRYWps6dO+vDDz9UfHy873uee+45LV261Pf6qquukiStWrVKPXr0kFRyY3d+fr6kkssCduzYoWXLlikvL08RERHq06ePpkyZcs532PsboRMAAMAPevTooaNHj55xfkpKylmXMX/+fM2fP7/SNqf20ahRI7333ntVH6SNOL0OAAAA0xE6AQAAYDpOr/tJseGRvGdv5y+GSh7U7vVa+yCVYuM8+rSKYqsf0m5IvodFW/zIJMvXFQAA/yJ0nqOmAQ0lST8WW/s5Do1OSHF7pF3tpOMNLe1a0i/rbYvGjSVJjlPu5LPCjwEB+uKCFup9OFfN7QqBP687AAC1DaHzHMU2Cdf2XtNUUHzC0n6z9x/QirWv6+nfjlF42wst7btpQEPFNrHx2V+RkSpe/o5UWGhpt4cPHtQHb7+thIceVNOICEv7llQSOCPt+RQoAADOFaHTD+wIYHuOlJzLj2sSoXYhUZb3bzsbwpfx86MnjKgoqV07y/sHAKA240YiAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdNZSISEh6tq1q0JCQuweSr1BzQEAqDlCZy0VEhKibt26EYAsRM0BAKg5QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAADwg02bNmn48OGKj49XaGio1qxZU2b+jBkzlJSUpDZt2ig6OlrJycnasmVLmTazZs3StddeqwsvvFBRUVFV6tcwDE2fPl2XXnqpWrdureTkZP33v//123r5C6ETAADADwoLC5WQkKAXXnihwvkXX3yxnn/+eW3atEkfffSRIiMjNXjwYB0+fNjXpqioSMnJybr99tur3O/cuXO1cOFCzZkzR59++qkaN26sIUOG6MSJE+e8Tv4UUJ3GHo9HDoej3LRTv8Ia1N161Nwe9bnuHk/J/tb4+T9LGb98NRzW9V26nh6PVx6Pxev8M4fXW/I/xcWShXU3DEkejwxDOu2t1lzFJb9bXq9XRr38PTvzPsYwSn7++fn5ZfJPUFCQgoKCyrXv16+f+vXrd8a+hg0bVub1M888o5SUFG3fvl29evWSJD3yyCOSpLfffrtK4zcMQ3/+8581fvx4XX/99ZKkBQsWKC4uTmvWrNGQIUOqtBwrVCt0pqen+34Ap8vIyPDLgFA91N161Nwe9bHumZmNJF0ir8crT7E9YcDqsO/1lAS+zMxMNW583NK+SzU4mK1LJTkKCiztNy8gQF9c0EK9D+eqeXGxpX1L0u6D2XJb3uv5o6J9jMPhUFRUlBISElRwyvYwadIkTZ48+Zz6c7vdevPNNxUcHKyEhIQaLyczM1PZ2dnq3bu3b1pISIi6dOmizZs3197QGRsbW+GRzoyMDLVv314ul8uvg8OZUXfrUXN71Oe6FxaW7G+dLqdcARavu1FSe5fLJVl41M3pKrnqKyoqSnFx9hzpVFyc3O8skwoLLe02OytLH/z1r4q//z41bt3a0r7VuLHatW1rbZ/nicr2MYZhyO12a9u2beWOdNbU2rVrNXbsWBUWFioiIkIrV65UixYtary87OxsSVLLli3LTG/VqpVycnJqvFwzVCt0ulyucqHz1Hn17Q3hfEDdrUfN7VEf6166uo6f/7OS75S6Q5b2XdqXy+WUrT/u6GjLu3Q2alTyNSZGznbtLO+/vqtoH1N6djc4OPiM+ae6evbsqY0bNyo3N1dLlizRmDFjtG7dunKhsS7iRiIAAACLNGnSRDExMUpMTNSf/vQnBQQEKCUlpcbLCw8PlyQdOnSozPScnBy1atXqnMbqb4ROAAAAm3i9XrndNb+aNioqSuHh4dqwYYNvWn5+vrZu3arExER/DNFvqnV6HQAAABUrKCjQnj17fK8zMzOVlpam5s2bKywsTLNnz9Z1112n8PBwHTlyRIsXL1ZWVpYGDRrk+579+/frxx9/1A8//CCv16u0tDRJUrt27dS0aVNJUlJSkh5//HH1799fDodDd999t2bNmqWYmBhFRUVp+vTpioiI0A033GBtAc6C0AkAAOAHqampGjBggO/11KlTJUkjRozQnDlzlJ6ermXLlik3N1dhYWHq3LmzPvzwQ8XHx/u+57nnntPSpUt9r6+66ipJ0qpVq9SjRw9JJU8Tys/P97W5//77VVhYqAcffFB5eXn6zW9+o+XLl6thw4amrm91EToBAAD8oEePHjp69OgZ51fl2s358+dr/vz5lbY5vQ+Hw6EpU6ZoypQpVRuoTbimEwAAAKYjdAIAAMB0nF4HgPPc/p1NLO/TkCGvxyuny2npczrtWFcA1iB0AsB56ucbVTXz1sst77tFoywN6bBQ7+24S7nHLf50HP2y7gDqDkInAJynYmOl7duLZPFHgEuSvDmZClz1lMY8+Ts5W11gad9Nm5asO4C6hdAJAOcxu8JXwV5Du1dJcXGGmkbbMwYAdQs3EgEAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAADOAyEhIeratatCQkLsHgpgCkInAADngZCQEHXr1o3QiTqL0AkAAADTEToBAABgOkInAAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAoJyA4Qo5f36WA4Ai7hwKgjiB0AgDKCQxpLVfSHxQY0truoQCoIwidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAADgB5s2bdLw4cMVHx+v0NBQrVmzpsz8GTNmKCkpSW3atFF0dLSSk5O1ZcuWMm2OHj2qO+64Q5GRkYqKitK4ceNUUFBQab/9+/dXaGhomX8PPvig39fvXBE6AQAA/KCwsFAJCQl64YUXKpx/8cUX6/nnn9emTZv00UcfKTIyUoMHD9bhw4d9be644w59//33WrFihZYtW6avvvpKDzzwwFn7Hj16tL7//nvfv6eeespfq+U3AXYPAAAAoC7o16+f+vXrd8b5w4YNK/P6mWeeUUpKirZv365evXpp165d+uyzz/T555+rc+fOkqSZM2fqxhtv1LRp09S69ZkfYdaoUSOFh4f7Z0VMUq3Q6fF45HA4yk079SusQd2tR83tQd3tQd2tR83tUVndDcOQJOXn55fJP0FBQQoKCjqnft1ut958800FBwcrISFBkrR582aFhIT4Aqck9e7dW06nU1u3blX//v3PuLx3331X77zzjlq1aqXf/e53mjBhgho3bnxOY/S3aoXO9PR03w/gdBkZGX4ZEKqHuluPmtuDutuDuluPmtujoro7HA5FRUUpISGhzHWVkyZN0uTJk2vUz9q1azV27FgVFhYqIiJCK1euVIsWLSRJ2dnZatmyZZn2AQEBCg0NVXZ29hmXOXToULVt21YRERHavn27nnrqKWVkZCglJaVGYzRLtUJnbGxshUc6MzIy1L59e7lcLr8ODmdG3a1Hze1B3e1B3a1Hze1RWd0Nw5Db7da2bdvKHemsqZ49e2rjxo3Kzc3VkiVLNGbMGK1bt65c2KyO2267zff/HTt2VEREhAYNGqQ9e/aoXbt2NV6uv1UpdJ56yPn00OlwOOR0OuVwOMrNg3mou/WouT2ouz2ou/WouT0qq3vp2d0mTZooIMA/t8E0adJEMTExiomJUWJiorp06aKUlBQ99NBDCg8P16FDh8q0Ly4u1tGjR6t1vWaXLl0kSbt37659obOU2+2ucHpkZKSKiopUVFTkl0Ghaqi79ai5Pai7Pai79ai5Peysu9fr9eWrxMRE5eXlKTU1VVdccYUkaePGjfJ6vb4gWRVpaWmSdN7dWFSt0NmwYcMKT6+np6crNjaW0wEWou7Wo+b2oO72oO7Wo+b2qKzuhmHoxIkTVV5WQUGB9uzZ43udmZmptLQ0NW/eXGFhYZo9e7auu+46hYeH68iRI1q8eLGysrI0aNAgSVJcXJz69u2r+++/X3PmzFFRUZEmTpyowYMH++5cP3DggJKTk7VgwQJ16dJFe/bs0fLly9WvXz+FhYVp27Ztmjp1qrp37+67Qel8UaXQWfpDqOjQs8PhkGEYnA6wGHW3HjW3B3W3B3W3HjW3R1XqXtU/AlJTUzVgwADf66lTp0qSRowYoTlz5ig9PV3Lli1Tbm6uwsLC1LlzZ3344YeKj4/3fc+iRYs0YcIEJScny+FwaODAgZoxY4ZvfnFxsdLT03X8+HFJUmBgoL744gstWLBAhYWFatOmjQYMGKDx48dXuxZm4zmdAAAAftCjRw8dPXr0jPOrcjd5aGioFi9efMb5kZGRZfq46KKLyn3y0fmKTyQCAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDp+EQiADDZrVteVa77mN3DqCZDXq8h5zdrJdWej2Rs0aCJUn59p93DAFABQicAmCzXfUyNgoLsHka9kHuytoV7oP7g9DoAAABMR+gEAACA6Ti9DgCoc5x33yMdOWL3MKrFKamD4ZXTUQuPB4WFyfvn+XaPAuc5QicAoO45ckSONhfaPYpqc9k9gBoy/u+A3UNALVAL/5wCAABAbcORTtimtp3+4tQXAAA1R+iEfWrh6S9OfQEAUDO18JANAAAAahtCJwAAAExH6AQAAIDpCJ0AAAB+MGfOHPXp00dt27ZVbGysbrnlFqWnp5dpc+LECY0fP14xMTG66KKLNGrUKOXk5JRps3//ft1444268MILFRsbq8cee0zFxcVl2nz55Zfq1auXwsPD9atf/Upvv/12ufEsWrRIl19+uSIiInTNNddo69at/l/paiB0AgAA+MFXX32lsWPH6pNPPtGKFStUVFSkwYMH69ixY742U6ZM0dq1a/XGG29o9erVOnjwoG699VbffI/Ho5tuuklFRUX6+OOPNX/+fC1dulTTp0/3tcnMzNRNN92knj17auPGjbr77rt133336bPPPvO1WbFihR599FFNmjRJX3zxhRISEjRkyBAdOnTImmJUgLvXgXrk1i2vKtd97OwNzyuGvF5Dzm/WSnLYPZhqadGgiVJ+fafdwwBgkeXLl5d5PX/+fMXGxio1NVVXXnml8vLy9NZbb2nRokW66qqrJEmvvPKKunbtqs2bNysxMVGff/65du3apffff1+tWrXSZZddpilTpujJJ5/U5MmT1aBBA7322muKjIzUM888I0mKi4vTP/7xDy1YsEB9+/b19T1q1CjdcsstkkqOwn7yySd666239OCDD1pYlV9UK3R6PB45HI5y0079CmvUhbpzmN1aHo9Hue4CNQpqaPdQ6o3ckwU//44adg+lHjHk8XjYv9igtr4fVfZ+ahglv7v5+fll8k9QUJCCgoLOuuz8/HxJUmhoqCTpu+++U1FRkXr37u1rc8kll+iiiy7yhc7NmzerQ4cOatWqla9N37599fDDD+v777/X5Zdfrs2bN5dZRmmbRx55RJLkdruVmppaJlw6nU716tVLmzdvPuu4zVKt0Jmenu77AZwuIyPDLwNC9dTmuncwvLX2uZe1jdfwateuXfJ6CT9W8noN6m6x0pqzf7FW6T6mNqvo/dThcCgqKkoJCQkqKCjwTZ80aZImT55c6fK8Xq8eeeQRde3aVR06dJAkZWdnq0GDBgoJCSnTtlWrVsrOzpYk5eTklAmcktSyZUvf95e2KZ12apuffvpJx48f148//iiPx1Nhm9OvMbVStUJnbGxshUc6MzIy1L59e7lc/IpbpS7UvVZ+sk8t5XQ4FRcX9/MpaljF6XRQd4v5as7+xVKl+5jaqLL3U8Mw5Ha7tW3btnJHOs9m/Pjx2rlzpz766CO/j7m2qlbodLlc5ULnqfNqa/ipzag7qqpkO6ld10TWfg7qbjkH+0Sb1Pa6V/R+Wnp2Nzg4+Iz5pyITJkzQxx9/rA8//FBt2rTxTQ8PD5fb7VZeXl6Zo505OTkKDw+XVHLU8/S7zEtv/jm1zek3BB06dEjNmjVTo0aNfOtSUZvTj6JaiRuJxM0VVuPmCgBAXWQYhiZOnKg1a9Zo1apVioqKKjO/U6dOCgwM1IYNGzRw4EBJJZcu/vDDD0pMTJQkJSYmavbs2Tp06JDv9Pj69evVrFkz39HkxMREffrpp2WWvX79eiUlJUmSGjRooCuuuEIbNmzQDTfcIKnkdP/GjRs1duxY8wpwFoROSbnuY2pUhUPl8I/ck7Ut4AMAcHbjx4/X8uXL9fbbb6tp06a+azCDg4PVqFEjhYSEaOTIkZo6dapCQ0PVrFkzTZw4UYmJib7Q2adPH8XFxenuu+/Wk08+qZycHD377LMaO3as77T+7bffrsWLF+vxxx/XyJEjtXHjRr3//vv661//6hvLPffco3vuuUedO3fWr371Ky1YsEDHjh3z3c1uB0InAACAH7z22muSpP79+5eZPm/ePN18882SpOnTp8vpdGrUqFFyu93q06ePZs2a5Wvrcrm0bNkyPfzww/rtb3+rxo0ba8SIEZoyZYqvTVRUlP76179qypQpWrhwoS688EK9/PLLvsclSdLgwYN1+PBhTZ8+XTk5Obrsssu0fPlyTq8DAADUdkePHj1rm4YNG2rWrFllgubpIiMj9e6771a6nB49emjjxo2Vtrnzzjt15501u5ztq6++0htvvKG9e/fqjTfe0IUXXqhly5YpKipK3bp1q9Eyub0PAAAAPh988IGGDh2qRo0a6d///rfcbrekkueOzpkzp8bLJXQCAADAZ9asWZozZ47mzp2rwMBA3/Tf/OY3+ve//13j5RI6AQAA4JORkaHu3buXmx4cHKy8vLwaL5fQCQAAAJ9WrVpp9+7d5ab/4x//UHR0dI2XS+gEAACAz6hRo/TII49oy5YtcjgcysrK0jvvvKPHHntMt99+e42Xy93rAAAA8HnwwQfl9XqVnJyswsJC3XDDDQoKCtK9995b47vhJUInAAAATuFwODR+/Hjdd9992r17t44dO6a4uDg1bdr0nJZL6AQAAEA5DRo00KWXXuq35RE6AQAA4HPixAm9+uqr+vvf/67Dhw/L6/WWmb9hw4YaLZfQCQAAAJ9x48Zp/fr1GjhwoLp06SKHw+GX5RI6AQAA4PPxxx/rnXfe0W9+8xu/LpdHJgEAAMDnwgsvPOebhipC6AQAAIDPtGnT9OSTT2rfvn1+XS6n1wEAAODTuXNnnTx5Up07d1bjxo0VEFA2Lu7Zs6dGyyV0AgAAwGfs2LHKysrSY489platWnEjEQAAAPzv22+/1ccff6zLLrvMr8vlmk4AAAD4xMbG6sSJE35fLqETAAAAPk888YQeffRRffnllzpy5Ijy8/PL/KspTq8DAADAZ+jQoZKkQYMGlZluGIYcDodyc3NrtFxCJwAAAHxWrVplynI5vQ4AAOAHmzZt0vDhwxUfH6/Q0FCtWbOmzPx77rlHoaGhZf6VHlUsdfToUd1xxx2KjIxUVFSUxo0bp4KCgjJttm3bpuuuu04RERHq2LGj5s6dW24s77//vpKSkhQREaHu3bvrk08+qfJ6XHnllZX+qymOdAIAAPhBYWGhEhISNHLkSN16660Vtunbt6/mzZvnex0UFFRm/h133KHs7GytWLFCRUVFuvfee/XAAw9o8eLFkqT8/HwNGTJEvXr10pw5c7Rjxw6NGzdOISEhuu222yRJ33zzjcaOHavHH39cv/3tb7V8+XKNHDlSX3zxhTp06HDW9di0aVOl82saPAmdAAAAftCvXz/169ev0jZBQUEKDw+vcN6uXbv02Wef6fPPP1fnzp0lSTNnztSNN96oadOmqXXr1nr33Xfldrv1yiuvqEGDBoqPj1daWprmz5/vC50LFy5U3759dd9990mSpk6dqi+++EKLFi3Siy++eNb1GDBgQLlppz6r05JrOj0eT7kHhHo8njJfayfD7gHUM4Y8Hg/Xdlis5HeUbd1aBnW3HPsXu9TWHFBZjjGMkt/d/Pz8MvknKCio3BHKqvryyy8VGxur5s2bq2fPnnr00UcVFhYmSdq8ebNCQkJ8gVOSevfuLafTqa1bt6p///7avHmzunfvrgYNGvja9O3bV3PnztWPP/6o5s2b69tvv9Uf//jHMv326dOn3On+Mzn9E4eKi4v173//W9OnT9ejjz5ao/WWqhk609PTfT+A02VkZNR4EHbzenlDsJLXa2jXrl3qYHjlsnsw9YTX8GrXrl1s6xYr3dapu3XYv9ijdB9Tm1WUYxwOh6KiopSQkFDmuspJkyZp8uTJ1e6jb9++6t+/v6KiorR3715NmzZNw4YN0yeffCKXy6Xs7Gy1bNmyzPcEBAQoNDRU2dnZkqScnBxFRkaWaVP6PdnZ2WrevLlycnLKLadly5bKycmp0jhDQkLKTbv66qvVoEED31HTmqhW6IyNja3wSGdGRobat28vl6t2/oo7v1lr9xDqFafTobi4ODkdHIuwitPhLKk527qlfNs6dbcM+xd7lO5jaqPKcoxhGHK73dq2bVu5I501MWTIEN//d+zYUR07dlTnzp315ZdfqlevXjVbAQu1bNnynA4yVit0ulyuM37+psvlqrWhU/LPZ4qiqhy1eFupvUpqzrZuLQd1txz7F7vU9rpXlGNKz+4GBwf77fPHTxUdHa0WLVpo9+7d6tWrl8LDw3Xo0KEybYqLi3X06FHfdaCtWrUq16b09dnatGrVqkrj2rZtW5nXhmEoOztbL730khISEqq+gqfhRiIAAAAb/N///Z+OHDniC4uJiYnKy8tTamqqrrjiCknSxo0b5fV61aVLF1+bZ555RkVFRQoMDJQkrV+/3nedqCQlJSVpw4YN+sMf/uDra/369UpMTKzSuK666io5HI5yl1T++te/1iuvvFLj9SV0AgAA+EFBQUGZm3AyMzOVlpam5s2bKzQ0VDNnztTAgQMVHh6uPXv26IknnlBMTIz69u0rSYqLi1Pfvn11//33a86cOSoqKtLEiRM1ePBgtW7dWlLJpwU9//zzGjdunO6//37t3LlTCxcu1LPPPuvr96677lL//v31yiuv6Nprr9WKFSuUmpqql156qUrrkZqaWua10+nUBRdcoIYNG55TfQidAAAAfpCamlrmcUNTp06VJI0YMUKzZ8/Wjh07tGzZMuXl5SkiIkJ9+vTRlClTylwjumjRIk2YMEHJyclyOBwaOHCgZsyY4ZsfEhKi9957TxMmTNDVV1+tFi1aaMKECb7HJUlS165dtWjRIj377LOaNm2aYmJi9NZbb1XpGZ2Syt2o5C+ETgAAAD/o0aOHjh49esb577333lmXERoa6nsQ/JkkJCToo48+qrRNcnKykpOTz9pfqYULF1a57V133VXltqcidAIAANRz8+fPr1I7h8NB6AQAAEDNfPfdd6b3wYPMAAAAUCHDMM74wUDVRegEAABAGcuWLVP37t3VunVrtW7dWldeeaWWLVt2Tsvk9DoAAAB85s2bp+nTp2vs2LHq2rWrJOkf//iHHn74YR05ckT33HNPjZZL6AQAAIDPq6++qtmzZ2v48OG+addff73i4+M1Y8aMGodOTq8DAADAJzs7W0lJSeWmJyUlKTs7u8bLJXQCAADAp127dlq5cmW56StXrlRMTEyNl8vpdQAAAGjHjh3q0KGDpkyZojFjxujrr7/2XdP5zTffaMOGDXr99ddrvHyOdAIAAEA9evTQNddco9zcXP3tb39TWFiY1qxZozVr1igsLEyfffaZ+vfvX+Plc6QTAAAAWr16td5++209/vjj8nq9GjBggJ599lldeeWVflk+RzoBAACg7t2765VXXtHOnTs1c+ZM7du3TwMHDtSvf/1rvfTSS+d0E5FE6AQAAMApmjRpoltuuUVr1qzR5s2bNWjQIC1evFiXXXaZRowYUePlEjoBAABQoZiYGD300EMaP368mjZtqk8++aTGy+KaTgAAAJSzadMm/eUvf9GqVavkcDj0+9//XiNHjqzx8gidAAAAkCRlZWXp7bff1tKlS7V7924lJSVpxowZSk5OVpMmTc5p2YROAAAAaOjQodqwYYNatGihm266SSNHjlRsbKzflk/oBAAAgAIDA/Xmm2/qt7/9rVwul9+XT+gEAACAli5dauryuXsdAADADzZt2qThw4crPj5eoaGhWrNmTZn5hmFo+vTpuvTSS9W6dWslJyfrv//9b5k2R48e1R133KHIyEhFRUVp3LhxKigoKNNm27Ztuu666xQREaGOHTtq7ty55cby/vvvKykpSREREerevfs53XXuL4ROAAAAPygsLFRCQoJeeOGFCufPnTtXCxcu1Jw5c/Tpp5+qcePGGjJkiE6cOOFrc8cdd+j777/XihUrtGzZMn311Vd64IEHfPPz8/M1ZMgQtW3bVuvXr9fTTz+tmTNn6o033vC1+eabbzR27FiNHDlSGzZs0A033KCRI0dqx44dZq16lRA6AQAA/KBfv3569NFHK/x8csMw9Oc//1njx4/X9ddfr4SEBC1YsEAHDx70HRHdtWuXPvvsM7388sv69a9/rW7dumnmzJlasWKFsrKyJEnvvvuu3G63XnnlFcXHx2vIkCG68847NX/+fF9fCxcuVN++fXXfffcpLi5OU6dOVadOnbRo0SJrCnEG1bqm0+PxyOFwlJt26tfaybB7APWMIY/Hw188Fiv5HWVbt5ZB3S3H/sUutTUHVJZjDKPkdzc/P79M/gkKClJQUFC1+snMzFR2drZ69+7tmxYSEqIuXbpo8+bNGjJkiDZv3qyQkBB17tzZ16Z3795yOp3aunWr+vfvr82bN6t79+5q0KCBr03fvn01d+5c/fjjj2revLm+/fZb/fGPfyzTf58+fcqd7rdatUJnenq67wdwuoyMDL8MyA5eL28IVvJ6De3atUsdDK/8f28cKuI1vNq1axfbusVKt3Xqbh32L/Yo3cfUZhXlGIfDoaioKCUkJJS5rnLSpEmaPHlytZZf+rnlLVu2LDO9VatWysnJ8bU5fX5AQIBCQ0N935+Tk6PIyMgybUq/Jzs7W82bN1dOTk655bRs2dLXj12qFTpjY2MrPNKZkZGh9u3bm3J7vRWc36y1ewj1itPpUFxcnJwOjkVYxelwltScbd1Svm2duluG/Ys9SvcxtVFlOcYwDLndbm3btq3ckU5UX7VCp8vlKhc6T51XW0OnVPE6wSyOWryt1F4lNWdbt5aDuluO/YtdanvdK8oxpWd3g4ODz5h/qio8PFySdOjQIUVERPim5+Tk6LLLLvO1OXToUJnvKy4u1tGjR33f36pVq3JtSl+frU2rVq3OaR3OFX8KAgAAmCwqKkrh4eHasGGDb1p+fr62bt2qxMRESVJiYqLy8vKUmprqa7Nx40Z5vV516dLF1+arr75SUVGRr8369esVGxur5s2bS5KSkpLK9FPaprQfuxA6AQAA/KCgoEBpaWlKS0uTVHLzUFpamvbv3y+Hw6G7775bs2bN0ocffqjt27frD3/4gyIiInTDDTdIkuLi4tS3b1/df//92rp1q/7xj39o4sSJGjx4sFq3bi2p5KMqGzRooHHjxmnnzp1asWKFFi5cqHvuucc3jrvuukufffaZXnnlFf3nP//RjBkzlJqaqjvuuMP6opyCTyQCAADwg9TUVA0YMMD3eurUqZKkESNGaP78+br//vtVWFioBx98UHl5efrNb36j5cuXq2HDhr7vWbRokSZMmKDk5GQ5HA4NHDhQM2bM8M0PCQnRe++9pwkTJujqq69WixYtNGHCBN12222+Nl27dtWiRYv07LPPatq0aYqJidFbb72lDh06mF+EShA6AQAA/KBHjx46evToGec7HA5NmTJFU6ZMOWOb0NBQLV68uNJ+EhIS9NFHH1XaJjk5WcnJyZW2sRqn1wEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKYjdAIAAMB0hE4AAACYjtAJAAAA0xE6AQAAYDpCJwAAAExH6AQAAIDpCJ0AAAAwHaETAAAApiN0AgAAwHSETgAAAJiO0AkAAADTEToBAABguoCqNDIMo8zX0+c5HA4ZhlHh/NqgkTNQDZ2Bdg+j/nB6S7aXhg2loCC7R1MvGA0byjAMtnWr/bytU3cLsX+xRek+pjaqLMecmn8cDocdw6tTHEYVthKv16uffvrJivEAAACcV5o1ayank5PD56rKodP3Dacl/fz8fCUkJGjbtm0KDg72/whRIepuPWpuD+puD+puPWpuj8rqfmpEInSeuyqdXq+s0A6HQwUFBXI4HBx6thB1tx41twd1twd1tx41t0dldefn4F/EdgAAAJiO0AkAAADTnXPoDAoK0qRJkxTEXYKWou7Wo+b2oO72oO7Wo+b2oO7WqdKNRAAAAMC54PQ6AAAATEfoBAAAgOkInQAAADAdoRMAAACmI3QCAADAdIROAMA583g8dg+hXjn146mB2oLQWccVFRXZPYR6p6CgQDk5OcrLy+ON2EK5ubn617/+pbS0NB05csTu4dQLu3bt0pw5cyRJLpeL7d0i//rXvzRy5EidPHnS7qEA1VKlz15H7ZSRkaHXX39dI0eOVHx8vN3DqRd27typCRMmKDc3V263W6NHj9aoUaPUvHlzu4dWp23fvl133XWXiouLVVBQoL59++rJJ59UaGio3UOrs06cOKEhQ4bowIEDOnTokJ577jlf8HS5XHYPr85KS0vTgAEDNGLECB5mjlqHI5111J49e3TDDTdoyZIlWrx4sXbt2mX3kOq8Xbt2aeDAgbrsssv09NNP69prr9WSJUu0c+dOu4dWp33//fcaOHCg+vbtq7ffflv33nuv1q9fz9FOkzVo0EBt2rTRLbfcom+//VYTJ06UVHLEk1O/5khLS9N1112n22+/XS+88IIkqbi4WG63W3zOC2oDPpGoDiosLNTDDz8st9utyy67TCtXrlTnzp31hz/8QXFxcXYPr07Ky8vT2LFj1bZtW9/pRkn63e9+p3bt2mnBggU2jq7uOnr0qG6++WZ16tRJM2bM8E3//e9/r7vuukuhoaFq3bq1IiMjbRxl3fXAAw8oNjZWLpdLr7/+uq655ho9++yz2rhxo6644goFBwfbPcQ6Izc3V506ddLVV1+tlJQUFRUV6ZFHHtGePXuUlZWlvn37atSoUYqNjbV7qMAZcXq9DmrYsKGuuuoqORwODR8+XBdccIEWLVqkBQsWEDxNkp2drWbNmun3v/+9JMntdqtBgwbq2bOn9uzZY/Po6q4TJ05o2LBh6tq1q2/arFmztGHDBh08eFABAQE6evSo3n77bV1++eU2jrRuKT2FHhQUpOPHj+uhhx6SJP3lL39Rp06dZBiGvv76a3m9XjmdnFDzB4/HoxtuuEHr1q3Tpk2b9NJLL6mwsFBXX321cnJytHXrVv3rX//SvHnzFBUVZfdwgQqxN6iDnE6nhgwZoptuukmSNHLkSP3P//yPUlNTtWDBAt+p9qKiIh08eNDOodYZl1xyiYYOHaqePXtKkgICSv6eu+CCC3TixIkybX/66SfLx1dXtW7dWoMGDVLHjh0lSUuXLtXMmTP1xhtvaM2aNXr11Vd16aWXav78+Tp58iSnIP2kNEj26dNHO3fulNPp1N13362AgADl5OSoS5cuatKkiZxOJ6fa/aRVq1Z67rnndO2112rAgAEyDEMpKSkaP368nn/+ed17773Kzc3V119/bfdQgTMidNYxpXePNmjQQA6Hw/d61KhRGjNmjC94btu2TY8//riGDRvGHZDnqPQJAddff70kyTAM35ty6Z3spWHnxRdf1LRp01RcXGzPYOuQ0m27RYsWvmnXX3+91q5dq4EDByosLEzx8fEKDg5WXl6egoKC5HA47BpunVAaIEvrGBQUpB07dkiS7rvvPh04cEBjxozR7t27de+990oSRzr9oHRbDwsL01NPPaUnn3xSt99+u8LCwnw/k+uvv15ut1vfffednUMFKsXp9Tpg3759+u677zRgwADfRfylO/pTX48ePVoOh0NvvPGGbr75Zh09elSrVq3iDsgaOLXmgYGBZWrucDhkGIYcDoeaNGmi4OBgORwOTZ8+3Xfqt/RIKKqnsm3d4/EoJCREXbp0kVQS/g3DUKNGjRQTEyOv1yuHw0HwrKZTa1565LK05p07d1ZkZKSGDh2qHTt2aNWqVbrwwgu1YMECrVu3TtnZ2QoPD7d5DWqn07f10ksaWrVqpdGjR6tx48aSSkK9x+NRYWGhoqKiuIwE5zXe+Wq5jIwM/e53v1OzZs107NgxDR8+vNwbw6mvR40apaVLl+qnn37S2rVrfaclUXVVqXmphg0bqkWLFpo5c6b+9Kc/6fPPP9dll11m08hrt7PV/fTH9Hi9Xs2cOVPr16/XBx98wBG3GjhbzUNCQnT48GHt27dP7733ni655BJJ0p133qmxY8fyyKoaqqjupwbPkJCQMu2dTqfmzZun//73v+revbtNowbOjrvXa7HDhw/rrrvuksPhUEhIiH744QeNHj1aN998sySVC0HFxcUaP368lixZor///e8Ezhqobs3nzZunxx57TI0bN9bq1at1xRVX2DTy2q26df/iiy+0evVqvf/++1qxYgVHf2rgbDUvKipSYGCgCgsLlZ2drXbt2kmS7yg/aqa62/pnn32mVatW6W9/+5s++OAD/qjFeY0jnbXYyZMn1bRpU912221q3bq1XnrpJb355puSpJtvvrnc0beAgAB169ZNo0ePJnDWUFVqfuqbbosWLRQVFaVly5bx1IBzUN26Hz58WC6XS2vWrKHuNXS2mgcGBqq4uFiNGzf2BU5JBM5zVN1tvfSa8Y8++kiXXnqpnUMHzoojnbVcVlaWWrduLUnasWOH5s6dq71792rUqFG65ZZbJJUc4eQaQv+pSs1LjwJJ4ro2P6lK3UsfVSWVPK+29Lo31Az7F3tUd1s/duyYmjRpYtt4gariIqdarnTH5PF41KFDBz344IOKjo7WkiVL9Pbbb0uSHn74Yb3++ut2DrNOqUrNx48fr0WLFkkSgdNPqlL3CRMm6H//938licDpB+xf7FHdbZ3AidqCI5110Pfff68XX3xR+/fvl8Ph0Ndff61169bpV7/6ld1Dq7OouT2ou/WouT2oO+oCQmctdbaL9dPS0nTTTTepsLBQq1evVkJCgoWjq5uouT2ou/WouT2oO+o6Tq/XEqUPB87NzZVU+cX6brfb91ikDz/8kB1TDVFze1B361Fze1B31DeEzvNcRkaGVq9eLZfLpffff1933323Dh06VOn3/PTTT9q8ebM++OADdejQwaKR1h3U3B7U3XrU3B7UHfWWgfOWx+MxnnvuOSM0NNR49NFHjdDQUGPp0qWVfo/X6zUMwzBOnjxpxRDrHGpuD+puPWpuD+qO+oxrOmuBYcOG6fPPP9ftt9+uF154ocJPvjmdwQOazwk1twd1tx41twd1R33E6fXzVOnfAkVFRQoLC1P37t312muv6b333vM9HPj0vxdOfc2OqfqouT2ou/WouT2oO+o9i46oohpKT6X885//ND799FPjp59+MgzDMJ544gkjLCzMePfdd8u0y8zMtGegdQg1twd1tx41twd1BwyDI53nGePn0ycffPCBhg0bpq1bt+rAgQOSSh7CPG7cON19991avny5HA6HZs+erYkTJ+rYsWM2j7z2oub2oO7Wo+b2oO7Az2yNvKjQ119/bURGRhqvv/66cfz48TLz8vPzjWeeecYIDQ01rr32WqN169ZGamqqTSOtO6i5Pai79ai5Pag7wI1E5xXj57+Gp0+fru3bt+svf/mLb57H45HL5fK9/vTTT7V7925de+21ateunR3DrROouT2ou/WouT2oO/CLALsHgF92SqUXiR88eND30ODSOxpLd0zfffed4uLi1K9fP+5kPAfU3B7U3XrU3B7UHSiPazptdPz4cZ08eVI//PCDTp486Zt+4YUX6ptvvlFubq7vjkap5OHAK1as0DfffCOJOxlrgprbg7pbj5rbg7oDlbDyXD5+8f333xu33nqr0a1bN+OCCy4wevbsaTz22GOGYRhGQUGBcdVVVxndunUzsrOzDa/XaxQVFRlPPfWU0bFjR2P//v02j752oub2oO7Wo+b2oO5A5bim0wbbt2/X9ddfrxtvvFGXX365QkNDtXTpUq1bt05XX3213njjDaWnp+vBBx9URkaGLr30UgUGBmrnzp1asWKFLr/8crtXodah5vag7taj5vag7sDZETotdvjwYQ0ZMkR9+vTRE088UWb6ypUr9cQTT2jAgAFauHChDMPQokWLdPjwYTVt2lQDBgzg4vIaoOb2oO7Wo+b2oO5AFdl2jLWe+u6774xu3boZ27dvN4qLiw3DKPksXsMwjB9//NF44YUXjNatWxurVq2yc5h1CjW3B3W3HjW3B3UHqoYbiSy2bds27dmzRx06dJDL5ZJhGL7P2w0JCdGwYcMUGBioPXv2lPk+gwPSNUbN7UHdrUfN7UHdgaohdFqs9DTKBx98IKn8nYpRUVGKjo5WVlZWmenc0Vhz1Nwe1N161Nwe1B2oGkKnxSIjI9WsWTMtW7ZM+/bt8033er2SpB9//FENGzZUp06d7BpinUPN7UHdrUfN7UHdgaohdFqsTZs2mj17tj777DNNnz5dO3fulCTfqZh58+bp4MGD6tatm53DrFOouT2ou/WouT2oO1A13L1uA4/HoyVLlmjixIlq166dunbtqvDwcGVmZmrdunX629/+xuMz/Iya24O6W4+a24O6A2dH6LTRli1b9PLLLys9PV0hISFKSEjQnXfeqUsuucTuodVZ1Nwe1N161Nwe1B04M0KnzTwej5xOpxwOh+/zeGEuam4P6m49am4P6g5UjN8Em5XumCTuZLQKNbcHdbceNbcHdQcqxpFOAAAAmI4jnQAAADAdoRMAAACmI3QCAADAdIROAAAAmI7QCQAAANMROgEAAGA6QicAAABMR+gEAACA6QidAAAAMB2hEwAAAKb7f/DA/yy0kRFQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ===============================================================================================\n", + "# Here we specify `up` as rgba using the matplotlib convention: rgb are floats from 0.0 and 1.0 :\n", + "mc = mpf.make_marketcolors(base_mpf_style='yahoo',up=(0.7,1.0,0.7,0.4),down='fuchsia',\n", + " edge={'up':'blue','down':'#000000'},wick='#cc6600')\n", + "\n", + "mco = [None,None,mc,mc,None]\n", + "mpf.plot(df,volume=True,style='yahoo',type='candle',marketcolor_overrides=mco)\n", + "\n", + "# ====================================================================================\n", + "# Here we specify `up` as rgba using the convention that rgb are ints from 0 and 255 :\n", + "mc = mpf.make_marketcolors(base_mpf_style='yahoo',up=(178,255,178,0.4),down='fuchsia',\n", + " edge={'up':'blue','down':'#000000'},wick='#cc6600')\n", + "\n", + "mco = [None,None,mc,mc,None]\n", + "mpf.plot(df,volume=True,style='yahoo',type='candle',marketcolor_overrides=mco)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "#### When dealing with larger data sets we recommend setting up your marketcolor overrides as a COLUMN in your DataFrame\n", + "#### This has two advantages:\n", + "1. It helps ensure that your marketcolor overrides are the same length as your dataframe, and\n", + "2. It allows you to use the dataframe's `DatetimeIndex` in order to position the override values.\n", + "\n", + "#### Note that you will still have to pass the `marketcolor_overrides` as a separate iterable (apart from the dataframe)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "#### Step 1: read in the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(50, 5)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OpenHighLowCloseVolume
Date
2011-08-29119.559998121.430000118.059998121.360001190977200
2011-08-30120.830002122.430000119.260002121.680000241315700
2011-08-31122.459999123.510002121.300003122.220001301828400
\n", + "
" + ], + "text/plain": [ + " Open High Low Close Volume\n", + "Date \n", + "2011-08-29 119.559998 121.430000 118.059998 121.360001 190977200\n", + "2011-08-30 120.830002 122.430000 119.260002 121.680000 241315700\n", + "2011-08-31 122.459999 123.510002 121.300003 122.220001 301828400" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('data/SPY_20110701_20120630_Bollinger.csv',index_col=0,parse_dates=True)\n", + "df = df[['Open','High','Low','Close','Volume']].iloc[40:90] # Arbitrarily choose a 50 row subset of the data\n", + "df.shape\n", + "df.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "#### Step 2: Create a new column for the overrides:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OpenHighLowCloseVolumeMCOverrides
Date
2011-08-29119.559998121.430000118.059998121.360001190977200None
2011-08-30120.830002122.430000119.260002121.680000241315700None
2011-08-31122.459999123.510002121.300003122.220001301828400None
\n", + "
" + ], + "text/plain": [ + " Open High Low Close Volume \\\n", + "Date \n", + "2011-08-29 119.559998 121.430000 118.059998 121.360001 190977200 \n", + "2011-08-30 120.830002 122.430000 119.260002 121.680000 241315700 \n", + "2011-08-31 122.459999 123.510002 121.300003 122.220001 301828400 \n", + "\n", + " MCOverrides \n", + "Date \n", + "2011-08-29 None \n", + "2011-08-30 None \n", + "2011-08-31 None " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['MCOverrides'] = [None]*len(df)\n", + "df.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "#### Step 3: Use the DatetimeIndex to position the Overrides:\n", + "#### For demonstration purposes, let's override every Monday as black, and every Tuesday as \"blueskies\" marketcolors:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OpenHighLowCloseVolumeMCOverrides
Date
2011-08-29119.559998121.430000118.059998121.360001190977200black
2011-08-30120.830002122.430000119.260002121.680000241315700{'candle': {'up': 'w', 'down': '#0095ff'}, 'ed...
2011-08-31122.459999123.510002121.300003122.220001301828400None
2011-09-01122.290001123.400002120.779999120.940002254585900None
2011-09-02118.419998120.870003117.430000117.849998255517200None
\n", + "
" + ], + "text/plain": [ + " Open High Low Close Volume \\\n", + "Date \n", + "2011-08-29 119.559998 121.430000 118.059998 121.360001 190977200 \n", + "2011-08-30 120.830002 122.430000 119.260002 121.680000 241315700 \n", + "2011-08-31 122.459999 123.510002 121.300003 122.220001 301828400 \n", + "2011-09-01 122.290001 123.400002 120.779999 120.940002 254585900 \n", + "2011-09-02 118.419998 120.870003 117.430000 117.849998 255517200 \n", + "\n", + " MCOverrides \n", + "Date \n", + "2011-08-29 black \n", + "2011-08-30 {'candle': {'up': 'w', 'down': '#0095ff'}, 'ed... \n", + "2011-08-31 None \n", + "2011-09-01 None \n", + "2011-09-02 None " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mc = mpf.make_marketcolors(base_mpf_style='blueskies')\n", + "for ts in df.index:\n", + " if 0 == ts.weekday():\n", + " df.loc[ts,'MCOverrides'] = 'black'\n", + " elif 1 == ts.weekday():\n", + " df.loc[ts,'MCOverrides'] = [mc]\n", + "#mc\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== without marketcolor overrides: ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAAJ9CAYAAAB5HeD6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABz90lEQVR4nO3deXhU1eHG8fdmsjKQkISEIAiCskUUXEBQSnlIUSshWNwAwaUWxIVWyirUfamKiChiUWutK1qlLQRcgcrPjboAgltBEEQJkIUEhiSTTO7vj0mG7CQzmczcme/nefIkuXOXk5mTmfvec+45hmmapgAAAAAAlhUR6AIAAAAAAHxDsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWFxkU1aqqKjw/GwYht8KAwAAAAANqT4Fd0QEbVTVNSnYSdLhw4f9WQ4AAAAAaJJ27doFughBp8nBTpJiY2Mt32Lncrm0fft29ezZUzabLdDFgcVQf+At6g58Qf2BL6g/8EWw1R/TNFVSUhLoYgSlJgW7qjBnGIblg51hGDJNMyT+FrQ+6g+8Rd2BL6g/8AX1B74I1voTTGUJFnRMBQAAAACLI9gBAAAAgMUR7AAAAACErA8//FDjxo1T3759lZiYqNWrV9d4/IEHHtCgQYPUuXNnnXTSSbr44ov12Wef1VinoKBAkydPVteuXdWtWzdNmzZNR44cac0/47gIdgAAAABC1tGjR9WvXz8tWLCg3sdPPvlkPfTQQ/rwww/15ptvqmvXrho7dqxyc3M960yePFnffvutVqxYoeXLl+ujjz7SLbfc0kp/QdM0a1RMAAAAALCSkSNHauTIkQ0+ftlll9X4/d5779ULL7ygr776Sr/85S/13Xffae3atVq3bp3OOOMMSdKDDz6oyy+/XPfcc486derk1/I3VbOCncvlsvwINC6Xq8Z3oDmoP/AWdQe+oP7AF9Qf+CLY6k/VBOVFRUU1cklMTIxiYmJ83r/T6dTf//53xcfHq1+/fpKkTz/9VAkJCZ5QJ0nDhw9XRESEPv/8c2VmZvp83JbQrGC3ffv2GrO9W9mOHTsCXQRYGPUH3qLuwBfUH/iC+gNfBEv9MQxD3bp1U79+/Wrc4zZnzhzNnTvX6/2+9dZb+t3vfqejR48qLS1N//znP5WcnCxJ2r9/v1JSUmqsHxkZqcTERO3fv9/rY7a0ZgW7nj17hkSL3Y4dO3TKKacExSSLsBbqD7xF3YEvqD/wBfUHvgi2+mOappxOp7Zt21anxc4Xv/jFL7Rhwwbl5eXp+eef17XXXqv33nuvTqALZs0KdjabzfLBrorNZguKyglrov7AW9Qd+IL6A19Qf+CLYKk/Vb0H4+PjWzSX2O129ejRQz169NDAgQN11lln6YUXXtAf//hHdezYUQcPHqyxfnl5uQoKCtSxY8cWK4OvGBUTAAAAAKqpqKiQ0+mUJA0cOFCFhYXavHmz5/ENGzaooqJCZ511VoBKWBejYgIAAAAIWUeOHNGuXbs8v+/evVtbt25V+/btlZSUpIULF+rXv/61OnbsqPz8fD3zzDPat2+fxowZI0nq3bu3MjIy9Ic//EGPPPKIysrKNHv2bI0dOzZoRsSUCHYAAAAAQtjmzZs1evRoz+/z58+XJI0fP16PPPKItm/fruXLlysvL09JSUk644wztGbNGvXt29ezzdNPP61Zs2bp4osvlmEYysrK0gMPPNDqf0tjCHYAAAAAQtbQoUNVUFDQ4OMvvPDCcfeRmJioZ555piWL1eK4xw4AAAAALI5gBwAAAAAWR7ADAABAi3I4HFq5cqUcDkegiwKEDYIdAAAAWpTD4VB2djbBDmhFBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAEBYfDoZUrVzKxOeAFgh0AAACCgsPhUHZ2NsEO8ALBDgAAAAAsLjLQBQAAAID15ZQWylFeKkkqKM6TJO0pztPhysY3e2SM0mISmr1dY9sCOIZgBwAAAJ/klBaq29pZMit/j3ZK6b2l4ZsWyRntXmZI2p2xoEZAa8p2DW1bm8Ph0Nq1a5WRkSG73d6Sfx5gCQQ7AAAA+MRRXipTUlKUXTbDkKKln/pLVTHMZZrKL3O4W+Zimr5dY9vWKUPl/XmDBw8m2CEsEewAAADQImyGoUjDVs8jLi+3O/62ANwYPAUAAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHFMdwAAAICAcpmmGprWwP0YgOMh2AEAACAg7JExMiTllzkkSdFOKf176euTJWf0sfWMynUBNIxgBwAAgIBIi0nQ7owFcpSXSpIKcvP01JpFWnrpdCV2SPasZ4+MUVpMQqCKCVgCwQ4AAAABkxaTIFU2xh1wN9ypa1yyUu2pgSsUYEEMngIAAICgYLfblZmZKbvdHuiiAJZDix0AAACCgt1uV1ZWVqCLAVgSwQ4AAAAtoqHRLRnZEvA/gh0AAAB80pTRLRnZEvAvgh0AAAB80pTRLRnZEvAvgh0AAAB8xuiWQGAxKiYAAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAi2PwFAAAAFhPbp5UUnzs9/x89/ecHMnpdP8cGydVjsoJhDqCHQAAAKwlN0+2UZkyqk18Hm+zKSulg+Kvv0GRLvck6aZhyLU6m3CHsECwAwAAgLWUFMswTZnx8ZLNJkmySxpT6pTi42VKksslo6ioZqseEMIIdgAAALAmm80T7IBwx+ApAAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAACgRdntdmVmZsputwe6KEDYYB47AAAAtCi73a6srKxAFwMIK7TYAQAAAK3I4XBo5cqVcjgcgS4KQgjBDgAAAGhFDodD2dnZBDu0KIIdAAAAEOJoJQx93GMHAAAA+FlOaaEc5aWSpILiPEnSnuI8Ha7MWfbIGKXFJPjleJJUkJun7OxsndC/pxKV7JdjIrAIdgAAAIAf5ZQWqtvaWTIrf492Sum9peGbFskZ7V5mSNqdsaBFglbt47XGMRF4BDsAAADAjxzlpTIlJUXZZTMMKVr6qb9UFadcpqn8Moe7hS3GD8eT/H5MBB7BDgAAAGgFNsNQpGGr5xFXKx/Pf8dE4DB4CgAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAACzA4XBo5cqVcjgcgS4KgCBEsAMAALAAh8Oh7Oxsgl0YI9yjMQQ7AAAAwAII92gMwQ4AAAAALC4y0AUAAABAXTmlhXKUl3p+LyjOkyTtKc7T4coGG3tkjNJiEgJRvODgcnn3mIVUrwf11QGJegA3gh0AAECQySktVLe1s2RWWxbtlNJ7S8M3LZIz2r3MkLQ7Y0H4ndTHxsk0DBlFRZ5FR2w2vZfSQb86mKu2laHONAwpNi5QpfRZ7XpQXx2QGq4HLtOUVH/AdT+GUEKwAwAACDKO8lKZkpKi7LIZhnthtPRTf6nq1N1lmsovc7hbc2ICVdIA6ZAs1+psqaTYs6goP18rlyzRoHvvUWxSknthbJzUITlAhfRdnXpQqw5I9dcDe2SMDEn5Zcea9aKdUvr30tcnq8aFAXtkuFWe0EWwAwAACFI2w1CkYWvg0dDoaui12oEtujKtpKVJqamtX54maKgF7XitZ82tB2kxCdqdsaBmV97cPD21ZpGWXjpdiZXPHV04QwvBDgAAAJZnt9uVmZkpu90e6KLUUbsFrbmtZ950qUyLSajRknugsvGua1yyUu3BGXzhG4IdAAAALM9utysrKyvQxahX7Ra0praeNSUQSnSpPJ4PP/xQjz/+uLZs2aKcnBy9+OKLGjVqlCSprKxM9957r959913t3r1b8fHx+uUvf6k77rhDnTp18uzj9NNP148//lhjv7fffrumT5/eqn9LYwh2AAAAgJ9Vb0FrautZUwKhRJfK4zl69Kj69euniRMnatKkSXUe+/LLLzVr1iz169dPhw4d0q233qoJEyZo/fr1NdadN2+errrqKs/vbdu2bZXyNxXBDgAAAAhS3gRC1DRy5EiNHDmy3scSEhL0z3/+s8ayhx56SBkZGfrxxx914oknepa3bdtWHTt29GtZfdGsYOdyuWRUjcxkUa7K4W9dITK3CVoX9Qfeou7AF9Sf8FNRUSFJMiu/6mNWW7exukH9CT5Vr+/xXruW2s6XbYOt/piV9xQWFRXVyCUxMTGKiWmZ7qhV+05IqNkK+uijj2rBggXq0qWLLr30Ut14442KjAyedrJmlWT79u2eJ9PqduzYEegiwMKoP/AWdQe+oP6Ejx/LDkmSKspdchn1n3tVmO4T9Z07d6osKv+4+6T+BI9Dhw5Jcr92+fnHf+183c7XbaXgqT+GYahbt27q16+fjhw54lk+Z84czZ071+f9l5SU6M4779Qll1yi+Ph4z/Lrr79e/fv3V/v27fXf//5Xd999t/bv36/77rvP52O2lGYFu549e4ZEi92OHTt0yimnyGZraNhYoH7UH3iLugNfUH/CT9TRg9JPUkSkTbYGhrk3TZfklHr06KEebVJqPpiXJxW753g77HDoX++9p4t/9Su1qxoxMi5OSrbu/G5Wd/DgQUnu1y4lJeU4a/u+nS/bBtv7j2macjqd2rZtW50WO1+VlZXp2muvlWmaWrhwYY3HbrrpJs/P/fr1U3R0tKZPn67bb7+9xVoKfdWsYGez2Swf7KrYbLagqJywJuoPvEXdgS+oP+EjIiJCknu0w4bOvIxq69aoF7l5so0eI6Oyl1WZzaYOKR0U+8qriqnsTmcahnuCbwtP3m1lVa9vndfOT9v5uq0UPO8/Vb0H4+PjWzSXVIW6H3/8UStXrqzRWlefs846S+Xl5dqzZ4969uzZYuXwRfB0CgUAAIDvSoplmKbM+HjJZpNdpkY5HIqMbydThuRyySgqkkqKA11SIChUhbrvv/9eq1atUlJS0nG32bp1qyIiIprdcupPBDsAAIBQZLO5v2RKpln5c/NaOBwOh9auXauMjIygnPgbaIojR45o165dnt93796trVu3qn379kpLS9PVV1+tLVu2aPny5XK5XNq/f78kKTExUdHR0frvf/+rzz//XEOHDlW7du303//+V/Pnz9fll1+u9u3bB+ivqotgBwAAgHo5HA5lZ2dr8ODBBDtY1ubNmzV69GjP7/Pnz5ckjR8/XnPnztWbb74pSRo2bFiN7VatWqWhQ4cqJiZGK1as0AMPPCCn06lu3brphhtuqHHfXTAg2AEAAAAIWUOHDlVBQUGDjzf2mCT1799f7777bksXq8VFBLoAAAAAAADfEOwAAAAAwOIIdgAAAABgcdxjBwAAALfcvJrTIOTnu7/n5EhOp/vn2DjmvxMjhiL4EOwAAADgnth8VKZnYnNJirfZlJXSQfHX36BIJjevgRFDEWzoigkAAAAAFkeLHQAAQJBymaYkVyOPtaAOye6WuGpdMYvy87VyyRINuvcexSYluRfSFdOS7Ha7MjMzaV0MYQQ7AACAIGOPjJEhKb/M4VkW7ZTSv5e+PllyRruXGZXrtpjagS268kBpaVJqassdB63ObrcrKysr0MWAHxHsAAAAWklTB9xIi0nQ7owFcpSXepYV5ObpqTWLtPTS6UqsDGD2yBilxST4vdwAgh/BDgAAwI9ySgs9Aa0gN0/Z2dk6oX9PJepY61h9AS0tJkGq1hjnkLsrXd8OXelOFyA1XsviPEnSnuI8HT7WsOrXsE13SjSGYAcAAOAnOaWF6rZ2lqruhot2Sum9peGbFnm6U0ruLpW7MxY0GgjoShdYLflaeos6gMYQ7AAAAPzEUV4qU1JSlF02w5CipZ/6S9VP+V2mqfwyh7slqAVvl0PLqnotEyLj3K9llLTndKlttXVcpqnC8mJeSwQEwQ4AAMDPbIahSMPWwKP1j3qJ4FI1oE1huXvU0PoGs5H8MKAN0EQEOwAAAOA4ag9oU99gNhID2iBwCHYAAABAE1Qf0OZA5YApXeOSlWpnKggEXkSgCwAAAAAA8A3BDgAAAGhFTFsAf6ArJgAAANCKmLYA/kCLXStwOBxauXKlHA7H8VcGAADNwucsfEH9Qagg2LUCh8Oh7Oxs3jAAAPADPmfhC+oPQgXBLohxBQkAAABAUxDsghhXkAAAAAA0BcEOAAAAACyOYAcAAAAAFsd0BwAAAH7mMk1JrkYe88dBq45nun82DElGteUAQgktdgAAIGz5e6Aye2SMDEn5ZQ4ddB5R4ZEj6rzF/f2g0/2VX+aQUblui4iNk2kYMoqKZBQUyFF0WKvtdjmKDssoKJBRVCTTMKTYuJY5HoCgQIsdAAAIW1UDlQ0ePFh2u73F958Wk6DdGQvkKC+VJBXk5umpNYu09NLpSuyQ7FnPHhmjtJiEljloh2S5VmdLJcWSpEO5uVq5dKnOvvsuxXbo4F4nNk6qdnwA1kewAwAA8KO0mASpsjHuQGXDYNe4ZKXaU/130OqhLbLydC8tzf0FICTRFRMAAAAALI5gBwAAAAAWR7ADAAAIYW3atNE555yjNm3aBLooIcVutyszM9Mv92YC3uAeOwAAgFYSiDBgt9s1ZMgQAkgLs9vtysrKCnQxAA+CHQAA8ElOaaFn1MeGtOioj7WOWVCcJ0naU5ynw9VmLWjpY7YEwgAAfyHYAQAAr+WUFqrb2lk63hTbhqTdGQtaJGjVPma0U0rvLQ3ftEjOaP8cEwCCHcHOH3LzPHPHSJLy893fc3Ikp9P9M/PHAABCgKO8VKakpCi7bIZR7zou01R+mcPdwtbIHNwOh0Nr165VRkZGo90G6xwzWvqpv1Q9vjX1mAAQKgh2LS03T7ZRmTLMY9cu4202ZaV0UPz1NyjS5ZIkmYbhnjyUcAcACAE2w1CkYWvgUVeT9tHcycJb4pgAECoIdk3U1KuIKimWYZoy4+Mlm/vDxi5pTKlTio93dxtxuWQUFdVs1QMAAP5HrxoAIYpg10TNvYoom80T7Jql+gcOHzYAALQcetUACGEEO39xNdIFpKHHan3g8GEDAEALolcNgBBGsGtpsXEyDcP9oVDpiM2m91I66FcHc9W2WkBTbFzNbWt94PBhAwCAH3jbqyYMMQk3YB0Eu5bWIdndolYtfBXl52vlkiUadO89ik1Kci9srEslHzgAACAIMO8eYB0EO3+oHdiiKyfVSUuTUlNbvzwAgLDV5MG/0Cw8rxbHmAYIQQQ7AABCWLMH/2ptFj3BDvrnFQ1jTAOEKIIdEKICcTWZK9hA+HKZphqaO85VbRTKGjjBBoAWQ7ADQlQgriZzBRsIP/bIGBmS8ssckqRop5T+vfT1yZIz+th6RuW6NTBoGAKh1ngIzR4LAQhSBDsAAOC1tJgE7c5YIEd5qSSpIDdPT61ZpKWXTlditRNje2SM0mIS6t8Jg4ahtVUPbYyFgBBBsAMAAD5Ji0mQKhvjDrgb7tQ1Llmpdk6SAaC1EOwakVNaeOwKZHGeJGlPcZ4OV35oNXr1EQAAAABaCcGuATmlheq2dpaqbveOdkrpvaXhmxZ57hkwJO3OWEC4AwAgDHDBF0AwI9g1wFFeKlNSUpRdNsOQoqWf+ktVb9cu01R+mcP9Bh/T2J4AAIDVccEXQLAj2B2HzTAUadR3Q3f9QzoDgVL9SrLE1WQAaElc8AUQ7Ah2QJCpHdDqUzug1b6SLHE1GQCAprDb7crMzGSaHlhe2AU7h8Ohjz/+WF26dFF8fHygiwPUUF9Aq0/tgFbnSrLE1WQAaEFNma+v3rn6EPTsdruysrICXQzAZyEf7Gq3fuTl5Wrjxo06bcQQJds6SKJ7GoJHvQGtlsYCWsNdhyW6DwOA95oyXx/nEwACKaSDXWPd00ZseZTuaQha3gY0l2k2+Lj7MQCAt5ivD0AwC+lgV1/rhxkt7TnVpfhImwy1Tvc0+m7D32p3EZLoJgQAABBOQjrYVane+mFKchmmbIY72LVG9zT6bsPfancRkugmBCAwLHEx09XIZ39jjwFAEAuLYAeEg+pdhCS6CQEIjKC+mBkbJ9MwZBQVeRYdsdn0XkoH/epgrtpWhjrTMKTYuECVEgC8QrADAADhoUOyXKuzpZJiz6Ki/HytXLJEg+69R7FJSe6FsXFSZU8HALAKgh0AAAgftQNbdOVNyGlpUiq9GwBYF8EuGDXUv59+/wAAAADqERHoAgQ7l2mq3HTV+fLL0PHV+v4bBQVyFBXp3zHRclT+bhQVhVy/f4fDoZUrV8rhcBx/ZbQKXhMAAADrocWuAbWHj2+VoeNr9f33tt+/w+HQ2rVrlZGREdyjksld1uzsbA0ePDjoyxoumvWa5ObVuFdF+fnu7zk5ktPp/pl7VQBLstJnCQCAYNeg2sPHt9rQ8dVOgO2Jie4ho08+WWrGhyphKfiE5AlSbp5sozJlVGu9jrfZlJXSQfHX36DIaqPLuVZnE+6AVpJTWlhz6pPiPEnSnuI8Ha5siG/K5xefJQBgLQS7RlQfPj4QQ8cH9ZDRaJbmniC5u/rWf0+lX7oBe6OkWIZpyoyPl2zueSLtksaUOqX4eJmS5HK5hxWv3qoHwG9ySgvVbe0sVX+XiHZK6b2l4ZsW1ehxsjtjAfNayiLz7gFAExDsgCDSlC7Akh+6AfvCZvMEOwCB5SgvlSkpITJONsNwL4yS9pwuta1cx2WaKiwvdrfqBcnbSCBxERVAqCDYAUGkKV2AJT91Aw6gkOyqCgRA1cWhwvJjreStco84ACDgCHZAkAl0F+BA4F4eoGXUvjgkNe8e8er353l7bx4AIDAIdgAAhJDqF4ekpl8gqn1/HvfmAYC1EOwAAIDn/rykKLv7/rxo6af+UlWEc5mm8ssc3JsHAEGKYAev1R5Suza67FgH3a8AVLEZhiKN+gZEqn+kXgBAcCDYwSv1DaldG112AqupQ3gHrPtV9cnNmdgc8BtLDOfvaiA0NrQcAFAHwQ5eqdNlpxa67AReU4fw9rn7VWMnXg09VmtycyY2B/wnqIfzj42TaRju+S4lHbHZ9F5KB/3qYK7aVnsvUGxcIEsJAJYQEegCwNqquuzU/qov7CG4Nfu1rHZCZhQUyCgokKOoSP+OiZajallRUf0nZdUmNzcTE2WPj9eYUqfslb+b8fHu0MfE5kBo65As1+psla94XeUrXlfRsie1Mq2jipY96VnW2AUel2mq3HTV++UyG+tTAiCcfPjhhxo3bpz69u2rxMRErV692vNYWVmZ7rjjDp177rnq3Lmz+vbtq6lTp2rfvn019lFQUKDJkyera9eu6tatm6ZNm6YjR4609p/SKFrsAHin8oSsevgqys/XyiVLNOjeexSblORe2FiXSiY3B1D9/SG6sv93WpqU2vAInlXz9eWXuW8Erm+uPon5+gC4HT16VP369dPEiRM1adKkOo99+eWXmjVrlvr166dDhw7p1ltv1YQJE7R+/XrPepMnT9b+/fu1YsUKlZWV6eabb9Ytt9yiZ555prX/nAY1K9i5XC4ZFmqJqaiokCSZlV/uX0zPd9MwPMsrKirkaqRLWdW+jrdeMGiNstb73FYTis+rJE8Zm1tWb//OoH8tE9tLan9sX5Hut5SK1FS5UlKOrVd7O5er8s2n8aO6XK6QucfG27oDSK1Tf6reC8pNU2Y9A6VUtYC1xvvR8Y6REtlWO4c/oKMu9z25Bbn5embNo1oy9hYldkjyrNfGFq2UyLZ+Ka+VPr94/4Evgq3+mJXvRUVFRTVySUxMjGJi6r+QM3LkSI0cObLexxISEvTPf/6zxrKHHnpIGRkZ+vHHH3XiiSfqu+++09q1a7Vu3TqdccYZkqQHH3xQl19+ue655x516tSpJf40nzUr2G3fvt3zZFrBj2WHJEkV5S65jJrlrqqcFab7jXnnzp0qi8pvcF+HDh3yrJef3/B6waA1ytrYcyuF5vNa3Y4dO5q1vrd/p5VeS0kqKSnROeeco59//rnR8kYfOKA+ksrLy49dbKnO5VKUpF27dsnpcDT1T7GE5tYdQHL/b23atEklJSWKjY31yzFyyx0yJBU00gpmSNq360eVRfrn/cjb97zyyu3K9x1SWbUe3IWSCpXTcgWsxoqfX7z/wBfBUn8Mw1C3bt3Ur1+/Gl0h58yZo7lz57bIMapCY0KCe8SBTz/9VAkJCZ5QJ0nDhw9XRESEPv/8c2VmZrbIcX3VrGDXs2dPS7XYRR09KP0kRUTaZKsautk05XK5ZLPZJMOQabokp9SjRw/1aJPS4L4OHjwoyb1eSkrD6wWD1ihrvc9tNaH4vEruCwI7duzQKaec4q5DTeTt32ml17JK//79j3/QytH5IiMj6++KWfk+0717d6lLl+PvzwK8rTuAJOXk5Gjjxo268MILlZaW5pdj9Ja085TGW8Ha2KL9OtKxw+HQqFGj1K9fv2aN4hmIzxIrfX7x/gNfBFv9MU1TTqdT27Ztq9Ni1xJKSkp055136pJLLlF8fLwkaf/+/XX+zyMjI5WYmKj9+/e3yHFbQrOCnc1ms1Swi4hwjw1jVH5JlaNrSZJh1FgeERHRaGWt2tfx1gsGrVHW+p7b6kLxea3OZrM1q7ze/p1Wei2bxbOfxo9qC8F78JpbdwBJnjrj7/rTuc2xbowHit3vDSfZOyi1XcP3u7Wk+Ph4jRkzptnbBeKzxIqfX7z/wBfBUn+qeg/Gx8e3eC4pKyvTtddeK9M0tXDhwhbdd2tg8BQAAIBmssT8gACarCrU/fjjj1q5cqWntU6SOnbs6Gmlr1JeXq6CggJ17NixtYvaIIIdAABBKKe00D1/pKS8Yvc9XHuK8+VwHJupyB4Z49eukWhYUM8PCKBZqkLd999/r1WrVikpKanG4wMHDlRhYaE2b96sAQMGSJI2bNigiooKnXXWWQEocf0IdgAABJmc0kJ1WzvLM2ZstFNK7y2N2PJoneH8d2csINwBQCOOHDmiXbt2eX7fvXu3tm7dqvbt2ystLU1XX321tmzZouXLl8vlcnnum0tMTFR0dLR69+6tjIwM/eEPf9AjjzyisrIyzZ49W2PHjg2aETElgh0CITfv2NxnVSOJ5eRITuexdRqb+wwALKR6y1ux46g+/7+PddYvhijO3kZS/a1ujvJSmZKSouyyGYbMaGnPqS7FR9o8d6W6TFP5ZQ73vpmqDQAatHnzZo0ePdrz+/z58yVJ48eP19y5c/Xmm29KkoYNG1Zju1WrVmno0KGSpKefflqzZs3SxRdfLMMwlJWVpQceeKCV/oKmCYtg5557xz29gSn38O2m6ZKhY/PyoJXk5sk2KlNG1Y2vNpuyUjoo/vobFFltfhTTMNyTXxPuWk31/5O6ywF4o96Wtx+kr23ra0wh0FCrm80wFGnYZEpyGaZshq3acEPBMacUAAS7oUOHqqCgoMHHG3usSmJiYlBNRl6fkA529sgYGZLyy47Ng9XQvDz2SC53toqSYhmmKTM+XrLZZJc0ptQpxccfm6ba5ZJRVHSsVQ9+Vfv/hP8R/3A4HPr444/VpUuXGjdkI7TVbnlTtPRTf6kqwtHqBgBoKSEd7NJiErQ7Y4GnC4wk5R3I9czLk5zaQRI3nwdECA5jb1W1/08KcvP01JpFWnrpdCVWtpjyP+K7o0ePauPGjRo1ahTBLgxVtbzVRasbAKBlhHSwk9wnrdWvgtrjKiRJXeOSlGZvnXl5EJ6q31dTUJwnSdpTnKfDlQ3ITQlLrTWcdvX/kwOV5esal6xU/kcAAAAsIeSDHRAIDY1oN3zToibdV1OF4bQBAADQFAS7JmIiUjQH99UAAACgNUUcfxVIx1pOCHZojqr7amp/2Qzj+BsDAJqEi68ArMTpdGr79u0qLy9v0f0S7AAAgKVx8RWAFRw9elTTpk3TCSecoCFDhmjv3r2SpNmzZ2vRokU+759gh8BwuRr/AgAEFK1gANCy7r77bm3btk2rVq1SbGysZ/nw4cP1z3/+0+f9E+zQumLjZBqGjKIiGQUFchQV6d8x0XJU/m4UFMgoKpJpGFJsXKO7cjgcWrlypRwOR6PrAQCaj1YwAGhZq1ev1kMPPaQhQ4bIqHZbTp8+ffTDDz/4vH8GT0Hr6pAs1+psz+TjRfn5WrlkiQbde49ik5KOrRcbJ1XOodYQh8Oh7OxsDR48mBMPAAAABLW8vDylpKTUWd5SjRQEO7S+6oEtunLs/7Q0KZU50wCgOpdpSnLJlFRhVsg0XTJqPAYAsIoBAwbonXfe0ZQpUyTJ02r3wgsvaNCgQT7vn2AHAECQsUfGyJCUX+a+ihvtlNK/l74+WZ65MCX3fJj2SOZMAQAruO2223T55Zfr22+/VXl5uf7yl7/ou+++03//+19lZ2f7vH+CHXxSdTW5/uUAAG+kxSRod8YC91yXkvIO5OqZNY9qydhblJzawbOePTJGaTEJDe0GABBEhgwZog0bNujRRx9Venq61q9fr9NPP11vv/22Tj31VJ/3T7CDV5pyNbkpV5IZdS348JoAwSEtJkGqfAtNSY7VOeecoz7JXRRvjw9swQAAXuvevbsWL17sl30T7OCV2leTC3Lz9NSaRVp66XQlVt5D15QryVWjriF48JoAwcdut2vIkCFccAEAC3vnnXdks9mUkZFRY/natWtVUVGhkSNH+rR/pjuA19JiEnSyPVUn21PVNc4d5rrGJXuW0T0IAAAAcLvrrrvkqme+ZtM0ddddd/m8f1rsAMBfcvM8U3soN9f9PSdHKi8/tk4TpvYAAADWt3PnTvXp06fO8l69emnXrl0+759gFyqqn0Dm57u/5+RITuexdTiBBFpPbp5sozJlVA4k1N5mU1ZKB7W/4SZFVrtaZxqGe27HRv43HQ6H1q5dq4yMDLriAQBgUfHx8frhhx/UtWvXGst37typNm3a+Lx/gl0oqHUCGV95Ahl//Q3NPoEE0EJKimWYpsz4eMlmk12mRjkcioxvJ7NqJjKXS0ZR0bGLMg1wOBzKzs7W4MGDCXYAAFjUr3/9a91666168cUX1b17d0nuUPenP/1Jv/71r33eP8EuFNQ5gZTGlDql+Hh5Jh1o4gmktxhJsX5MBwHZbO4vmZJpVv5sHG8rAAAQYu666y5ddtllGjRokE444QRJ0s8//6whQ4bonnvu8Xn/BLtQ4jmBbH2MpFhTS00HAQAAgNCQkJCgt99+W+vXr9e2bdsUGxurU089Veedd16L7J9gB/hBS00HAQAAgNBhGIZGjBihESNGtPi+CXZAMzgcDn388cfq0qWL4uMbnyS4+uTCB9wNd+oal6xUe6qfSwkAAIBgsGzZMl199dWKjY3VsmXLGl33+uuv9+lYBDugGY4ePaqNGzdq1KhRxw12AAAACG9Lly7VZZddptjYWC1durTB9QzDINg1V5s2bXTOOee0yJCiAAAAANCQLVu21PuzP0T4de9ByG63a8iQIYzeCAAAAKBVlJWV6YwzztB3333nt2OEXbADAAAAgNYUFRWl0tJSvx6DYBdKXK7GvwAAAAAExHXXXafFixervLzcL/sPu3vsQlJsnEzDcE9ALumIzab3UjroVwdz1bZaoDMNQ4qNC1QpATRHbp5UUuz+OT/f/T0nR3I63T/HxkmVU2cAAIDgt2nTJm3YsEHr169Xenp6nTE/XnjhBZ/2T7ALBR2S5Vqd7TkJLMrP18olSzTo3nsUm5R0bD1OBJstp7TQMxedJOUVu0+w9xTny+FwN3gzHx1aXG6ebKMyZZimJCneZlNWSgfFX3+DIisv1piG4f6/538aAABLSEhI0OjRo/22f4JdqKh+chcd7f6elialhticaa3YipFTWqhua2fJrLYs2iml95ZGbHlUzsqn2ZC0O2MB4Q4tp6RYhmnKjI+XbDbZJY0pdUrx8e766HK5W+ir/hcQ9FymKalul3iXadZdGQAQUioqKvTYY49px44dKisr0y9+8QvNnTtXcXEt25OOYAfraOVWDEd5qUxJSVF22QzDvf9oac+pLsVH2mTIfVKWX+Zwt+rF+HxIoCabzf0Fy7JHxsiQlF/maHAdo3I9AEBoWrhwoR544AENHz5csbGxeuqpp5SXl6clS5a06HEIdrCOALVi2AxDkYb75NqU5DJM2Qx3sKvvCjxQg+c+V9P9s2FIlbXH34MaORwOrV27VhkZGUzxEiBpMQnanbGgRpfu2ujODQChbfny5Xr44Yd17bXXSpL+85//6IorrtBjjz2miIiWG8uSYAfroRUDVhAEgxo5HA5lZ2dr8ODBBLsASotJoEUfAMLY3r17NXLkSM/vw4cPl2EY2rdvnzp37txixyHYAYA/1BrU6FBurlYuXaqz775LsR06HFuPQY0AAAhp5eXlio2NrbEsKiqqxac9INiFILvdrszMTK7QA4FWPbBFVr7dpqW5vwAAQFgwTVM33nijYmKOdd8oKSnRH//4xxpTHjDdAeqw2+3KysoKdDEAAACAsDd+/Pg6yy6//PIWPw7BDgAAAAD85IknnmiV4xDsAAA4nupzaEpyFBdr7caNyjjnHNmr5iHifkkAQAAR7FADw6MDQC215tCUJJvNpoiUDrI98aRf5tEEAKC5CHaogeHR63KZpqrmqzMlVZgVMk2XZ4JyIKhUb1nKz3d/z8mRnM5j69Cy1Dy15tCU1GrzaAIA0FQEuzCXU1pYY+LcguI8SdKe4jwddriXhevkufbIGBmS8sscnmXRTin9e+nrkyVntHuZUbkuEHC1WpbibTZlpXRQ/PU3eFqVJFqWvMYcmgCAIEawC2M5pYXqtnaWqrc5RTul9N7S8E2LagSX3RkLwi7cpcUkaHfGghrBN+9Arp5Z86iWjL1FyanuucjCNfgiCNVqWarTqiTRsgQAQIgi2IUxR3mpTElJUXbZDMO9MFr6qb9UFVNcpqn8Moc73IRho1RaTEKNv9seVyFJ6hqXpDR7aoBKBRwHLUsAAIQdgh1kMwxFGg2dBLoaWA4AAAAgWEQEugAAEA7atGmjc845R23atAl0UQAAQAgi2CHsOBwOrVy5Ug6H4/grAy3EbrdryJAhjDYLAAD8gq6YCAvVR/8syM1Tdna2TujfU4k6NiqgPwdBsdvtyszM5KS+NlcDXX0bWg4AAIB6EewQ8mqP/lnfyJ+Sf0f/tNvtysrKavH9WlZsnEzDcI/OKOmIzab3UjroVwdz1bbaZM+KjQtkKRHiHA6H1q5dq4yMDC66AAAsj2CHkFdn9M9aI39KjP7Z6joku+dRqxxyvyg/XyuXLNGge+9RbFKSex0m0YafORwOZWdna/DgwQQ7AIDlEewQNhj9M8hUD23RlU2naWlSKtNIwH9qdMsuzpMk7SnO0+HKW26ZlxIAYFUEOwABxz2IaA1N6Zbtzy7ZAAD4E6NiAgi4qnsQrRDsGFXVuqp3y06JbquEtm31U3/395TotkqKssusXA8AAKsh2AFAM1Tdl0Wws66qbtm1v2yGEeiiAQDgNbpiAsBxcF8WAAAIdgQ7oBnatGmjc845R23atAl0UdBKuC8LAABYAcEOaAa73a4hQ4ZY4l4wtIzjTZfBVBkAACAYEOwAoAkani4jCKfKcDVSpsYeAwAAlkWwA4BQERsn0zBkFBVJko7YbHovpYN+dTBXbasFOtMw3BPAAwCAkEGwg/U01OJASwTCXYdkuVZnSyXFkqSi/HytXLJEg+69R7FJScfWi42rOUE8AACwPIIdrKMJrRG0RCDsVQ9s0ZWju6SlSampgSkPAABoFQQ7WEdTWiNoiQAAAEAYItjBWmiNAAAAAOog2AEA0BSMNgoACGIEOwAAGlPr/l6Je3wBAMGHYAcAQGNq3d8rcY8vACD4EOwAADie2oGNe3wBAEEmItAFAAAAAAD4hmAHAKjD4XBo5cqVcjgcgS4KAABoAoIdAKAOh8Oh7Oxsgh0AABZBsAMAAAAAiyPYwbLsdrsyMzNlt9sDXRQAAAAgoAh2sCy73a6srCyCHUKXy9XwFwAAaJIPP/xQ48aNU9++fZWYmKjVq1fXeHzVqlUaO3asevToocTERG3durXOPjIzM5WYmFjja/r06a31JzQJwQ4Agk21CbGNggI5ior075hoOSp/N4qKmAwbAIAmOnr0qPr166cFCxbU+7jD4dDgwYN15513Nrqfq6++Wt9++63n66677vJDab3XrHnsXC6XDMPwV1lahavySreLK96qqKiQJJmVX/Uxq61r1eesJf9O6k/4OV798UvdSWwv16p/S8XuCbEPFRRo5dKlOvvuuxSVmOheJy5OSmzfaOtdVdm9+f/1Zdtg1VKvpSTFxsZq1KhRio2NbZXnh/ce+IL6A18EW/0xTfe7dVFRUY1cEhMTo5iYmHq3GTlypEaOHNngPseNGydJ2rNnT6PHjouLU8eOHZtb5FbTrGC3fft2z5NpdTt27Ah0EQLux7JDkqSKcpdcRv2va4XpPhHauXOnyqLyW6toLcoffyf1J3wcr/60Rt05dPSo+xhHjyq/amJsh0PKzW18u0OHPGXLz2/e/68v2warln4te/bsqb1797ZoGY+H9x74gvoDXwRL/TEMQ926dVO/fv105MgRz/I5c+Zo7ty5fj32P/7xD7322mtKTU3VhRdeqFmzZqlNmzZ+PWZzNCvY9ezZMyRa7Hbs2KFTTjlFNpst0MUJqKijB6WfpIhIm2xG/c+Fabokp9SjRw/1aJPSyiVsGS35d1J/ws/x6k9r1B2Hw6FRo0apX79+zbqn9ODBg5LcZUtJad7/ry/bBquWei0Dgfce+IL6A18EW/0xTVNOp1Pbtm2r02LnT5deeqlOPPFEpaWl6auvvtJdd92lHTt26IUXXvDrcZujWcHOZrNZPthVsdlsQVE5Aykiwn2LpVH5VR+j2rpWfb788XdSf8LH8epPa9Sd+Ph4jRkzplnbVJWpOWVrqW2DVUu/loHAew98Qf2BL4Kl/lT1HoyPj2/VXHLNNdd4fj711FOVlpamMWPGaNeuXerevXurlaMxDJ4CAAAAAM1w1llnSXJ33w8WBDsAAAAAaIaqKRGCaTCVZnXFBAAg2DgcDq1du1YZGRnMawkAqOPIkSPatWuX5/fdu3dr69atat++vU488UQVFBRo79692rdvnyT3gJGSlJqaqo4dO2rXrl16/fXXNXLkSCUlJWnbtm2aP3++zj33XPXr1y8gf1N9CHYA0AQu05RUd6hnV4iMFGxlDodD2dnZGjx4MMEOAFDH5s2bNXr0aM/v8+fPlySNHz9eS5cu1ZtvvqmbbrrJ8/h1110n6dhIm1FRUfrPf/6jJ598UkePHlXnzp01evRozZw5s3X/kOMg2AFAI+yRMTIk5Zc5JEnRTin9e+nrkyVn5cwDRuV6AAAg+AwdOlQFBQUNPj5hwgRNmDChwce7dOmi1atX+6NoLYpgh7DRUIvLsceAutJiErQ7Y4Ec5aWSpILcPD21ZpGWXjpdiR2SJblDXVpMQiCLCQAAwhzBDiGvKS0uEq0uaFhaTIJUWTUOuKuRusYlK9WeGrhCtbTcPKmk+NjvVZOS5+RITqf759g4qTLMBlJOaaEnaEtSQXGeJGlPcZ4OV74+hG0AQLgh2CHkW7Ka0uIicSKIMJabJ9uoTBnV/t/jbTZlpXRQ/PU3KNLlfn8wDUOu1dkBDXc5pYXqtnaWqr8zRTul9N7S8E2LanSP3Z2xoN7/ae6XBACEIoJdGKvdktWQUGjJCosWF8BbJcUyTFNmfLxUOfmsXdKYUqcUH+8OUS6XjKKimq16AeAoL5UpKSnKLlvVxLTR0k/9paoI5zJN5Zc53Bdzqr11cb8kACCUEezCWO2WrIbQkgWECZvNE+yCnc0wFGk0VNb6eyBwvyQAIJQR7MJc9ZYsAAh1tN4DAEJVRKALAADecjgcWrlypRyOxrsTt/S2AAAAwYZgB8Cyqiam9jbYebstAABAsCHYIezY7XZlZmbKbrcHuigAAABAi+AeO4Qdu92urKysQBcDAAAAaDG02AFAiApE6zT3LgIAEBgEOwAIUVWt060d7Lh3EQCA1kewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxTHcAICzklBbKUV7q+b2gOE+StKc4T4crx/mwR8YoLSYhEMUDAADwCcEOQMjLKS1Ut7WzZFZbFu2U0ntLwzctkjPavcyQtDtjAeEuTARiOggAAPyFYAcg5DnKS2VKSoqyy2YY7oXR0k/9paoI5zJN5Zc53K16MYEqKVpT1XQQAACEAoIdgLBhMwxFGrYGHnW1alkAAABaEoOnAAAAAIDF0WIHwFpy86SSYvfP+fnu7zk5ktN5bJ3YOKlDcuuXDQAAIEAIdgCsIzdPtlGZMkz3MCjxNpuyUjoo/vobFOk61pXSNAy5VmcT7prL1Uh31MYeAwAAAUewA2AdJcUyTFNmfLxks8kuaUypU4qPPzbipcslo6joWKseji82TqZhuJ+3SkdsNr2X0kG/OpirtpWhzjQMd2soAAAIOgQ7ANZjs7m/0DI6JLtbOKuFYVdxsSo2bpTrnHNUHlcZ5ujiCgBA0CLYAQDqBDa7pKyePQNTFgAA0GyMigkAzcCk1gAAIBjRYgfAegI4yAeTWgMAgGBEsANgHbUG+ahvgA+JQT4AAED4IdgBsI5ag3wU5edr5ZIlGnTvPYpNSjq2HoN8AACAMEOwA2At1QNbdLT7e1qalJoamPIAAAAEAYIdAMByXKYpqf77KV2mWe9yAABCGcEOAGAZ9sgYGZLyyxyeZdFOKf176euTJWdlI65RuS4AAOGCYAcA8E1u3rHJzfPz3d9zciSn0/1zE+55dDgcWrt2rTIyMhqdSiItJkG7MxbIUV7qWVaQm6en1izS0kunK7HyOPbIGKXFJHj/NwEAYDEEOwCA93LzZBuVKaOy+2O8zaaslA6Kv/4GRVaOVGoahnvQm0bCncPhUHZ2tgYPHnzcOQLTYhKkao1xByob77rGJSvVzr2WAIDwRLADAHivpFiGacqMj5dsNtkljSl1SvHxMiXJ5XJPT1HVogcAAPyCYAcA8J3N5v5qhpzSQk+XyoLiPEnSnuI8HT52+xxdKgEAaCKCHQCg1eWUFqrb2lmqGr8y2iml95aGb1rkGQBFcg+CsjtjAeEOAIDjINgBAFqdo7xUpqSkKLtshiFFSz/1l6rHN5dpKr/M4W7VY4BLAAAaRbADEDaY+yz42AxDkUZDXTjrf60AAEBdBDsAIY+5zwAAQKgj2AEIecx9BgAAQh3BDkBYqD33mUN2ZWZmqm+HrsedNw0AACDYEewAhCW73a6srKxAFwMAAKBFRAS6AAAAAAAA3xDsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AYGl2u3vqCqatAACEM6Y7AABYGlNXAABAix0AAAAAWB7BDgAAAAAsjmAHAAAAABZHsANgWQyaAQAA4MbgKQAsi0EzAAAA3GixAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAABCyPvzwQ40bN059+/ZVYmKiVq9eXePxVatWaezYserRo4cSExO1devWOvsoKSnRzJkz1aNHD3Xp0kVXXXWVDhw40Fp/QpMQ7AAAAACErKNHj6pfv35asGBBvY87HA4NHjxYd955Z4P7mDdvnt566y0999xzys7OVk5OjiZNmuSnEnsnMtAFAAAAAAB/GTlypEaOHNng4+PGjZMk7dmzp97HCwsL9eKLL+rpp5/WsGHDJElLlizROeeco08//VQDBw5s+UJ7oVnBzuVyyTAMf5WlVbhcrhrfgeag/sBbIVt3XK7KDxKz8qs2s3I1l1Ttb6+oqGh0K1VbXlFREXrPWzOFbP1Bq6D+wBfBVn9M0/3pUFRUVCOXxMTEKCYmxi/H3LJli8rKyjR8+HDPsl69eqlLly7WDXbbt2/3PJlWt2PHjkAXARZG/YG3Qq3uRB84oD6SXM4ymRHldR43KkxFStq1a5ecDodn+Y9lhyRJFeUuuYz6P1cqTHf427lzp8qi8lu66JYUavUHrYv6A18ES/0xDEPdunVTv379dOTIEc/yOXPmaO7cuX455v79+xUdHa2EhIQay1NTU7V//36/HNMbzQp2PXv2DIkWux07duiUU06RzWYLdHFgMdQfeCtk606HDjINQ5GVoe2Izab3UjroVwdz1bby6q5pGOqeni4lJ3s2izp6UPpJioi0yWbU/3yYpktySj169FCPNin+/1uCWMjWH7QK6g98EWz1xzRNOZ1Obdu2rU6LXbhrVrCz2WyWD3ZVbDZbUFROWBP1B94KubqTmirX6myppFiSVJSfr5VLlmjQvfcoNinJvU5snGwdkmtsFhHhHrvLqPyqj1Ft3ZB6znwQcvUHrYr6A18ES/2p6j0YHx/farmkY8eOcjqdKiwsrNFqd+DAAXXs2LFVytAUDJ4CAPBNtdBmT0xUZmam7CefLNntASwUAAAto3///oqKitL777+vrKwsSe5b1Pbu3Rs099dJBDsAQAuy2+2eDz0AAILBkSNHtGvXLs/vu3fv1tatW9W+fXudeOKJKigo0N69e7Vv3z5J7tAmue+h69ixoxISEjRx4kTNnz9fiYmJateunWbPnq2BAwcS7AAAAACgNWzevFmjR4/2/D5//nxJ0vjx47V06VK9+eabuummmzyPX3fddZJqDshy//33KyIiQldddZWcTqdGjBihhx9+uBX/iuMj2AEAAAAIWUOHDlVBQUGDj0+YMEETJkxodB+xsbF6+OGHgy7MVRcR6AIAAAAAAHxDsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFRQa6AACA8OUyTUmuRh4DAABNQbADALQ6e2SMDEn5ZQ5JUrRTSv9e+vpkyRl9bD2jcl0AANA4gh0AoNWlxSRod8YCOcpLJUkFuXl6as0iLb10uhI7JHvWs0fGKC0mIVDFBADAMgh2AICASItJkCob4w64G+7UNS5ZqfbUwBUKAACLYvAUAAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMABJzdbldmZqbsdnugiwIAgCVFBroAAADY7XZlZWUFuhgAAFgWLXYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiIpuyksvl8nyPiLB2FqyoqFBERIQqKipkGEagiwOLof7AW9Qd+IL6A19Qf+CLYKs/FRUVkty5JDKySVEmbBimaZrHW6m8vFwOh6M1ygMAAAAAjbLb7QS7Wpr1bMTGxgZFUveFy+XS9u3b1bNnT9lstkAXBxZD/YG3qDvwBfUHvqD+wBfBVn9M01RJSUmgixGUmhTsql5EwzAsH+wMw5BpmiHxt6D1UX/gLeoOfEH9gS+oP/BFsNafYAiZwcbaN8wBAAAAAAh2AAAAAGB1BDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACwuMtAFAIDjiZh6o5Sf3/wNk5JU8ZelLV8gAACAIEOwAxD88vNldD6h2ZuZP/3sh8IAAAAEH7piAgAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABYXGegCAADCx6TPnlKe09Hs7ZKj7Xrh7Cl+KBEAAKGBYAcAaDV5TofiYmKav11p88MgAADhhK6YAAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOwVMAAAAAwA+Ki4sVExOjiAh3e9r777+vrVu3qlevXjr//PNb9Fi02AEAAACAH4wcOVKHDx+WJD3yyCNauHChTNPU3/72N912220teiyCHQAAAAD4gcvlUkJCgiRp1apVev311zVt2jS99NJLWrduXYsei2AHAAAAAH6QkpKijRs3SpLS0tKUl5cnSZ5WvJbEPXYAAAAA4AdLlizRjTfeqOjoaLVp00a/+MUvNGDAAOXm5uruu+9u0WMR7AAAAADAD7p27ars7Gx9++232rlzpy6//HJ16tRJZ555pmw2W4sei2AHAAAAAH7Up08f9enTx6/HINgBAAAAQCvIy8vTiy++qE8//VQHDhyQJKWmpmrQoEGaMGGCOnTo4PW+CXYAAAAIeRFTb5Ty85u/YVKSKv6ytOULhLDzxRdf6JJLLlGbNm30y1/+UieffLIk6eDBg1q2bJkeffRRvfHGGzrjjDO82j/BDgAAAKEvP19G5xOavZn5089+KAwCZdGiRbr77rs1depU/fnPf5YklZSU6E9/+pNWrFghp9OpESNG6OGHH1Zqaqpnux9//FEzZszQBx98ILvdrnHjxumOO+5QZGTT49ScOXM0ZswYLVq0SIZh1HjMNE1Nnz5dc+bM0TvvvOPV38Z0BwAAAABC3hdffKHnnntOp556ao3l8+bN01tvvaXnnntO2dnZysnJ0aRJkzyPu1wuXXHFFSorK9Pbb7+tpUuX6pVXXtH999/frONv27ZNN954Y51QJ0mGYejGG2/U1q1bvfvjRLADAAAAEOKOHDmiKVOmaPHixWrfvr1neWFhoV588UXdd999GjZsmAYMGKAlS5bov//9rz799FNJ0rp16/Tdd99p2bJlOu200zRy5EjNmzdPzzzzjJxOZ5PLkJqaqi+++KLBx7/44gulpKR4/Tc2qyumy+WqN2FaicvlqvEdaA7qT2D4cgUqWF4r6k4V0+vtwvm5o/7AF9Qft1D4LAmEYKs/pun+HCkqKqqRS2JiYhQTE9PgdrNmzdL555+v4cOH6+GHH/Ys37Jli8rKyjR8+HDPsl69eqlLly769NNPNXDgQH366adKT0+v0TUzIyNDM2bM0LfffqvTTz+9SWW/+eabdcstt2jz5s0aNmyYZ38HDhzQhg0b9Pzzz/s0t12zgt327ds9T6bV7dixI9BFgIVRf1pXulkhb2Z6qTAr9N1337V4eXwR7nWnosK7z5CKCjPoXstACPf6A9+Ee/0Jpc+SQAiW+mMYhrp166Z+/frpyJEjnuVz5szR3Llz693mjTfe0JYtW7Ru3bo6j+3fv1/R0dFKSEiosTw1NVX79++X5A5e1UOdJE/LWtU6TTF58mQlJyfrySef1F//+ldPWLbZbBowYICeeOIJ/eY3v2ny/mprVrDr2bNnSLTY7dixQ6ecckqLTwqI0Ef9CYwIw7vrrBFGhHr37t3CpfEOdcctYuNb3m0XYQTNaxkI1B/4gvrjFgqfJYEQbPXHNE05nU5t27atTotdffbu3atbb71VK1asUGxsbGsVs0Fjx47V2LFjVVZWpry8PElScnKyoqKifN53s4KdzWazfLCrYrPZgqJywpqoP9YRbK8TdcfbzxAjzJ83N+oPfOGP+jPps6eU53Q0e7vkaLteOHtKi5bFn/i/C573n6reg/Hx8U3KJVu2bNHBgwdrdLV0uVz66KOP9PTTT+uNN96Q0+lUYWFhjVa7AwcOqGPHjpLcrXeff/55jf0ePHhQkjzrNFdUVJTS0tK82rYhDJ4CAAAAr+Q5HYqLiWn2lzdhEPDGsGHD9OGHH2rDhg2erzPOOEOXXXaZNmzYoAEDBigqKkrvv/++Z5vt27dr7969GjhwoCRp4MCB+vrrrz1hTpLWr1+vdu3atWhr7t69e3XzzTd7vT3z2AEAAAAISe3atVN6enqNZW3atFFSUpJn+cSJEzV//nwlJiaqXbt2mj17tgYOHOgJdiNGjFDv3r01depU3XnnnTpw4IDuu+8+/e53v2t0wJbmKigo0CuvvKIlS5Z4tT3BDgAAAEDYuv/++xUREaGrrrqqxgTlVWw2m5YvX64ZM2boggsuUJs2bTR+/HjNmzevWcdZs2ZNo4/v3r3bq/JXIdgh6EVMvVHKz2/+hklJqvjL0pYvEAAAACwrOzu7xu+xsbF6+OGHa4S52rp27ap//OMfPh134sSJMgyj0VkGfBnPhGCH4JefL6PzCc3ezPzpZz8UBgAAAGi+tLQ0Pfzww7rooovqfXzr1q01BnlpLgZPAQAAAAA/69+/vzZv3tzoOr7MGU6LHQAAAAD42bRp03T06NEGH+/Ro4dWrVrl9f4JdgAAAADgZ+eee26jj9vtdp133nle759gBwBoNq8HNbphgNSCQ0MDAAA3gh0AoPm8HNRIPtw7AAAAGsbgKQAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAoBV99NFHmjJlis4//3z9/PPPkqTly5fr448/9nqfBDsAAAAAaCUrV67UpZdeqri4OH355ZdyOp2SpKKiIj3yyCNe75dgBwAAAACt5OGHH9YjjzyixYsXKyoqyrN88ODB+vLLL73eb2RLFA6AbyZ99pTynI5mb5ccbdcLZ0/xQ4kAAADgDzt27NC5555bZ3l8fLwKCwu93i/BDggCeU6H4mJimr9dafPDIAAAAAInNTVVO3fuVNeuXWss/+STT3TSSSd5vV+6YgIAAABAK7nqqqt066236rPPPpNhGNq3b59ee+013Xbbbfrtb3/r9X5psQNakLddKktdZYpT81vsACCc0G0dQCiYPn26KioqdPHFF+vo0aMaNWqUYmJidPPNN2vKFO/fqwh2QAvytktlyVGnH0oTfCKm3ijl5zd/w9LSli8MAMuh2zqAUGAYhmbOnKnf//732rlzpxwOh3r37q22bdv6tF+CHYDWk58vo/MJzd7M3LnLD4Xxn/pbFUxVVJiK2PiWJKPONrQoBCevL0YkJaniL0tbvkAAgJARHR2tPn36tNj+CHYAQlogum5506pAi0KQ8vZixE8/+6EwAIBQUVJSoq+++koHDx5URUVFjccuuugir/ZJsEPImjgpXbkfLWr2drSchBa6bgEAgGDy3nvv6YYbblBeXl6dxwzDqHd5UxDsWpA3LQOECP/JtUdxQg8AAICgMmfOHI0ZM0azZ89Wampqi+2XYNeC6H4FIBAYKRAAAOs4ePCgbrrpphYNdRLBDgAsj+6mAABYR1ZWlj744AN17969RfdLsAMAAACAVvLQQw/pmmuu0ccff6z09HRFRUXVePz666/3ar8EOwAIY8wtCEDyvkt3qatMcWp+j4FwQVd51OeNN97Q+vXrFRsbqw8++ECGcWwaJMMwCHZoHuZmAoKP1/+XNwyQvOiKKSls5hYE0Dhvu3SXHHX6oTShg67yqM+9996ruXPnavr06YqIiGix/RLswhVzM4UMrgaGEC//L2WaLV+WIERdBwCEAqfTqbFjx7ZoqJMIdoDlcTUQ4YK63jiCb3Dh9QDQkPHjx2vFihWaMWNGi+6XYAcAQAgg+AYXXg8ADXG5XHrssce0bt06nXrqqXUGT7nvvvu82i/BDqhHw1daTVVUmIrY+JYko86j3EQOAACAxnz99dc6/fTTJUnffPNNjceqD6TSXAQ7oB7cRA4AAAB/WLVqlV/2S7ADAAAIAQ2NrBshKd2sUITRwEANSUnSVT39WzgAfkewAwAACAWNjKxra2QzRrwGWtdDDz3U6OOzZ8/2ar8EOwCoR6mrTBd9tKjZ2yVH2/1QGgCBwsTdAFpadnZ2jd/Lysq0Z88e2Ww2de/enWAHAC3JlMmIdiHCl5D+kh/KA2vhnmsALW3Dhg11lhUVFemmm27SqFGjvN4vwS4INNQn/rjKy6VIL17CpKTmbwMAFkVIBwAEu/j4eM2dO1fjx4/XuHHjvNoHwS4YNNInvjHmzl0yunVt/nYB6EvvdXglhAIAACAMFBUVqaioyOvtCXZoHd6GV27oBgAAYeavT/1XEY960WqTlKSKvyxt+QKhRS1btqzG76ZpKicnR6+99pp+9atfeb1fgh0AAADQCG8G0fFlMK3kI04ZJ3Zr9nZcELeGpUtrhu+IiAh16NBB48aN0/Tp073eL8GuFm9Hv2IkPFgNVwMBAGgabwbR4T5dNGTLli1+2S/BrhZvR7/inxdWw9VAAACA0EGwAwAAAAA/mj9/fpPXve+++7w6BsEOAAAAAPzoyy+/bNJ6hmF4fQyCHQAALWzipHTlejkp+gtnT/FDiYDQ4fUUSqWlLV8YoIlWrVrl92MQ7AAAaGG59iju1w4yXoeBGwZIXryWaJwvA3j5Mv8vECwKCwv1wgsv6H//+58kqU+fPrryyiuVkJDg9T4JdgAAIPR5GQZkmi1fFjCAF8Lapk2bdMkllyguLk5nnnmmJOmJJ57QwoULtWLFCvXv39+r/RLsADSbV1e+k5L8UxgAAAALmTdvnn79619r8eLFiox0x7Hy8nL9/ve/16233qo1a9Z4tV+CHYDm8+LKN1dZAQAApM2bN9cIdZIUGRmp3//+9xoxYoTX+yXYAQAQxny516niL0tbvkAAEOLatWunvXv3qlevXjWW//TTT2rbtq3X+yXYoVm8Hent3xXlivVDeQAAvvHlXqdJnz2lPGfzBnxh5E8AremRRx5Rdna2tm/frtjYWA0aNEh33nmnevbs6VmnpKREf/rTn7RixQo5nU6NGDFCDz/8sFJTUz3r/Pjjj5oxY4Y++OAD2e12jRs3TnfccUeNVrem+s1vfqNp06bpnnvu0aBBgyRJGzdu1O23365LLrnE67+VYIdm8XakN1PcfA4Ax1PqKtNF9V48M1VRYSpi41uS6s5xlBxt93vZ6pPndDT7M4GRPwG0po8++ki/+93vdMYZZ6i8vFz33HOPxo4dq08++UR2u/u9c968eXrnnXf03HPPKT4+XrNnz9akSZP09ttvS5JcLpeuuOIKdezYUW+//bZycnJ0ww03KCoqSrfffnuzy3TPPffIMAzdcMMNKi8vlyRFRUXpt7/9re644w6v/9ZmBTuXy+XTpHnBwOVy1fhel7cBpLW3g/9Y6TWxUlkDpbWfIyu9F1ip/oTH82PK9HKahCN+KE1TePMcmY18BvvjeL5sFwimJn36lPLKmv+a+tY7xkrPUSB4V9cDwfv/r8b319L79ZZZOVJtUVFRjVwSExOjmHreP19//fUavy9dulQ9e/bU5s2bdd5556mwsFAvvviinn76aQ0bNkyStGTJEp1zzjn69NNPNXDgQK1bt07fffed/vWvfyk1NVWnnXaa5s2bpzvvvFNz585VdHR0k8r+9ddfKz09XdHR0XrggQd0++23a9cu9zQc3bt3V5s2bbx6Tqo0K9ht377d82Ra3Y4dO+pdXlHh3d/ny3YVZoVsXm3t5THNCkny8pitKxBl9fa1DIRAlNXb18S319L7ut7az1Fg3gu8E4j3H28FpK4H4DXxVqDeC7w5bkWFKXPy9Yo8XNT8g95whhTT/OhitdfyYOlh2ePimr2tt71jAvFe6S0rfZYE6v/yu+++88u+Gzp3bm2GYahbt27q16+fjhw5dgFkzpw5mjt37nG3Lypyv/ckJiZKkrZs2aKysjINHz7cs06vXr3UpUsXT7D79NNPlZ6eXqNrZkZGhmbMmKFvv/1Wp59+epPKPnToUJ155pmaNGmSxo4dq3bt2unUU09t0rZN0axg17Nnz5BosduxY4dOOeUU2Wx13xbc3VyaLyLCu+clIsJQhBHh1bb1dcdp0jG9Pl7rC0RZvX0tAyEQZfX2NfHttfS+rrf2cxSY9wLvBOL9x1sBqesBeE28Faj3Am+OGxFhKPrIERlduvihVA0fk9eykWMG4L3SW1b6LAnUa/lnxwdetfgmR7XVc2deV2f58c6dW5tpmnI6ndq2bVudFrvjqaio0K233qpzzjlH6enpkqT9+/crOjq6zsTgqamp2r9/vyTpwIEDNUKdJKWkpHi2b6rs7Gy9/PLLuu222zR//nyNHj1akyZN0rnnntvkfTSmWcHOZrNZPthVsdlsDVROb/++1t4O/mOl18RKZQ2U1n6OrPReYKX6w/PTuECV1Zvj8lo2zkqvZTixSl2X8socivOiZTuv1NFocGv43Ll1VfUejI+Pb3YumTlzpr755hu9+eab/ijacZ177rk699xz9eCDD+pf//qXXn75ZWVmZqpHjx6aOHGixo8fr44dO3q9/5AdPKXhkboavwG91FWmODX//gYAAAAAwWnWrFl6++23tWbNGnXu3NmzvGPHjnI6nSosLKzRanfgwAFPyEpNTdXnn39eY38HDx70bN9cdrtdV155pa688krt3LlTL730kp555hndf//9ysjI0CuvvOLNnyhr9EvwQtVIXXW/YmWPi1NcTGy9jzN6IwAAABAaTNPUrFmztHr1aq1cuVLdutWc3qV///6KiorS+++/71m2fft27d27VwMHDpQkDRw4UF9//bUnzEnS+vXr1a5dO/Xu3dun8vXo0UN//OMfNXPmTLVt21bvvPOO1/sK2RY7AAAAAOFt5syZev311/Xyyy+rbdu2nnvi4uPjFRcXp4SEBE2cOFHz589XYmKi2rVrp9mzZ2vgwIGeYDdixAj17t1bU6dO1Z133qkDBw7ovvvu0+9+97sm3dvXkA8//FAvvfSSVq1aJcMw9Jvf/EYTJ070en8EOwAAAAAh6dlnn5UkZWZm1lj+xBNPaMKECZKk+++/XxEREbrqqqtqTFBexWazafny5ZoxY4YuuOACtWnTRuPHj9e8efOaXZ59+/bp5Zdf1iuvvKKdO3dq0KBBeuCBB3TxxRd75tXzFsEOAAAAQEgqKCg47jqxsbF6+OGHa4S52rp27ap//OMfPpXl0ksv1fvvv6/k5GRdccUVmjhxonr27OnTPqsj2AEAAACAn0VFRenvf/+7LrjgAr+MMEqwAwAAAAA/83a0y6YK2VExAQAAACBcEOwAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcZFNWck0zRrfrSAuIkqxEVGttp0iKiSp+dtGVMiMjZViYpp9SDMuzrvtYmPdP3ixbZwt2qvnx4yNlWmRsnr9WspC9U6t/5r48lr6Utct85r48F7gS11v7fcfK/1fBuI1sdp7gVfltVhd57VsnLfbBeK8oNU/Syz2Wiqiot5zfdM0ZRiGTNMMiixQPZcYhhHg0gQXw2zCK1RRUaHDhw+3RnkAAAAAoFHt2rVTRASdD6trcrDzbGDxZFxUVKR+/fpp27Ztio+PD3RxYDHUH3iLugNfUH/gC+oPfBFs9ad6dCHY1dSkrpih9KQZhqEjR47IMAzLh1S0PuoPvEXdgS+oP/AF9Qe+CLb6EwxlCFahk9gAAAAAIEwR7AAAAADA4sIu2MXExGjOnDmK8WKkIYD6A29Rd+AL6g98Qf2BL6g/1tGkwVMAAAAAAMEr7FrsAAAAACDUEOwAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh3gJ9XHJWKMIjRXWVlZoIsAIIzxuQVYD8EO8JOSkhJJUnl5uQzDUEVFRYBLBKt44403NH78eB09ejTQRQEQRjZv3qypU6dKkgzDCHBpADRXZKALEKw2bdqkvXv3KjY2Vp07d1Z6enqgiwQLWbVqlVasWKG8vDz17NlTt912m9q3bx/oYsEC/va3v2nGjBlq27atdu/erb59+8o0TU6y0CRlZWWKiooKdDFgQVu3btWoUaM0ceLEGst5/wGsgxa7erzwwgu64oor9OSTT2r+/PmaNGmSnnrqqUAXCxbx4osv6sYbb1SfPn10yimnaMuWLXrhhRc8j9O9BQ157rnnNHv2bP3tb39Tly5dtHTpUklcOUfT7NixQ3feeae++eabQBcFFrN161b9+te/1m9/+1s9+OCDNR7j/QewDlrsavnoo490991368EHH9TFF1+s77//XosXL9bcuXN15MgR/fGPfwx0ERHE1qxZo3vvvVdLly7V6NGjJUmTJk1STEyMJMnpdCo6OloVFRWKiOC6Co7561//6gl1WVlZ2r9/v5555hlt3rxZAwYMCHTxEOR27dqlUaNG6ejRoyopKdGUKVPUu3fvQBcLFrB//35ddNFFuuiii3TPPffI6XTq3nvv1Q8//KDc3FyNHTtWF154obp06RLoogI4Ds4sa9m2bZvOPvtsjR07VoZhqGfPnho6dKjat2+ve++9V48//nigi4ggVVZWpu+++05XXnmlLrjgAs/ygoICvfrqq8rIyNCYMWO0Z88eRUREcM8dPLZs2aLHH39czz33nLKysiRJQ4YMUUFBgT755BNJtPSiYUePHtVDDz2koUOHasaMGfrss8/05JNP6rvvvgt00WABBw4c0MCBA7V582Z9/fXXmjRpkj777DN16tRJKSkpev755/XnP/9ZBw4cCHRRARwHwa6W0tJS7d69W/v27fN0Pzh69KhGjBihWbNm6S9/+Yu+/PLLAJcSwSgqKkoTJkzQNddco+joaEnSNddco927d+v666/X5MmTFRcXp7Fjx6qwsJAWO3j06tVLr732mkaPHu0JcKeddpquuuoqPf7449q7dy/dodCg2NhYDRs2TCNHjtQtt9yiyZMna9OmTYQ7NMlpp52mu+66Sz169NDQoUPlcrn04osv6sEHH9Tf//53TZo0SR988IG2b98e6KICOA66YtbSq1cvVVRU6JlnntGgQYN04MABzZ07V88//7zOOussvf7668rNzQ10MREkqm4qr+pa2bFjR89jOTk5iouLU3Z2trp16yZJSk5O1o033qg9e/botNNOC1SxEWTi4uLUq1cvT32q+j5ixAitWLFCn332mbp06SKXyyWbzRbo4iLIRERE6JJLLvEMmjJx4kRVVFTo2Wef1ZNPPqkbbrhBvXv3VllZmfLy8pSWlhbgEiPQqt5Lqt5rTjvtNM2ePVt9+/bVsGHDlJSU5Fln8uTJevDBB/XRRx/pvPPOC3TRATQi7INdTk6OnE6nJKlr16664IIL9L///U8rV67U8uXLJUlLly7VhRdeKEmqqKjQ999/rxEjRgSszAgeOTk56tSpk6drZVUrnGmaSktL05IlS2Sz2TyP2Ww2devWTYmJiQEuOQLtyy+/1M6dO2Wz2ZSenq6TTz7Z0ypX9f28887TySefrCVLlujiiy8m1KGOqpPvql4CVb9fddVVMk1Tf/vb3/Tkk0/qd7/7nV566SV98MEHeu+99zz3/SL8bN++XX/961/1zTff6Oyzz9aIESN03nnn6cwzz1RKSornAqXNZpPL5VJ+fr569OihU089NcAlB3A8YR3sli9frmeffVa7du1S9+7dlZGRoTlz5mjatGkaM2aM5+TqxBNPlCTt3r1b8fHxOuWUUwJZbASJf/zjH5o3b57uvfdeXXHFFYqIiPBc/ayqO1VBLyIiQqWlpXrqqad04oknqnPnzoEsOgKsqptTQkKCDh8+rE6dOumhhx7S6aef7lmn6gR9+vTpuvnmm/Xvf/9bY8aMCWCpESz27NmjLVu2aPTo0TUuHEmq8fvVV18twzD03HPPacKECSooKNCqVasIdWHs66+/1ujRo3XBBReoU6dO+uSTT/S///1PPXr0UKdOnTznO1VsNpv++te/qqCggF4mgAWEbbB77bXXNHPmTD3wwANKSkrSF198offee08ZGRk6++yzdeKJJ3pOzp1Op/bu3at58+YpOjpaw4YNC3DpEWj/+c9/dPvtt6tz585avHixDMPQ5ZdfXqMbneRueSktLdXXX3+t++67Tzk5OVq/fn2N7psIL9nZ2frTn/6khQsX6vzzz9eWLVu0aNEibdiwQaeffrqn/lS1zvXt21cOh0Nbt24l2EE7duzQhRdeqHbt2snhcGjcuHF1egxU//2qq67SK6+8osOHD+utt96i1SWM5eTk6MYbb9TEiRN11113SXJ/lk2ePFl79uxRp06daqz/7rvv6t1339Wrr76q7OzsOqEPQPAJy7PKb7/9Vk888YTuv/9+TZw4URdddJGuvvpq/fTTT9q6daukmvO27NixQ/PmzdP+/fu1Zs0aT/cEhCeHw6EVK1boggsu0L333qvBgwdr4cKFeu211yTJE9qqbNy4Uc8995wMw9D69esVFRWl8vJyQl0YOnjwoF555RVNnTpVl1xyidq1a6ehQ4eqW7duWr16taSa7z2maSopKUmvvvqq5s6dG6hiI0jk5uZqzpw5GjBggM4880z97W9/08svvyxJdUbajYiIUHl5uW655RZt3LhR2dnZhLow9+WXX6pLly4aN26cZ5Cm4cOH65RTTtGuXbsk1Rx9d/v27fr555/15ptv0loHWERYttg5HA716dNHZ555piT3G9mJJ56oIUOGKC8vT5JqDFLQtWtXzZgxQ2eeeaZsNpvKy8sVGRmWTx0k2e12XXfddTp48KCGDh2qDh06yDRNLVy4UJJ0+eWX1+iWOXjwYCUlJSk9Pd1zskX9CU8RERHq06ePhgwZIkmeVpVBgwbpq6++kqQaLb5V65xxxhmSRN0Jc6WlpWrbtq2uueYaderUSY8++qj+/ve/S5ImTJhQp+UuMjJSQ4YM0dVXX02og1JTU3X++eerb9++ko6FuNLSUh08eFBSzQtLVa178fHxrV9YAF4JyzOErl27avLkyerXr1+N5aZp6vDhw5JUY5CCtm3bauDAgZLcgY8TK/Tv39/zc58+fTRlyhRJ0sMPPyzJHe5yc3P12Wef6de//rWnrlVUVFB/wlhycrKuvvpqde3aVdKxk6ikpCRJNYPbN998o759+9Y40aLuhLfOnTvrgQce8HSZ+/3vf6/Fixfr73//u0zT1JVXXlnn4tEVV1wRyCIjiAwYMEADBgyQVPMCUkJCQo1znqefftozmByhDrCWsDxLSElJUUpKiqSa3Q6cTqdKS0s9v1922WUaNmyYpk2b5lnGqHSorurDsW/fvpo8ebIMw9Ajjzyiw4cP6x//+Ify8vJ04YUX1hlMBeGrKtRVP7E6dOiQioqKPCfjl1xyiUpKSjzdM4EqVaHO5XIpPT1d06dP16JFi/T888/LMAxNmDBBM2bM0IABA3TttdcGuLQIVtUvGLVt29Yzqurdd9+tv/zlL1q3bl2gigbAB2F/lll9BMP27durTZs2ktwnVj/88IOmTp0ayOIhyFX/cExPT9f111+vs846S7NmzVJpaak++ugjz4AqQHW1JxyvGqnw8ssv148//qh//etfASgVrKLqImOfPn00ffp0nXTSSXrxxRc1atQovfDCCzV6FQCNfQYdOnRIFRUVWrRokZ588kmtWbNGffr0acXSAWgpYdli15CoqCiVlpZq0qRJ+uGHH/TJJ594BrqgCxSaonPnztq0aZPOOOMMvf3224qMjKT+4LhSU1MVHR2tUaNGad++fdq4cSPvPaih9r2X1fXp00c333yzrrjiCh09elQbNmyoc6sBwkvVOAF5eXlKTk5usO5I7ha7Bx54QE6nU2vWrPF01wRgPSHdYtfcVpLCwkI9+eST2r17N6EOnvpTvR5VH3WutrKyMt15550yTVNvvfUWoS6MNbfuFBQU6LPPPpPD4SDUQZI8Iy9XDejV2Im50+n0TGmwZs0aQl0Y27Fjh7Kzs2Wz2fSvf/1LU6dO9QyM0pDExERFRUXp7bff9gzUBMCaQjbYVb+6+fzzz2vt2rXH3ebss8/WBRdcoHXr1nFiFeYqKio89Sc3N1dHjhyRaZqN3iMXFRWl6667Th988AH1J4x5U3dOOeUU3XjjjXrvvfeoO2HOmxPzw4cP69NPP9XKlSuVnp7eSiVFsKmoqNDrr7+uq666Srfddpt++9vf6pJLLvGMKdCQcePG6Z133mHkVCAEGGYI3vxTfbjnLVu26LbbbtO+ffv0xBNPaNCgQQ1ut3//fqWkpDAkPTz+/Oc/a+XKlYqIiFCHDh305z//uc5IhfWpPl0GwpO3dYf3nvBVUVGhhx56SA899JBuuukmPfHEE1q6dKnGjRvX4DZVFzGdTqdnAAyEt8suu0zr1q3Tb3/7Wy1YsKDGORGA0BaS/+lVb2B//vOf9dBDD6mkpER79+7VH/7wB/3f//1fg9t17NjRM/8YJ1bhqXp3uZdfflnLli3T1KlTdc011ygiIkKZmZl65513JDXe1ZdQF368rTu16xHvPeErIiJCc+fOVUZGhpYuXarrrrtO48aNa7Qbb9WFgqioqNYqJoJQ1ftIWVmZkpKSdO655+rZZ5/VG2+84Tmvqf1eE4LX9YGwF5ItdpL07LPP6vbbb9err76q3r1765NPPtGLL76oH3/8UQ899JDOO++8QBcRQeytt97SF198oe7du2v8+PGe5TfccIPeeecdffjhh0pLSwtgCRGsqDvwRlXLW1lZmW6++Wb9/PPP+uijj/TUU0/pkksu8ZyEV2/xbWxAFYSPqnqwadMm5eXlafDgwWrbtq3uvPNOPf7441q2bJkuvfRSz3p79uzxTLsCILSEZIudJG3atEkXXXSRzjvvPHXo0EGZmZmaNm2a2rVrp5kzZ2rjxo2BLiKC1KZNm3TbbbdpyZIlnpMmp9MpSXryySfVuXNnPf7444EsIoIUdQfeqH5i/v7772vhwoVatWqVpk2bpilTpuj111+vEeD27NkjqfEBVRAequrOypUrddlll+nzzz/Xzz//LEmaMWOGpk2bpqlTp3rq0MKFCzV79mw5HI4AlxyAP4REsKuvm0piYqJ2796toqIiz7LzzjtPmZmZ+u677zRr1ix9+OGHrVlMBKnajdY9evTQddddp8TERL322muSpOjoaJWXl8vlcumEE05QSUlJIIqKIEPdga84MYcvDMPQJ598omnTpulPf/qT/vCHP6hXr16SpHbt2mnGjBmaPn26pkyZogsuuEALFy7UrbfeKrvdHuCSA/CHkAh2VffUvffee55l6enp2r9/v956660aH4Ddu3dXZmam+vbtq2eeeUaFhYWtXl4Ej+ojGEqSw+FQQkKCrrnmGs2YMUM//PCDpkyZIsl975PNZtPBgwc9k0kjfFF30BI4MYe3qi4srVu3TkOHDtU111yj2NhYScemy2jXrp3mz5+vV199VWPHjtWHH37I5PVACAuZe+y++eYbnXfeeZo0aZIWL14sSZo6dao2bNigmTNnerpk3nzzzTrzzDPVqVMnzZs3T+vWrdMpp5wS4NIjEKqPFLZkyRJt3rxZX375pSZNmqSRI0eqZ8+eevbZZ/Xoo4+qffv26tWrlyIiIrR582Zt3LiRQS7CGHUHLaGqte7+++/XV199pZdeesnzWO2Rdd99913t3LlT559/vrp37x6I4iJI1L638ve//70OHDig5cuX1xkBc8uWLerdu7diY2O5JxMIAyHRYidJJ510kpYuXap//vOfuuWWWyRJf/nLX3T++efr2Wef1ciRI3XhhRfq+++/16xZs3TOOecoNTW10dHGENqqPvzuuusuPf744zrzzDN14403auHChbr//vtVXFys8ePHa/r06XI6nfr22281adIkff75557JxxGeqDvwRe2BUHJycjwtLFWfSVWhbsuWLSopKdHIkSM1ZcoUQl0YKy4uVmlpqfbu3avS0lLP8hNOOEEbN25UXl6eZwRMyT2/4YoVKzxjChDqgNAXMpeN4+LidPHFFysiIkK33HKLTNPU4sWL9eijj2rTpk3at2+fDMPQ+eefL0l65plnFBcXd9yJOxHaNm3apOzsbL344osaOHCgNm3apCNHjuiiiy5S27ZtJUlXXnmlKioq9Nprr2nFihUaPny4JD4kwx11B81VXFysiIgIHThwQKmpqZ5uuSeccIJWrVqlvLw8JScne1pWqk7MR4wYoV/+8pfUmzD23Xff6b777tOOHTu0fft29e3bV8OHD9fdd9+tadOm6c0339To0aP1r3/9SykpKSovL9eiRYv0xhtvaPLkyYEuPoDWYlrY448/bt511101lhUXF5vLly83U1JSzDlz5tTZ5qOPPjJvuukms0ePHuaXX37ZWkVFkCgpKanx++eff26OGDHCNE3TXLFihdmlSxfzmWeeMU3TNA8fPmyuW7fONE3TLCoqMpctW2YOHz7cvPbaa1u30AgK1B344ttvvzUnTZpkDhkyxOzQoYP5i1/8wrzttttM0zTNI0eOmMOGDTOHDBli7t+/36yoqDDLysrMu+66yzz11FPNH3/8McClRyBt27bN7Nq1qzlz5kzz+eefN1etWmVOmDDBTE1NNa+44gqzuLjY/PLLL82MjAyzW7du5gUXXGBmZmaaJ598srlly5ZAFx9AK7Jsi11xcbGOHj2qZcuWyW63a8aMGZKk2NhYZWVl6f3339dTTz2lw4cP64knnvBsFxkZqby8PK1atUrp6emBKj4CYN26ddq2bZvOO+88nXXWWZLcQ9Hn5OTo+eef12233aY77rhD1113nSTp888/17PPPqvOnTurV69emjBhgoqLi/X2228rJyeHucjCCHUHvvjqq6900UUX6fLLL9fIkSOVmJioV155RcuWLdP//vc/Pffcc1qyZImmT5+uQYMGqU+fPoqKitI333yjFStWqEuXLoH+ExAgubm5uvHGG/Xb3/5Wd9xxh2f54MGD9c9//lN33HGH/vCHP2jZsmV699139fTTTys3N1dt27bVY489RtddINwEOlk2lcvlqvHdNE0zNzfXfPzxx82uXbuaCxYsqLH+ggULzMsuu8y85JJLamxjmu5WPYSXF1980UxPTzf/+Mc/mp9//nmNx6677jozMTHRfPDBBz3LSkpKzCuuuMK86qqratSfw4cPmwUFBa1VbAQB6g58cfDgQXPYsGHmnXfeWWf5U089ZXbq1MmcMmWKaZqmWVFRYS5btsy87777zMWLF5s7d+4MRJERRLZs2WIOGTLE/Oqrr8zy8nLTNI+dBx06dMhcsGCB2alTJ3PVqlWBLCaAIGGJFrs33nhD69ev1y233KJOnTp5hnlOTk7WuHHjVFFRoUceeUSSNHPmTB05ckRff/21xowZoyuvvFJSzVHsqoYDRnh44403NHv2bC1ZskQZGRmKj4+v8fiUKVN04MABvfzyy+ratasOHTqkd999Vz///LM2bNigiIgIz9D2VfdOITxQd+Crn3/+WWVlZbrssss8I11WVFSoQ4cOuvzyy1VYWKhHHnlEo0ePVmZmpmeKDECStm3bpl27dnl6GJmm6TmXSUhI0GWXXabHH39cu3btqrGdyQiYQFgK+ukOioqKNHz4cB0+fFipqak666yzNGTIEI0fP96zzoEDB7RixQrdfvvt6tatmwzDUFRUlN5//31FRkbyBhfGcnNzde211yorK6vGDeRHjhzRt99+q8jISA0YMEA7duzQo48+qv/85z/q0aOHTjrpJD3yyCOeEQwZnj78UHfQEl5++WXNmDFD+/btk1T3hHv37t0aNmyYZs6cqWnTpnmW87kFSfr44481duxYLVu2TFlZWfWu88tf/lLnnXee7r///lYuHYBgE/RnHHa7XRdffLFOPPFEnXnmmdqwYYNuvfVWrVu3Tn369NHvf/97paamaurUqTr33HO1evVqtW/fXpMnT1ZkZGSduYAQfnJzc3XCCSd4fv/rX/+q//u//9PKlSuVmpqq3r1769///reWLFniGZWuCifm4Y26A19V3eO0cuVKZWVl1Qlr3bp100knneQJflUIdZCkrl27ql27dlq+fLkGDBigrl27SjrWC+nQoUOKjY1l0nEAkiwwj53NZtOQIUN0xx13yGazadq0afr222/VvXt33XfffcrIyNDixYv15Zdf6vTTT9ett96qG264wXO1nFCHoqIivfPOO9qwYYOuvvpqPfvss0pOTtYbb7yhBx98ULt379aCBQskubu2VDFNkxPzMEfdga+qn5jv2bPHs7xqvjpOzNGYzp07a+HChVq7dq3uv/9+ffPNN5KOzaX5xBNPKCcnR0OGDAlkMQEEiaDvilll5syZkqSHH35YkjRkyBCdfPLJ6t69u77++mutX79ejz32mCZOnBjIYiIIvf/++7rqqquUlJSktm3b6r777lO/fv2UlJSkQ4cOKSsrSxdddJHmzp0b6KIiyFB30BJWrVql3/3ud/rNb36jP/zhD+rbt6/nsfvuu0+vvfaaVq1a5WmNAapzuVx6/vnnNXv2bHXv3l3nnHOOOnbsqN27d+u9997Tv//9b51++umBLiaAIGCZS8r9+/fXSy+9pEOHDmnMmDFKSEjQ0qVLFR8fr59//lmffPJJg/3PEd5++ctf6vPPP5fD4VC3bt3qPN62bVuGn0e9qDtoCRdddJEeeOABzZ49W1988UW9J+aEOjTEZrPp2muv1WmnnabHHntMn332mRISEtSvXz+9/fbb6tWrV6CLCCBIWKbFTpIyMjK0adMmnXvuuXrhhReUmJhYZx3ua0FT5ebm6qabblJ+fr7eeustuu2iyag78MZnn32mxx57TNu3b/ecmE+ZMoUTczSZy+VSRESEDMOoMdo3AEgWCXZVo4O9+uqrWrx4sZYuXaoBAwYwahi8kpeXp+eff16ffPKJcnNz9dZbbykqKoqBdnBc1B34ihNz+KL6eQ/nQABqs8QnStUb1y9+8QsVFBRo/fr1NZYDzfHzzz9r48aN6tGjh95++21FRUUx0A6ahLoDX1WFOonPMDRf9TpD/QFQmyVa7Kp76qmn9OCDD2r16tXq06dPoIsDiyosLFR8fLwMw6C1Bc1C3QEAAMHIcjejjRw5Ups2beKeBPikamh60zQ5MUezUHcAAEAwslyLnXSsXzlXywEAAADAosEOAAAAAHCMJQZPAQAAAAA0jGAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAs7v8BMza1qa3iyI0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== WITH MARKETCOLOR OVERRIDES: ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAAJ9CAYAAAB5HeD6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB30UlEQVR4nO3deXhTVeL/8c9tuhJoaYBSBFsBEUQU1IEBReShYAcFdHBjdRlHFBVHBlkUxQ0dFREXxEEdx1FcxlFmBoqKAo781K+OCyC4DQimoBZoU1oI0LTJ/f3RJrR0oU3aJrd5v56nT9u75aQ5Te7nnnPPMUzTNAUAAAAAsKyYcBcAAAAAABAagh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOJi67ORz+cL/GwYRpMVBgAAAABqU3kK7pgY2qgqq1ewk6T9+/c3ZTkAAAAAoF7atGkT7iJEnHoHO0lKTEy0fIud1+vV1q1b1aNHD9lstnAXBxZD/UGwqDsIBfUHoaD+IBSRVn9M09Thw4fDXYyIVK9g5w9zhmFYPtgZhiHTNFvEc0Hzo/4gWNQdhIL6g1BQfxCKSK0/kVSWSEHHVAAAAACwOIIdAAAAAFgcwQ4AAABAi/XRRx9p3LhxOvnkk5WamqpVq1ZVWf/ggw9qwIAB6ty5s0444QRddNFF+vzzz6tsU1hYqGuvvVYZGRnKzMzUtGnTdODAgeZ8GsdEsAMAAADQYh08eFB9+vTRggULalzfvXt3Pfzww/roo4/09ttvKyMjQ2PHjlV+fn5gm2uvvVbfffedli9frtdee00ff/yxbrnllmZ6BvXToFExAQAAAMBKRowYoREjRtS6/tJLL63y+/z58/XSSy/p66+/1rnnnqvvv/9ea9eu1bp163T66adLkh566CFddtlluu+++9SpU6cmLX99NSjYeb1ey49A4/V6q3wHGoL6g2BRdxAK6g9CQf1BKCKt/vgnKC8uLq6SSxISEpSQkBDy8T0ej/72t78pOTlZffr0kSR99tlnSklJCYQ6SRo6dKhiYmL0xRdfaNSoUSE/bmNoULDbunVrldnerWzbtm3hLgIsjPqDYFF3EArqD0JB/UEoIqX+GIahzMxM9enTp8o9brNnz9acOXOCPu4777yj3//+9zp48KDS09P1z3/+U+3atZMk7d69Wx06dKiyfWxsrFJTU7V79+6gH7OxNSjY9ejRo0W02G3btk0nnnhiREyyCGuh/iBY1B2EgvqDUFB/EIpIqz+macrj8WjLli3VWuxCcc4552j9+vUqKCjQiy++qKuvvlpr1qypFugiWYOCnc1ms3yw87PZbBFROWFN1B8Ei7qDUFB/EArqD0IRKfXH33swOTm5UXOJ3W5Xt27d1K1bN/Xv319nnnmmXnrpJf3xj39Ux44dtXfv3irbl5WVqbCwUB07dmy0MoSKUTEBAAAAoBKfzyePxyNJ6t+/v4qKirRx48bA+vXr18vn8+nMM88MUwmrY1RMAAAAAC3WgQMHtGPHjsDvTqdTmzdvVtu2beVwOLRw4UKNHDlSHTt2lMvl0nPPPadffvlFF154oSSpZ8+eysrK0h/+8Ac9+uijKi0t1axZszR27NiIGRFTItgBAAAAaME2btyo0aNHB36fO3euJGn8+PF69NFHtXXrVr322msqKCiQw+HQ6aefrrfeeksnn3xyYJ9nn31WM2fO1EUXXSTDMDRmzBg9+OCDzf5c6kKwAwAAANBiDR48WIWFhbWuf+mll455jNTUVD333HONWaxGxz12AAAAAGBxBDsAAAAAsDiCHQAAABqV2+3WihUr5Ha7w10UIGoQ7AAAANCo3G63cnJyCHZAMyLYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAICK43W6tWLGCic2BIBDsAAAAEBHcbrdycnIIdkAQCHYAAAAAYHGx4S4AAAAArC+vpEjushJJUuGhAklS7qEC7a9ofLPHJig9IaXB+9W1L4AjCHYAAAAISV5JkTLXzpRZ8Xu8R+rdUxq6YZE88eXLDEnOrAVVAlp99qtt36O5XC4tXrxYN910kxwOR2M+PcASCHYAAAAIibusRKYkR5xdNsOQ4qWf+kr+GOY1TblK3eUtcwn136+ufY9WWFio+fPna+LEiQQ7RCWCHQAAABqFzTAUa9hqWOMNcr9j7wugHIOnAAAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjukOAAAAEFZe01Rt0xqUrwNwLAQ7AAAAhIU9NkGGJFepW5IU75F6/yB9013yxB/ZzqjYFkDtCHYAAAAIi/SEFDmzFshdViJJKswv0DNvLdKSS6YrtX27wHb22ASlJ6SEq5iAJRDsAAAAEDbpCSlSRWPcnvKGO2UktVOaPS18hQIsiMFTAAAAEBHsdrtGjRolu90e7qIAlkOLHQAAACKC3W7XmDFjwl0MwJIIdgAAAGgUtY1uyciWQNMj2AEAACAk9RndkpEtgaZFsAMAAEBI6jO6JSNbAk2LYAcAAICQMbolEF6MigkAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4hg8BQAAAJaTl5cnt9sd+D03N7fKd6l8wvP09PRmLxsQDgQ7AAAAWEpeXp4yMzNl1jDxeXZ2duBnwzDkdDoJd4gKBDsAAABYitvtlmmacjgcstlsNW7j9XrlcrmqtOoBLRnBDgAAAJZks9kUG8vpLCAxeAoAAAAAWB7BDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAGhUdrtdo0aNkt1uD3dRgKjBxB8AAABoVHa7XWPGjAl3MYCoQosdAAAA0IzcbrdWrFght9sd7qKgBSHYAQAAAM3I7XYrJyeHYIdGRbADAAAAWjiXy6V7771XLpcr3EVBE+EeOwAAAKCJ5ZUUyV1WIkkqPFQgSco9VKD9FY129tgEpSekNN7j5eVVaRHMzc3V/Pnzdc455ygjI6P8Me12paenN9pjIrwIdgAAAEATyispUubamTIrfo/3SL17SkM3LJInvnyZIcmZtaBRwl1eXp4yMzNlmma1ddnZ2YGfDcOQ0+kk3LUQBDsAAACgCbnLSmRKcsTZZTMMKV76qa/kj3Be05Sr1F3eopfQCI/ndss0TTkcDtlsthq38Xq9crlc3OfXghDsAAAAgGZgMwzFGjUFLW/TPJ7NpthYTvejBYOnAAAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAwAJcLpfuvfdeuVyucBcFQAQi2AEAAFhAYWGh5s+fr8LCwnAXBWHidru1YsUK5p5DjQh2AAAAgAW43W7l5OQQ7FAjgh0AAAAAWBxT0QMAAESgvLy8Ki0zubm5Vb5Lkt1uV3p6erOXLVJ4vd6g1llJXkmR3GUlkqTCQwWSpNxDBdpfqdHOHpug9ISUcBQPEYRgBwAAEGHy8vKUmZkp0zSrrcvOzg78bBiGnE5n1IU7u90uwzCOOZCMYRiy2+3NVKrGl1dSpMy1M+WvBfEeqXdPaeiGRfLEH9nOkOTMWlAt3EVD8MURBDsAAIAI43a7ZZqmHA6HbDZbjdt4vV65XK6ovN8qPT1dTqezWotmdna2Vq9erYyMDEnWb9F0l5XIlOSIs8tmGFK89FNfqXJ885qmXKXu8la9hPJl0RJ8URXBDgAAIELZbDbFxnK6VpPaAltGRoa6d+/ezKWpH69pSqreUuatoWW2MpthKNaoOeDXdLxoCb6oincKAAAAWF5qaqruuOMOpaamhrso1dhjE2RIcpWWB614j9T7B+mb7gp0qTQqtqtJbYHwyLrqrBh8ERqCHQAAACzP4XBo3rx54S5GjdITUuTMWnBkEJT8Aj3z1iItuWS6Utu3k1TzACj1CYRS3aEQ0kcffaQnn3xSmzZtUl5enpYtW6YLLrhAklRaWqr58+frvffek9PpVHJyss4991zddddd6tSpU+AYp512mnbu3FnluPPmzdP06dOb9bnUhWAHAAAANLH0hJTAPXB7KnpIZiS1U5o9rc59jhUIJUbFPJaDBw+qT58+mjRpkiZPnlxt3VdffaWZM2eqT58+2rdvn2677TZNmDBB77//fpVtb7/9dl1xxRWB31u3bt0s5a8vgh0AAAAQoYIJhKhqxIgRGjFiRI3rUlJS9M9//rPKsocfflhZWVnauXOnjj/++MDy1q1bq2PHjk1a1lA0KNh5vV4ZhtFUZWkW/qFdGeIVwaD+IFjUHYSC+hN9fD6fJMk0zRqnPPCv829bn2HtqT+Rw//6Huu1a6z9Qtk30uqPv94XFxdXySUJCQlKSGic7qj+Y6ekVG0Ffeyxx7RgwQJ16dJFl1xyiW644YaIGtyoQSXZunVrrW8uVrNt27ZwFwEWRv1BsKg7CAX1J3r47+Wp6yTcf6K+fft2lZaWHvOY1J/IsW/fPknlr92xpiRojP2kI3WqvvXlaJFSfwzDUGZmpvr06aMDBw4Els+ePVtz5swJ+fiHDx/W3XffrYsvvljJycmB5dddd5369u2rtm3b6r///a/uvfde7d69W/fff3/Ij9lYGhTsevTo0SJa7LZt26YTTzyx1nlhgNpQfxAs6g5CQf2JPnFxcZKkmJiYWl9z/8X2bt26qVu3blXW5R2UDpaVn7O5Dnm15Au3bjjTLkdS+bFaxZpKb9VUpcex7N27V1L5a9ehQ4cm3086Uqdqqi91ibT3H9M05fF4tGXLlmotdqEqLS3V1VdfLdM0tXDhwirrbrzxxsDPffr0UXx8vKZPn6558+Y1WkthqBoU7Gw2m+WDnZ/NZouIyglrov4gWNQdhIL6Ez1iYmIklbdO1Hbu5V9+dPjLOyh1ey1Wpirv10qvrqq0r0w5J5YR7sLE//rWFdwbc79Q95Ui5/3Hf0EjOTm5UXOJP9Tt3LlTK1asqNJaV5MzzzxTZWVlys3NVY8ePRqtHKGInE6hAAAACJm7TDJlyJFgymZIpin5vGWKscXKMCSvKblKDLnLwl1SIDL4Q90PP/yglStXyuFwHHOfzZs3KyYmpsEtp02JYAcAANAC2QwpNqY82Hl9ki1GMgxJvvofw+12a+3atcrKypLdbm+ysgJN6cCBA9qxY0fgd6fTqc2bN6tt27ZKT0/XlVdeqU2bNum1116T1+vV7t27JZVPeh8fH6///ve/+uKLLzR48GC1adNG//3vfzV37lxddtllatu2bZieVXUEOwAAANTI7XYrJydHAwcOJNjBsjZu3KjRo0cHfp87d64kafz48ZozZ47efvttSdKQIUOq7Ldy5UoNHjxYCQkJWr58uR588EF5PB5lZmZq6tSpVe67iwQEOwAAAAAt1uDBg1VYWFjr+rrWSVLfvn313nvvNXaxGl1MuAsAAAAAAAgNwQ4AAAAALI5gBwAAAAAWxz12AAAAKJdfIB0+dOR3l6v8e16e5PGU/5yYJLVv1/xlizCMGIpIQ7ADAACAlF8g2wWjZFRMAC1JyTabxnRor+TrpirW65UkmYYh76qcqA93jBiKSENXTAAAAACwOFrsAAAAIpS3opWsoeuC0r5deUtcpa6YxS6XVixerAHz71Oiw1G+kK6YlpSamqo77rhDqamp4S4KmgjBDgAAIMLY7XYZhiGX/x63WhiG0bjdAI8ObPHx5d/T06W0tMZ7HDQ7h8OhefPmhbsYaEIEOwAAgGZS3wE30tPT5XQ65Xa7A8tyc3OVnZ2t1atXKyMjQ1J5AExPT2/ycgOIfAQ7AACAJpRXUiR3WYkkqTC/QDk5OTqubw+l6kjrmD02QekJKVX2Ozqw+bvS9e3bVw5/t0g0qyqv5aECSVLuoQLtP5K/a3wtG4vdbteoUaMYrAU1ItgBAAA0kbySImWunSn/OJPxHql3T2nohkXyxB/ZzpDkzFpQZyCgK114NeZrGSy73a4xY8Y0+nHRMhDsAAAAmoi7rESmJEecXTbDkOKln/pKlU/5vaYpV6m7vCUoIVwlxbH4X8uU2KTy1zJOyj1Nal1pG69pqqjsEK8lwoJgBwAA0MRshqFYw1bL2kYe3RJNwh6bIENSUVn5qKHxHqn3D9I33VWtxc4eS6pD8yPYAQAAAMeQnpAiZ9aCKvdLPvPWIi25ZLpS29d9vyTQHAh2AAAAQD2kJ6QEuljuqRgwJSOpndLsTAWB8IsJdwEAAAAAAKEh2AEAAADNiGkL0BToigkAAAA0I6YtQFOgxa4ZuN1urVixQm63+9gbAwCABnG5XLr33nvlcrnCXRRYkOuwdO8XMXIdDndJgNAQ7JqB2+1WTk4OwQ4AgCZQWFio+fPnq7CwMNxFgQUVeqT5X9pU6Al3SYDQEOwiGC19AAAAAOqDYBfBaOkDAAAAUB8EOwAAAACwOIIdAAAAAFgc0x0AAAA0Ma9pSvLWsa4pHlOSTzJNyWdKpk8yjIrlAFocgh0AAIhabrdba9euVVZWVpNMFm2PTZAhyVVafr98vEfq/YP0TXfJE39kO6Ni28Z5TMmQKVeJUWlpnFRW+fFM2TkLBFoU/qUBAEDU8g9UNnDgwCYJdukJKXJmLZC7rESSVJhfoGfeWqQll0xXavt2ge3ssQlKT0hpnMdsJTknlsldEeR+LPJp5DsJevs3JTohJabi8cq3A9ByEOwAAACaUHpCilTRGLenYqDrjKR2SrOnNd1jVgptvooeoBmtpe7JTfaQAMKMwVMAAAAAwOIIdgAAAABgcQQ7AACAFqxtgqnrjs9T2wSGw2xMdrtdo0aNapJ7M4FgcI8dAABAMwlHGHAkSFMzdsuR0LbZHjMa2O12jRkzJtzFAAIIdgAAICR5JUWBUR9r05ijPkpSXl6e3O7ykUhyc3OrfA88pt2u9PT0RnvMxkAYANBUCHYAACBoeSVFylw7U8fq5GdIcmYtaJRwl5eXp8zMTJlHTeydnZ1d9TENQ06nM+LCHQA0BYJdU8gvkA4fOvK7y1X+PS9P8njKf05MkirNXwMAgBW5y0pkSnLE2WUzjBq38ZqmXKXu8la9OubgdrlcWrx4sW666SY5HI7aH9PtlmmaWrNmjTIzM2vcxul0avjw4YFWPQBo6Qh2jS2/QLYLRsmodBUx2WbTmA7tlXzdVMV6yyeTMQ1D3lU5hDsAQItgMwzFGrZa1nrrdYzCwkLNnz9fEydOrDPY+WVmZqp79+4NKCUAtFwEu3qq71VEHT4kwzRlJidLtvIPOLukC0s8UnJyeVcVr1dGcXHVVj0AAND06FUDoIUi2NVTQ68iymYLBLsGqfyBw4cNAACNh141AFowgl1T8dbR7aS2dUd94PBhAwBAI6JXDYAWjGDX2BKTZBpG+YdChQM2m9Z0aK/he/PVulJAU2JS1X2P+sDhwwYAgCYQbK+aKMQk3IB1EOwaW/t25S1qlcJXsculFYsXa8D8+5To78ZZV5dKPnAAAEAEYN49wDoIdk3h6MAWH1/+PT1dSktr/vIAAKKW2+3W2rVrlZWVRatLI+Lvam15ByV3WfnPuQeqfpcke6yU3qr5ywWEgmAHAEAL5na7lZOTo4EDB0ZkAMnLywvMNZebm1vlu1TeYhSJE4xH+t8Vtcs7KGW+HCtTVeddzF4VF/jZkCnnxDLCHSyFYAe0UOG4muw6LC3+OkY3neKTI7FZHhJAhPCapmqbr85baRTKyvLy8pSZmSnzqPXZ2dmBnw3DkNPpjMhwBwCRhGAHtFDhuJpc6JHmf2nTxB4EOyBa2GMTZEhylZa3usV7pN4/SN90lzzxR7YzKratzO12yzRNORwO2Wq4t9zr9crlcgVa9IDGkN5Kck4sq9IVM3tVnFZfUKqM1uXL6IoJKyLYAQCAoKUnpMiZtUDushJJUmF+gZ55a5GWXDJdqZXuObfHJig9IaXGY9hsNsXGckqC5lNTaMtoLXVPbv6yAI2Fd1EAABCS9IQUqaIxbk9F41pGUjul2RkwDACaC8GuDla9oRsAAABAdCHY1YIbugEAQGV5JUVHupweKpAk5R4q0P6KVsq6upsCQFMj2NXCf0P3mjVrlJmZWW290+nU8OHDuaEbAIAokFdSpMy1M+W/3BvvkXr3lIZuWBQYJMaQ5MxaQLgDEBYEu2PIzMxU9+7dw10M4JgqX0mWuJoMAI3JXVYiU5Ijzi6bYUjx0k99Jf87qtc05Sp1l78PJ9R1JABoGgQ7IMIcHdBqcnRAO/pKssTVZAAA6iM1XrrjDK9S44+9LRDJoi7YuVwuPf3005o3b546dOgQ7uIAVdQU0GpydECrdiVZ4moyADSi+szXV9NcfYh8jkRp3pm+cBcDCFmLD3aVR7aUpB9//FFLly7VRRddpBNOOEESo1sictQY0I5SV0CzGYZijeqT/Fbs2ahlBYBoUp/5+ujuDiCcWnSwq21kS0kaOXJk4GdGt0SkCTageU2z1vXeGv4PAAD1x3x9ACJZiw52/pEtHQ6HbLbyk2TTNOXz+RQTEyPDMOT1euVyuZp0dEu73a5Ro0bJbrc32WMguh3dRUiimxAAAEA0adHBzs9msyk2tvypmqYpr9crm80mo5aubo3NbrdrzJgxzfJYiE5HdxGS6CYEIDwscTHTW0fX9LrWAUAEi4pgB0SDyl2EJLoJAQiPiL6YmZgk0zBkFBcHFh2w2bSmQ3sN35uv1hWhzjQMKTEpXKUEgKAQ7AAAQHRo307eVTnS4UOBRcUul1YsXqwB8+9TosNRvjAxSaro6QAAVkGwAwAA0ePowBZfcRNyerqURu8GANZFsItEtfXvp98/AAAAgBoQ7I7B6XQ2aHlIjur7Hw39/t1ut9auXausrKzIvtE+irhcLi1evFg33XSTHP5uSQAAAIhoBLta2O12GYah4cOH17qNYRiNG0aO6vsfbL9/K4Ult9utnJwcDRw4MOLLGi0KCws1f/58TZw48ZjBLu+g5C478nvugarfJckeK6W3aoKCAmhSVvosAQAQ7GqVnp4up9MZmN8uNzdX2dnZWr16tTIyMiSVh79Gn9S8Umizp6aWDxndvbvUgA9VwlLkaYknSHkHpcyXY2Wq+rQh2aviAj8bMuWcWEa4A5pJXklR1alPDhVIknIPFWh/xWi59Zn6hM8SALAWgl0dagptGRkZ6t69e7M8fkQPGY0GaegJktc0JdV8T2X5uvBzl0mmDDkSTNlqmRLSa0quEqNKqx6AppNXUqTMtTNV+V0i3iP17ikN3bBInopxQgxJzqwFzGspi8y7BwD1QLADIog9NkGGJFdp+WX1eI/U+wfpm+4KnJBJ5Sdl9tiEGo/R3GyGFBtTy0pfsxYFiHrushKZklJik2QzKq64xEm5p0mtK7bxmqaKyg6Vt+pFxttIWHERFUBLQbADIkh6QoqcWQsC3agK8wv0zFuLtOSS6Uqt3E23Ht2orKQldlUFwsF/caio7Mg8bTVdIIqki0MAgMZBsAMiTHpCSuAq+p6K+2Eyktopzd5y51fiXh6gcRx9cUiq+QJRbReHKt+fF+y9eQCA8CDYAQDQglS+OCTV/wLR0ffncW8eAFgLwQ4AAATuz3PE2cvvz4uXfuor+SOc1zTlKnVzbx4ARCiCHYJ29JDaR6PLjnXk5eVVmdqj8nepiab2ABCRbIahWMNWw5qaR+oFAEQGgh2CUtOQ2kejy0541XcI77y8PGVmZso8ahqF7OzswM+GYcjpdDZuuMsvkA5XDPDgcvkLI3k85T8nJlWZ1xFAcKwwnL/XW8v0LrUsBwBUR7BDUKp12TkKXXbCr75DeLvdbpmmKYfDIZut+lV6r9crl8sVaNGrtt5UrdMaeGtL/vkFsl0wSkZFmEy22TSmQ3slXzdVsRUncqZhyLsqh3AHhCiSh/O32+0yDEMu/8WdGhiGEdGhFAAiBcEOIaHLTsths9kUG1v/twR7rGTIlKukltnJKxgyZT/6sIcPyTBNmcnJks0mu6QLSzxScnJ5K7DXK6O4+EiLHoAWKT09XU6ns0pX8OzsbK1evVoZGRmS6u4K7nQ6az12XesARJePPvpITz75pDZt2qS8vDwtW7ZMF1xwgSSptLRU8+fP13vvvSen06nk5GSde+65uuuuu9SpU6fAMQoLCzVr1iytXr1ahmFozJgx+tOf/qTWrVvX9rDNjmAHICjprSTnxDK5y44syz0gZa+K0+oLSpVR8T5njy3ftkY2W/kXgKhVU2jLyMhQ9+7da93H39I3fPjwOo9Nax8ASTp48KD69OmjSZMmafLkydXWffXVV5o5c6b69Omjffv26bbbbtOECRP0/vvvB7a79tprtXv3bi1fvlylpaW66aabdMstt+i5555r7qdTqwYFO6/XK6OGbneRyucr7x9mmma1+4eOXu7z+ersy+8/1rG2iwTNUdbA37bi62hmpe1ayt9VOnK/R0PLGuzzbNbXso7/k9rK0CGh/CtwLG/5+0OXJJ9OsB85VrWie70Vbz511yCv11vDztYUbN0BpOapP/73gjLTlFlDrwtvPT8vG6MMx3qMDh06aPv27Tp48KCk8pa+kSNH6u233w609ElSq1at1KFDhyYpr5U+v3j/QSgirf74z0uKi4ur5JKEhAQlJNR8/8+IESM0YsSIGtelpKTon//8Z5VlDz/8sLKysrRz504df/zx+v7777V27VqtW7dOp59+uiTpoYce0mWXXab77ruvSsteODUo2G3durXGE79ItXPnTkk1v+n6f/e/MW/fvl2lpaXHPNaxtosE+/btk1Re1rruWwjFztLyx/CVeeU1qtcJn1np7xpXexmao6xNYdu2bQ3aPtjn2SyvZR3/J/7l/jIcq+4Xldp03fHtlZ+br9K42j8A4vfsUS9JZWVlUk3vKV6v4iTt2LFDnlru7bOqhtYdQJKKior0yiuvaMKECUpJaZoBqfLL3DIkFZaW/8/Fe6TeP0jfdFeVeex+2bFTpbFN+37U0M/asrKywPfK+xUVFamoqKhxC1nBip9fvP8gFJFSfwzDUGZmpvr06aMDBw4Els+ePVtz5sxplMfwh0b/++1nn32mlJSUQKiTpKFDhyomJkZffPGFRo0a1SiPG6oGBbsePXpYqsUuLi5OkhQTE1NlUAiv1xv43R9Uu3Xrpm7duh3zWMfaLhLs3btXUnlZO3To0CSPEXdwr/STFBNrk62Ge+xM0yt5Kv5erWovQ3OUtTF5vV5t27ZNJ554Yo0DjdQm2OfZLK9lLf8nfvX9H/Eb0EeS2ta9UUXXqNjY2Jq7Yla8z3Tt2lXq0uWYj2kFwdYdQCq/sLp06VLdeOON6tGjR5M8Rk9J2098UAe95SPTFua79Nxbj2nx2FuU2t4hSWpli2/SkY47dOiguXPn6owzzpDD4aj3fuH4jLbS5xfvPwhFpNUf0zTl8Xi0ZcuWai12jeHw4cO6++67dfHFFys5OVmStHv37mr/57GxsUpNTdXu3bsb5XEbQ4OCnc1ms1Swi4mJkVSe7P3lrtziWHl5bSe1Rx/rWNtFguYoa+BvW/F1NKPSdi3l71qZzWZrUHmDfZ7N+lpW+n+orL7/Iw0SOE7dNcjWAu/Ba2jdASQF6kxT15/OrY6EqT2Hyt8bTrC3V1qbtCZ7zMo6dOigu+66q8H7heOzxIqfX7z/IBSRUn/85/LJycmNnktKS0t19dVXyzRNLVy4sFGP3RwYPAUAAKCBrDA/IID684e6nTt3asWKFYHWOknq2LFjoJXer6ysTIWFherYsWNzF7VWBDsAACJQXl5elWkA/N/9LUVS3VMBoGlF8vyAABrGH+p++OEHrVy5slpX8P79+6uoqEgbN25Uv379JEnr16+Xz+fTmWeeGYYS14xgBwBAhMnLy1NmZma1ActGjhxZ5XfDMOR0Ogl3AFCHAwcOaMeOHYHfnU6nNm/erLZt2yo9PV1XXnmlNm3apNdee01erzdw31xqaqri4+PVs2dPZWVl6Q9/+IMeffRRlZaWatasWRo7dmzEjIgpEewQDvkFRyae9o8klpcneTxHtklMktq3a/6yAUAjq9zytm/fPi1btkyTJk1S27ZtJdXc6uZ2u2WaptasWaPMzExJ5d1+YmOPfGw7nU4NHz48cGwAQM02btyo0aNHB36fO3euJGn8+PGaM2eO3n77bUnSkCFDquy3cuVKDR48WJL07LPPaubMmbrooosCE5Q/+OCDzfQM6icqgl3lIdxN05TP55NpmjIMI2Lm5Iga+QWyXTBKhv/GV5tNYzq0V/J1UxVb+XUyDHlX5RDumlFt/wv8jwDBq63l7amnngr8XFerW2ZmZmCi7qODHQCgfgYPHqzCwsJa19e1zi81NTWiJiOvSYv+hLDb7TIM45jzyxiGwc3PzeXwIRmmKTM5WbLZZJd0YYlHSk4+Mk211yujuPhIqx6aVH3+T/gfCZ2rRHo6t6PmnSB1aBXu0qC5+FveHA5HjaPJeb1euVwuWt0AACFr0cEuPT1dTqezygfmjz/+qJEjR+rtt9/WCSecIImbz8OiBQ5jb1VH/5/k5uYqOztbq1evVkZGhiT+RxrDvhJDS3em6+aSEoJdFLLZbLS2AQCaVIv/lDn6ZNTn80mSMjIyAt1bgKaQV1Ikd1mJJKnwUIEkKfdQgfZXXGewxyYcc6Lf5hpOu6bQxv8IAACAdbT4YAeEQ15JkTLXzgx0L433SL17SkM3LJInvnyZIcmZtaDOcMdw2gAAAKgPgl09paam6o477lBqamq4iwILcJeVyJTkiLPLZhhSvPRTX8kf4bymKVepu7xFLyGcJQUAAEBLQLCrJ4fDoXnz5oW7GLAYm2Eo1qjpXkJGmgSAxsLFVwBW4vF45HQ61bVr10a9/zqm0Y4EAAAQBv6Lrw6HI9xFAYBaHTx4UNOmTdNxxx2nQYMGadeuXZKkWbNmadGiRSEfn2CH8PB66/4CAIRVcw3eBADR4t5779WWLVu0cuVKJSYmBpYPHTpU//znP0M+PsEOzSsxSaZhyCgullFYKHdxsf6dEC93xe9GYaGM4mKZhiElJtV5KLfbrRUrVjD/EwA0Af/gTQQ7AGgcq1at0sMPP6xBgwbJMIzA8l69eunHH38M+fjcY4fm1b6dvKtyApOPF7tcWrF4sQbMv0+JlbvQJCZJ7dvVeSi3262cnBwNHDiQEw8AAABEtIKCAnXo0KHa8sZqpCDYoflVDmzxFWP/p6dLaWnhKQ8ARCin0xn4uaysrMpN9pXXAQAiX79+/fTuu+9qypQpkhRotXvppZc0YMCAkI9PsAMAIMLY7XYZhqHhw4fXuZ1hGPRYAACLuPPOO3XZZZfpu+++U1lZmf785z/r+++/13//+1/l5OSEfHyCHULiNU3VNHR/+XIAQDDS09PldDoD3XN+/PFHjRw5Um+//bZOOOGEwHZ2u13p6elhKiUAoCEGDRqk9evX67HHHlPv3r31/vvv67TTTtPq1at1yimnhHx8gh2CYo9NkCHJVVp+0hHvkXr/IH3TXfJU9K40Krar8ziMuhZxmA8KiAyVA1tycrKuu+46nXbaaTXenwEAsIauXbvq8ccfb5JjE+wQlPSEFDmzFshdViJJKswv0DNvLdKSS6YrteIeOntsgtITUuo8jn/UNUQO/3xQACKHw+HQ1KlTmacNACzs3Xfflc1mU1ZWVpXla9eulc/n04gRI0I6PtMdIGjpCSnqbk9Td3uaMpLKw1xGUrvAsmOFOgAAACBa3HPPPfLWMF+zaZq65557Qj4+LXYA0ETyDkrusvKfcw8c+R5jO7KNPVZKb9X8ZQMAAM1r+/bt6tWrV7XlJ510knbs2BHy8Ql2LUV+QWBuOLlc5d/z8iSP58g29ZgbDkDjyDsoZb4cK1NGleUj36l636khU86JZXWGO7fbrbVr1yorK4v7UQEAsKjk5GT9+OOPysjIqLJ8+/btatUq9Ku8BLuWIL9AtgtGyagYiTLZZtOYDu2VfN1UxVZq7jUNo3xycMId0OTcZZIpQ44EUzZDMk3J5y1TjC1WFdPWyGtKrhIj0KpX67HcbuXk5GjgwIEEOwAALGrkyJG67bbbtGzZMnXt2lVSeai74447NHLkyJCPT7BrCQ4fkmGaMpOTJZtNdkkXlnik5GQFJh3wemUUFx9p1WtkjG5ZM6aDgM2QYmPKg53XJ9liFAh28oW1aAAAoBndc889uvTSSzVgwAAdd9xxkqSff/5ZgwYN0n333Rfy8Ql2LYnNVv4VBoxuWVVjTQcBAACAliElJUWrV6/W+++/ry1btigxMVGnnHKKzj777EY5PsEOaAKNNR0EAAAAWg7DMDRs2DANGzas0Y9NsAMawOVy6emnn9a8efOOOUlwekKKVNEgt6e84U4ZSe2UZk9r4lICAAAgEixdulRXXnmlEhMTtXTp0jq3ve6660J6LIId0AD79u3T0qVLdfPNNx8z2AEAACC6LVmyRJdeeqkSExO1ZMmSWrczDINg11Bt27bVddddp7Zt24a7KAAAAABasE2bNtX4c1OIadKjRyCHw6GpU6fK4XCEuygAAAAAokBpaalOP/10ff/99032GFEX7AAAAACgOcXFxamkpKRJH4Ng15J4vXV/AQAAAAiLa665Ro8//rjKysqa5PhRd49di5SYJNMwyicgl3TAZtOaDu01fG++WlcKdKZhSIlJ4SolgIbIL5AOHyr/2eUq/56XJ3k85T8nJkkVU2cAAIDIt2HDBq1fv17vv/++evfurVatWlVZ/9JLL4V0fIJdS9C+nbyrcgIngcUul1YsXqwB8+9TYuV7CTkRbLC8vDy53e7A77m5uYHvMTHlDd52u13p6elhKR9aqPwC2S4YJcM0JUnJNpvGdGiv5OumKrbiYo1pGOX/9/xPAwBgCSkpKRo9enSTHZ9g11JUPrmLjy//np4upbWwOdOasRUjLy9PmZmZMitOrisbOXJk4GfDMOR0Ogl3aDyHD8kwTZnJyZLNJrukC0s8UnKyTEnyestb6P3/C4h43lq6w9e2HADQcvh8Pj3xxBPatm2bSktLdc4552jOnDlKSmrcnnQEO1hHM7diuN1umaapNWvWKDMzM7C8rKxMsbHl/zpOp1PDhw+v0qoHNBqbrfwLlmW322UYhlz+C1E1MAxDdru9GUsFAGhOCxcu1IMPPqihQ4cqMTFRzzzzjAoKCrR48eJGfRyCHawjTK0YmZmZ6t69e+D3ysEOOBavKcknmabkMyXTJxlGpXVNyO12a+3atcrKyiI4hEl6erqcTmedF3/ozg0ALdtrr72mRx55RFdffbUk6T//+Y8uv/xyPfHEE4FbexoDZ6ewHloxYAH2WMmQKVeJUWlpnHTUQFiGTNmb6J3Y7XYrJydHAwcOJNiFEaENAKLbrl27NGLEiMDvQ4cOlWEY+uWXX9S5c+dGexyCHQA0gfRWknNimdwVQe7HIp9GvpOgt39TohNSjlyds8eWbwsAAFqmsrIyJSYmVlkWFxfX6NMeEOxaILvdrlGjRnGFHgizyoHNVzFGRkZrqXtyeMoDAACan2mauuGGG5SQkBBYdvjwYf3xj3+sMuUB0x2gGrvdrjFjxoS7GAAAAEDUGz9+fLVll112WaM/DsEOAAAAAJrIU0891SyPQ7ADAOBYKs+hKcl96JDWfvqpsn79a9n98xA14jyaAAA0FMEOVbhcLi1evFg33XSTHA5HuIsDAOF31ByakmSz2RTTob1sTz3dJPNoAgDQUAQ7VFFYWKj58+dr4sSJBLsKTqezyu9HT1AORJTKLUv+SbHz8iSP58g2tCw1zFFzaEpqtnk0AQCoL4JdlMvLy6sycW5ubm6V71L0Tp5rt9tlGIaGDx9e53aGYTACKSLDUS1LyTabxnRor+TrpgZalSRaloLGHJoAgAhGsItieXl5yszMlFmpe5FfdnZ24GfDMOR0OqMu3KWnp8vpdFYJvj/++KNGjhypt99+WyeccIKk6A2+iEBHtSxVa1WSaFkCAKCFIthFMbfbLdM0tWbNGmVmZta4jdPp1PDhw6uEm2hydGDz+XySpIyMDHXv3j0cRQKOjZYlAACiDsEOyszMJKQAAAAAFhYT7gIAQDRom2DquuPz1DahetdnAACAUBHsEHVcLpfuvfdeufwjBgLNwJEgTc3YLUdCuEsCAABaIrpiIipUHv0zNzdX8+fP1znnnKOMjIzANk05CIrdbteoUaMYPfNolUZqrNdyAAAA1IhghxavttE/K4/8KTXt6J92u11jxoxp9ONaVmKSTMMoH51R0gGbTWs6tNfwvflqXWmyZyUmhbOUaOHcbrfWrl2rrKwsLroAACyPYIcWzz/6p8PhkK2WkQK9Xq9cLlfUjv7Z7Nq3K59HrWLI/WKXSysWL9aA+fcp0eEo34ZJtNHE3G63cnJyNHDgQIIdAMDyCHaIGjabTbGxVPmIUTm0xceXf09Pl9LSwlMeRIW8kiK5y0okSYWHCiRJuYcKtL/imo49NkHpCSnhKh4AAEHjLBdA2HEPIppDXkmRMtfODEzWHu+ReveUhm5YJE/FtQVDkjNrAeEOAGA5jIoJIOz89yBaIdgxqqp1uctKZEpyxNnVIb61Ulq31k99y793iG8tR5xdZsV2AABYDcEOABqgsLBQ8+fPV2FhYbiLgiDZDEOxhq3al80wwl00AACCRldMADiGo6fLqPxdatqpMgAAAOqDYAc0QNu2bXXdddepbdu24S4Kmkl9pstoyqkyAAAA6oNgBzSAw+HQ1KlT5fAPyY8W71jTZTBVBgAAiAQEOwCoB0tNl1ExyXuD1wEAAMuyyFkKAOCYEpNkGoaM4mJJ0gGbTWs6tNfwvflqXSnQmYZRPgE8AABoMQh2sJ7aWhxoiUC0a99O3lU50uFDkqRil0srFi/WgPn3KbFy9+HEpKoTxAMAAMsj2ME66tEaQUsEol7lwBZfMet2erqUlhae8gAAgGZBsIN11Kc1gpYIAAAARCGCHayF1ggAAACgGoIdAAD1wWijAIAIRrADAKAuR93fK3GPLwAg8hDsAACoy1H390rc4wsAiDwEOwAAjuXowMY9vgCACBMT7gIAAAAAAEJDsAMAVON2u7VixQq53e5wFwUAANQDwQ4AUI3b7VZOTg7BDgAAiyDYAQAAAIDFEexgWXa7XaNGjZLdbg93UQAAAICwItjBsux2u8aMGUOwQ8vl9db+BQAA6uWjjz7SuHHjdPLJJys1NVWrVq2qsn7lypUaO3asunXrptTUVG3evLnaMUaNGqXU1NQqX9OnT2+up1AvBDsAiDSVJsQ2CgvlLi7WvxPi5a743SguZjJsAADq6eDBg+rTp48WLFhQ43q3262BAwfq7rvvrvM4V155pb777rvA1z333NMEpQ1eg+ax83q9MgyjqcrSLLwVV7q9XPGWz+dr0LZW/Zv5n6dpmjJNs8Zt/MuP9TypP9HnWPWnSepOalt5V/5bOlQ+Ifa+wkKtWLJEv7r3HsWlppZvk5Qkpbats/XOX/Zg/n9D2TdSBV7Liq+jmZW2O9ZzTkxM1AUXXKDExMRm+fvw3oNQUH8QikirP/7P3eLi4iq5JCEhQQkJCTXuM2LECI0YMaLWY44bN06SlJubW+djJyUlqWPHjg0tcrNpULDbunVrrSfGVrNt27ZwFyHsdu7cKUkqKytTWVlZjdv4l2/fvl2lpaXNVrbG5H+edZ2s+U/46vs8qT/R41j1pznqzr6DB8sf4+BBufwTY7vdUn5+3fvt2xcom8vlathjhrBvpNpZuk+S5CvzymtU/yzzmZVey7hjP+cePXpo165djVrGY+G9B6Gg/iAUkVJ/DMNQZmam+vTpowMHDgSWz549W3PmzGnSx/7HP/6h119/XWlpafrNb36jmTNnqlWrVk36mA3RoGDXo0ePFtFit23bNp144omy2WzhLk5YxcXFSZJiY2MVG1tzVfAv79atm7p169ZsZWtM/ucZExNT62vuv2BxrOdJ/Yk+x6o/zVF33G63LrjgAvXp06dB95Tu3bs3ULYOHTo06DFD2TdSxR3cK/0kxcTaZDNqei29kqfitWwVWc+Z9x6EgvqDUERa/TFNUx6PR1u2bKnWYteULrnkEh1//PFKT0/X119/rXvuuUfbtm3TSy+91KSP2xANCnY2m83ywc7PZrNFROUMp5iY+t9iWVcoinT+52kYRq3117+8vs+T+hM9jlV/mqPuJCcn68ILL2zQPv4yNaRsjbVvpAq8lhVfRzMqbRepz5n3HoSC+oNQREr98V9QTU5ObtZcctVVVwV+PuWUU5Senq4LL7xQO3bsUNeuXZutHHVh8BQAAAAAaIAzzzxTUnn3/UhBsAMAAACABvBPiRBJg6k0qCsmAACRxu12a+3atcrKymJeSwBANQcOHNCOHTsCvzudTm3evFlt27bV8ccfr8LCQu3atUu//PKLpPIBIyUpLS1NHTt21I4dO/TGG29oxIgRcjgc2rJli+bOnauzzjpLffr0CctzqgnBDgDqobYRVSNl+Odo5na7lZOTo4EDBxLsAADVbNy4UaNHjw78PnfuXEnS+PHjtWTJEr399tu68cYbA+uvueYaSUdG2oyLi9N//vMfPf300zp48KA6d+6s0aNH69Zbb23eJ3IMBDsAqIPdbpdhGHUO+W8YBoECAIAINXjwYBUWFta6fsKECZowYUKt67t06aJVq1Y1RdEaFcEOUaM+k0cDR0tPT5fT6ZTb7ZZUPnlpdna2Vq9erYyMDEnl4S89PT2cxQQAAFGOYIcWrz4tLhKtLqhdTaEtIyND3bt3D0Npmkh+gXT40JHf/f8veXmSx1P+c2KS1L5d85ftKHklRXKXlQR+LzxUIEnKPVSg/eX5W/bYBKUnpISjeAAAhAXBDnI6nUGts4r6tLhItLogiuUXyHbBKBkVcwNJUrLNpjEd2iv5uqmKrWjRNg1D3lU5YQ13eSVFylw7U2alZfEeqXdPaeiGRfLEly8zJDmzFtQY7rymKal6K73XNKstAwDAKgh2UczfkjV8+PA6t2sJLVlR0eICBOvwIRmmKTM5WaqYfNYu6cISj5ScXB6ivF4ZxcVVW/XCwF1WIlOSI84um39i2njpp76SP8J5TVOuUnd5q17CkX3tsQkyJLlKyy/yxHuk3j9I33RXlUBoj620EwAAFkGwi2JHt2TVhpYsIErYbIFgF+lshqFYo7ay1nzPbHpCipxZCwLdOAvzC/TMW4u05JLpSq1ohaQLJwDAqgh2UY7ABiCapCekBFrx9lRc08pIaqc0e1r4CgUAQCOICXcBACBYbrdbK1asOGarc2PvCwAAEGkIdgAsyz8xdbDBLth9AQAAIg3BDlEnNTVVd9xxh1JTU8NdFAAAAKBRcI8doo7D4dC8efPCXQwAAACg0dBiBwAtlN1u16hRo5p1uhKXy6V7771XLv8E5wAAoFkQ7ACghbLb7RozZkyzBrvCwkLNnz9fhYWFzfaYAACAYAcAAAAAlkewAwAAAACLI9gBAAAAgMUR7AAAAADA4pjuAEBUyCspkrusJPB74aECSVLuoQLtr5ij3B6boPSElHAUDwAAICQEOwAtXl5JkTLXzpRZaVm8R+rdUxq6YZE88eXLDEnOrAWEuygRjukgAABoKgQ7AC2eu6xEpiRHnF02wyhfGC/91FfyRzivacpV6i5v1UsIV0nRnPzTQQAA0BIQ7ABEDZthKNaw1bLW26xlAQAAaEwMngIAAAAAFkeLHQBryS+QDh8q/9nlKv+elyd5PEe2SUyS2rdr/rIBAACECcEOgHXkF8h2wSgZZvkwKMk2m8Z0aK/k66Yq1nukK6VpGPKuyiHcNZS3ju6oda0DAABhR7ADYB2HD8kwTZnJyZLNJrukC0s8UnLykREvvV4ZxcVHWvVwbIlJMg2j/O9W4YDNpjUd2mv43ny1rgh1pmGUt4YCAICIQ7ADYD02W/kXGkf7duUtnJXCsPfQIfk+/VTeX/9aZUkVYY4urgAARCyCHQCgWmCzSxrTo0d4ygIAABqMUTEBoAFSU1N1xx13KDU1NdxFAQAACKDFDoD1hHGQD4fDoXnz5jXpYwAAADQUwQ6AdRw1yEdNA3xIDPIBAACiD8EOgHUcNchHsculFYsXa8D8+5TocBzZjkE+AABAlCHYAbCWyoEtPr78e3q6lJYWnvIAAABEAIIdAMByvKYpqeb7Kb2mWeNyAABaMoIdAMAy7LEJMiS5St2BZfEeqfcP0jfdJU9FI65RsS0AANGCYAcACEleXp7c7vKglZubW+W7JNntdqWnp9d5DJfLpcWLF+umm26So/L9kkdJT0iRM2uB3GUlgWWF+QV65q1FWnLJdKVWdNW1xyYoPSEl6OcEAIDVEOwAAEHLy8tTZmamzKO6P2ZnZwd+NgxDTqezznBXWFio+fPna+LEiXUGO6k83KlSY9yeisa7jKR2SrNzryUAIDoR7AAAQXO73TJNUw6HQzabrdp6r9crl8sVaNEDAABNg2AHAAiZzWZTbGzDPlKO1YVTql83TgAAQLADAIRBfbpwSvXrxgkAAAh2AIAw8HfhXLNmjTIzM2vcxul0avjw4XTjBACgHgh2AKIGc59FnszMTHXv3j3cxQAAwPIIdgBaPOY+AwAALR3BDkCLx9xnAACgpSPYAYgKR8995pZdo0aN0sntM2S328NXMAAAgEZAsAMQlex2u8aMGRPuYgAAADSKmHAXAAAAAAAQGoIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEALM1uL5+6gmkrAADRjOkOAACWxtQVAADQYgcAAAAAlkewAwAAAACLI9gBAAAAgMUR7ABYFoNmAAAAlGPwFACWxaAZAAAA5WixAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAANBiffTRRxo3bpxOPvlkpaamatWqVVXWr1y5UmPHjlW3bt2UmpqqzZs3VzvG4cOHdeutt6pbt27q0qWLrrjiCu3Zs6e5nkK9EOwAAAAAtFgHDx5Unz59tGDBghrXu91uDRw4UHfffXetx7j99tv1zjvv6IUXXlBOTo7y8vI0efLkJipxcGLDXQAAAAAAaCojRozQiBEjal0/btw4SVJubm6N64uKirRs2TI9++yzGjJkiCRp8eLF+vWvf63PPvtM/fv3b/xCB6FBwc7r9cowjKYqS7Pwer1VvgMNQf1BsFpq3fH5fJIk0zRlmma19f5lPp+vynP371ffx2hpf7eGaqn1B82D+oNQRFr98X+uFBcXV8klCQkJSkhIaJLH3LRpk0pLSzV06NDAspNOOkldunSxbrDbunVrjR/cVrRt27ZwFwEWRv1BsFpa3dm5c6ckqbS0tMaw5j8R2L59u0pLS6vtV1ZWprKyshqP7V9+9L7RrKXVHzQv6g9CESn1xzAMZWZmqk+fPjpw4EBg+ezZszVnzpwmeczdu3crPj5eKSkpVZanpaVp9+7dTfKYwWhQsOvRo0eLaLHbtm2bTjzxRNlstnAXBxZD/UGwWmrdSUlJkWEYKioqqnUbwzDUp08fpaenB5bFxcVJkmJjYxUbW/NHkX95t27d1K1bt0YstfW01PqD5kH9QSgirf6YpimPx6MtW7ZUa7GLdg0KdjabzfLBzs9ms0VE5YQ1UX8QrJZWdzp37iyn0ym32y2p/P6E7OxsrV69WhkZGZIku91eJdRJUkxM/cfuiomJaVF/s1C0tPqD5kX9QSgipf74ew8mJyc3Wy7p2LGjPB6PioqKqrTa7dmzRx07dmyWMtQHg6cAAEJSObSlpqbqjjvuUN++feVwOMJYKgAAGkffvn0VFxenDz74QGPGjJFUfovarl27Iub+OolgBwBoRA6HQ/PmzQt3MQAACDhw4IB27NgR+N3pdGrz5s1q27atjj/+eBUWFmrXrl365ZdfJJWHNqn8HrqOHTsqJSVFkyZN0ty5c5Wamqo2bdpo1qxZ6t+/P8EOAAAAAJrDxo0bNXr06MDvc+fOlSSNHz9eS5Ys0dtvv60bb7wxsP6aa66RVHVAlgceeEAxMTG64oor5PF4NGzYMD3yyCPN+CyOjWAHAAAAoMUaPHiwCgsLa10/YcIETZgwoc5jJCYm6pFHHom4MFdZ/e9eBwAAAABEJIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALC423AUAAEQvp9MZ1DoAAFAVwQ4A0OzsdrsMw9Dw4cPr3M4wDNnt9mYqFQAA1kWwAwA0u/T0dDmdTrndbklSbm6usrOztXr1amVkZAS2s9vtSk9PD1cxAQCwDIIdACAsagpsGRkZ6t69exhKAwCAtTF4CgAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAMIuNTVVd9xxh1JTU8NdFAAALCk23AUAAMDhcGjevHnhLgYAAJZFix0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEewAAAAAwOIIdgAAAABgcQQ7AAAAALC42Pps5PV6A99jYqydBX0+n2JiYuTz+WQYRriLA4uh/iBY1B2EgvqDUFB/EIpIqz8+n09SeS6Jja1XlIkahmma5rE2Kisrk9vtbo7yAAAAAECd7HY7we4oDfprJCYmRkRSD4XX69XWrVvVo0cP2Wy2cBcHFkP9QbCoOwgF9QehoP4gFJFWf0zT1OHDh8NdjIhUr2DnfxENw7B8sDMMQ6ZptojnguZH/UGwqDsIBfUHoaD+IBSRWn8iIWRGGmvfMAcAAAAAINgBAAAAgNUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsLjYcBcAAI4l5vobJJer4Ts6HPL9eUnjFwgAACDCEOwARD6XS0bn4xq8m/nTz01QGAAAgMhDV0wAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4gh2AAAAAGBxBDsAAAAAsDiCHQAAAABYHMEOAAAAACyOYAcAAAAAFkewAwAAAACLI9gBAAAAgMUR7AAAAADA4mLDXQAAQPSY/PkzKvC4G7xfu3i7XvrVlCYoEQAALQPBDgDQbAo8biUlJDR8v5KGh0EAAKIJXTEBAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWByDpwAAAABAEzh06JASEhIUE1PenvbBBx9o8+bNOumkk3Teeec16mPRYgcAAAAATWDEiBHav3+/JOnRRx/VwoULZZqm/vrXv+rOO+9s1Mci2AEAAABAE/B6vUpJSZEkrVy5Um+88YamTZuml19+WevWrWvUxyLYAQAAAEAT6NChgz799FNJUnp6ugoKCiQp0IrXmLjHDgAAAACawOLFi3XDDTcoPj5erVq10jnnnKN+/fopPz9f9957b6M+FsEOAAAAAJpARkaGcnJy9N1332n79u267LLL1KlTJ51xxhmy2WyN+lgEOwAAAABoQr169VKvXr2a9DEIdgAAAADQDAoKCrRs2TJ99tln2rNnjyQpLS1NAwYM0IQJE9S+ffugj02wAwAAQIsXc/0NksvV8B0dDvn+vKTxC4So8+WXX+riiy9Wq1atdO6556p79+6SpL1792rp0qV67LHH9Oabb+r0008P6vgEOwAAALR8LpeMzsc1eDfzp5+boDAIl0WLFunee+/V9ddfrz/96U+SpMOHD+uOO+7Q8uXL5fF4NGzYMD3yyCNKS0sL7Ldz507NmDFDH374oex2u8aNG6e77rpLsbH1j1OzZ8/WhRdeqEWLFskwjCrrTNPU9OnTNXv2bL377rtBPTemOwAAAADQ4n355Zd64YUXdMopp1RZfvvtt+udd97RCy+8oJycHOXl5Wny5MmB9V6vV5dffrlKS0u1evVqLVmyRK+++qoeeOCBBj3+li1bdMMNN1QLdZJkGIZuuOEGbd68ObgnJ4IdAAAAgBbuwIEDmjJlih5//HG1bds2sLyoqEjLli3T/fffryFDhqhfv35avHix/vvf/+qzzz6TJK1bt07ff/+9li5dqlNPPVUjRozQ7bffrueee04ej6feZUhLS9OXX35Z6/ovv/xSHTp0CPo5NqgrptfrrTFhWonX663yHWgI6k94hHIFKlJeK+qOnxn0ftH8t6P+IBTUn3It4bMkHCKt/phm+edIcXFxlVySkJCghISEWvebOXOmzjvvPA0dOlSPPPJIYPmmTZtUWlqqoUOHBpaddNJJ6tKliz777DP1799fn332mXr37l2la2ZWVpZmzJih7777Tqeddlq9yn7TTTfplltu0caNGzVkyJDA8fbs2aP169frxRdfDGluuwYFu61btwb+mFa3bdu2cBcBFkb9aV69TZ+CmenFZ/r0/fffN3p5QhHtdcfnC+4zxOczI+61DIdorz8ITbTXn5b0WRIOkVJ/DMNQZmam+vTpowMHDgSWz549W3PmzKlxnzfffFObNm3SunXrqq3bvXu34uPjlZKSUmV5Wlqadu/eLak8eFUOdZICLWv+berj2muvVbt27fT000/rL3/5SyAs22w29evXT0899ZR++9vf1vt4R2tQsOvRo0eLaLHbtm2bTjzxxEafFBAtH/UnPGKM4K6zxhgx6tmzZyOXJjjUnXIxn74T3H4xRsS8luFA/UEoqD/lWsJnSThEWv0xTVMej0dbtmyp1mJXk127dum2227T8uXLlZiY2FzFrNXYsWM1duxYlZaWqqCgQJLUrl07xcXFhXzsBgU7m81m+WDnZ7PZIqJywpqoP9YRaa8TdSfYzxAjyv9u5ag/CEVT1J/Jnz+jAo+7wfu1i7frpV9NadSyNCX+7yLn/cffezA5ObleuWTTpk3au3dvla6WXq9XH3/8sZ599lm9+eab8ng8KioqqtJqt2fPHnXs2FFSeevdF198UeW4e/fulaTANg0VFxen9PT0oPatDYOnAAAAICgFHreSEhIa/BVMGASCMWTIEH300Udav3594Ov000/XpZdeqvXr16tfv36Ki4vTBx98ENhn69at2rVrl/r37y9J6t+/v7755ptAmJOk999/X23atGnU1txdu3bppptuCnp/5rEDAAAA0CK1adNGvXv3rrKsVatWcjgcgeWTJk3S3LlzlZqaqjZt2mjWrFnq379/INgNGzZMPXv21PXXX6+7775be/bs0f3336/f//73dQ7Y0lCFhYV69dVXtXjx4qD2J9gBAAAAiFoPPPCAYmJidMUVV1SZoNzPZrPptdde04wZM5Sdna1WrVpp/Pjxuv322xv0OG+99Vad651OZ1Dl9yPYIeLFXH+D5HI1fEeHQ74/L2n8AgEAAMCycnJyqvyemJioRx55pEqYO1pGRob+8Y9/hPS4kyZNkmEYdc4yEMp4JgQ7RD6XS0bn4xq8m/nTz01QGAAAAKDh0tPT9cgjj+j888+vcf3mzZurDPLSUAyeAgAAAABNrG/fvtq4cWOd24QyZzgtdgAAAADQxKZNm6aDBw/Wur5bt25auXJl0Mcn2AEAAABAEzvrrLPqXG+323X22WcHfXyCHQCgwYIe1GhqP6kRh4YGAADlCHYAgIYLclAjhXDvAAAAqB2DpwAAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAgGb08ccfa8qUKTrvvPP0888/S5Jee+01/d///V/QxyTYAQAAAEAzWbFihS655BIlJSXpq6++ksfjkSQVFxfr0UcfDfq4BDsAAAAAaCaPPPKIHn30UT3++OOKi4sLLB84cKC++uqroI8b2xiFAxCayZ8/owKPu8H7tYu366VfTWmCEgEAAKApbNu2TWeddVa15cnJySoqKgr6uAQ7IAIUeNxKSkho+H4lDQ+DAAAACJ+0tDRt375dGRkZVZZ/8sknOuGEE4I+Ll0xAQAAAKCZXHHFFbrtttv0+eefyzAM/fLLL3r99dd155136ne/+13Qx6XFDmhEwXapLPGWKkkNb7EDgGhCt3UALcH06dPl8/l00UUX6eDBg7rggguUkJCgm266SVOmBP9eRbADGlGwXSoPH/Q0QWkiT8z1N0guV8N3LClp/MIAsBy6rQNoCQzD0K233qqbb75Z27dvl9vtVs+ePdW6deuQjkuwA9B8XC4ZnY9r8G7m9h1NUJimU3Orgimfz1TMp+9IMqrtQ4tCZAr6YoTDId+flzR+gQAALUZ8fLx69erVaMcj2AFo0cLRdSuYVgVaFCJUsBcjfvq5CQoDAGgpDh8+rK+//lp79+6Vz+ersu78888P6pgEO7RYkyb3Vv7Hixq8Hy0nLQtdtwAAQCRZs2aNpk6dqoKCgmrrDMOocXl9EOwaUTAtA4SIppNvj+OEHgAAABFl9uzZuvDCCzVr1iylpaU12nEJdo2I7lcAwoGRAgEAsI69e/fqxhtvbNRQJxHsAMDy6G4KAIB1jBkzRh9++KG6du3aqMcl2AEAAABAM3n44Yd11VVX6f/+7//Uu3dvxcXFVVl/3XXXBXVcgh0ARDHmFgQgBd+lu8RbqiQ1vMdAtKCrPGry5ptv6v3331diYqI+/PBDGcaRaZAMwyDYoWGYmwmIPEH/X07tJwXRFVNS1MwtCKBuwXbpPnzQ0wSlaTnoKo+azJ8/X3PmzNH06dMVExPTaMcl2EUr5mZqMbga2IIE+X8p02z8skQg6joAoCXweDwaO3Zso4Y6iWAHWB5XAxEtqOt1I/hGFl4PALUZP368li9frhkzZjTqcQl2AAC0AATfyMLrAaA2Xq9XTzzxhNatW6dTTjml2uAp999/f1DHJdgBNaj9Sqspn89UzKfvSDKqreUmcgAAANTlm2++0WmnnSZJ+vbbb6usqzyQSkMR7IAacBM5AAAAmsLKlSub5LgEOwAAgBagtpF1YyT1Nn2KMWoZqMHhkK7o0bSFA9DkCHYAAAAtQR0j69rq2I0Rr4Hm9fDDD9e5ftasWUEdl2AHADUo8Zbq/I8XNXi/dvH2JigNgHBh4m4AjS0nJ6fK76WlpcrNzZXNZlPXrl0JdgDQmEyZjGjXQoQS0l9ugvLAWrjnGkBjW79+fbVlxcXFuvHGG3XBBRcEfVyCXQSorU/8MZWVSbFBvIQOR8P3AQCLIqQDACJdcnKy5syZo/Hjx2vcuHFBHYNgFwnq6BNfF3P7DhmZGQ3fLwx96YMOr4RQAAAARIHi4mIVFxcHvT/BDs0j2PDKDd0AACDK/OWZ/yrmsSBabRwO+f68pPELhEa1dOnSKr+bpqm8vDy9/vrrGj58eNDHJdgBAAAAdQhmEJ1QBtNqd8Aj4/jMBu/HBXFrWLKkaviOiYlR+/btNW7cOE2fPj3o4xLsjhLs6FeMhAer4WogAAD1E8wgOtyni9ps2rSpSY5LsDtKsKNf8c8Lq+FqIAAAQMtBsAMAAACAJjR37tx6b3v//fcH9RgEOwAAAABoQl999VW9tjMMI+jHINgBANDIJk3urfwgJ0V/6VdTmqBEQMsR9BRKJSWNXxignlauXNnkj0GwAwCgkeXb47hfO8IEHQam9pOCeC1Rt1AG8Apl/l8gUhQVFemll17S//73P0lSr169NHHiRKWkpAR9TIIdAABo+YIMAzLNxi8LGMALUW3Dhg26+OKLlZSUpDPOOEOS9NRTT2nhwoVavny5+vbtG9RxCXYAGiyoK98OR9MUBgAAwEJuv/12jRw5Uo8//rhiY8vjWFlZmW6++Wbddttteuutt4I6LsEOQMMFceWbq6wAAADSxo0bq4Q6SYqNjdXNN9+sYcOGBX1cgh0AAFEslHudfH9e0vgFAoAWrk2bNtq1a5dOOumkKst/+ukntW7dOujjEuzQIMGO9PZvX5kSm6A8AIDQhHKv0+TPn1GBp2EDvjDyJ4Dm9OijjyonJ0dbt25VYmKiBgwYoLvvvls9evQIbHP48GHdcccdWr58uTwej4YNG6ZHHnlEaWlpgW127typGTNm6MMPP5Tdbte4ceN01113VWl1q6/f/va3mjZtmu677z4NGDBAkvTpp59q3rx5uvjii4N+rgQ7NEiwI72Z4uZzADiWEm+pzq/x4pkpn89UzKfvSKo+x1G7eHuTl60mBR53gz8TGPkTQHP6+OOP9fvf/16nn366ysrKdN9992ns2LH65JNPZLeXv3fefvvtevfdd/XCCy8oOTlZs2bN0uTJk7V69WpJktfr1eWXX66OHTtq9erVysvL09SpUxUXF6d58+Y1uEz33XefDMPQ1KlTVVZWJkmKi4vT7373O911111BP9cGBTuv1xvSpHmRwOv1VvleXbABpLn3Q9Ox0mtipbKGS3P/jaz0XmCl+hMdfx9TZpDTJBxogtLURzB/I7OOz+CmeLxQ9gsHU5M/e0YFpQ1/TUPrHWOlv1E4BFfXwyH4/6+6j9fYxw2WWTFSbXFxcZVckpCQoIQa3j/feOONKr8vWbJEPXr00MaNG3X22WerqKhIy5Yt07PPPqshQ4ZIkhYvXqxf//rX+uyzz9S/f3+tW7dO33//vf71r38pLS1Np556qm6//XbdfffdmjNnjuLj4+tV9m+++Ua9e/dWfHy8HnzwQc2bN087dpRPw9G1a1e1atUqqL+JX4OC3datWwN/TKvbtm1bjct9vuCeXyj7+UyfbEHtHeRjmj5JCvIxm1c4yhrsaxkO4ShrsK9JaK9l8HW9uf9G4XkvCE443n+CFZa6HobXJFjhei8I5nF9PlPmtdcpdn9xwx906ulSQsOji9Vey70l+2VPSmrwvsH2jgnHe2WwrPRZEq7/y++//75Jjl3buXNzMwxDmZmZ6tOnjw4cOHIBZPbs2ZozZ84x9y8uLn/vSU1NlSRt2rRJpaWlGjp0aGCbk046SV26dAkEu88++0y9e/eu0jUzKytLM2bM0HfffafTTjutXmUfPHiwzjjjDE2ePFljx45VmzZtdMopp9Rr3/poULDr0aNHi2ix27Ztm0488UTZbNXfFsq7uTRcTExwf5eYGEMxRkxQ+9bUHadejxn04zW/cJQ12NcyHMJR1mBfk9Bey+DrenP/jcLzXhCccLz/BCssdT0Mr0mwwvVeEMzjxsQYij9wQEaXLk1Qqtofk9eyjscMw3tlsKz0WRKu1/JP7g+DavFtF9daL5xxTbXlxzp3bm6macrj8WjLli3VWuyOxefz6bbbbtOvf/1r9e7dW5K0e/duxcfHV5sYPC0tTbt375Yk7dmzp0qok6QOHToE9q+vnJwcvfLKK7rzzjs1d+5cjR49WpMnT9ZZZ51V72PUpUHBzmazWT7Y+dlstloqZ7DPr7n3Q9Ox0mtipbKGS3P/jaz0XmCl+sPfp27hKmswj8trWTcrvZbRxCp1XSoodSspiJbtghJ3ncGt9nPn5uXvPZicnNzgXHLrrbfq22+/1dtvv90URTums846S2eddZYeeugh/etf/9Irr7yiUaNGqVu3bpo0aZLGjx+vjh07Bn38Fjt4Su0jddV9A3qJt1RJavj9DQAAAAAi08yZM7V69Wq99dZb6ty5c2B5x44d5fF4VFRUVKXVbs+ePYGQlZaWpi+++KLK8fbu3RvYv6HsdrsmTpyoiRMnavv27Xr55Zf13HPP6YEHHlBWVpZeffXVYJ6irNEvIQj+kbqqfyXKnpSkpITEGtczeiMAAADQMpimqZkzZ2rVqlVasWKFMjOrTu/St29fxcXF6YMPPggs27p1q3bt2qX+/ftLkvr3769vvvkmEOYk6f3331ebNm3Us2fPkMrXrVs3/fGPf9Stt96q1q1b69133w36WC22xQ4AAABAdLv11lv1xhtv6JVXXlHr1q0D98QlJycrKSlJKSkpmjRpkubOnavU1FS1adNGs2bNUv/+/QPBbtiwYerZs6euv/563X333dqzZ4/uv/9+/f73v6/XvX21+eijj/Tyyy9r5cqVMgxDv/3tbzVp0qSgj0ewAwAAANAiPf/885KkUaNGVVn+1FNPacKECZKkBx54QDExMbriiiuqTFDuZ7PZ9Nprr2nGjBnKzs5Wq1atNH78eN1+++0NLs8vv/yiV155Ra+++qq2b9+uAQMG6MEHH9RFF10UmFcvWAQ7AAAAAC1SYWHhMbdJTEzUI488UiXMHS0jI0P/+Mc/QirLJZdcog8++EDt2rXT5ZdfrkmTJqlHjx4hHbMygh0AAAAANLG4uDj97W9/U3Z2dpOMMEqwAwAAAIAmFuxol/XVYkfFBAAAAIBoQbADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxRHsAAAAAMDiCHYAAAAAYHEEOwAAAACwOIIdAAAAAFgcwQ4AAAAALI5gBwAAAAAWR7ADAAAAAIsj2AEAAACAxcXWZyPTNKt8t4KkmDglxsQ1236K8UlSw/eN8clMTJQSEhr8kGZSUnD7JSaW/xDEvkm2+KD+PmZiokyLlDXo11IWqndq/tcklNcylLpumdckhPeCUOp6c7//WOn/MhyvidXeC4Iqr8XqOq9l3YLdLxznBc3+WWKx11IxvhrP9U3TlGEYMk0zIrJA5VxiGEaYSxNZDLMer5DP59P+/fubozwAAAAAUKc2bdooJobOh5XVO9gFdrB4Mi4uLlafPn20ZcsWJScnh7s4sBjqD4JF3UEoqD8IBfUHoYi0+lM5uhDsqqpXV8yW9EczDEMHDhyQYRiWD6loftQfBIu6g1BQfxAK6g9CEWn1JxLKEKlaTmIDAAAAgChFsAMAAAAAi4u6YJeQkKDZs2crIYiRhgDqD4JF3UEoqD8IBfUHoaD+WEe9Bk8BAAAAAESuqGuxAwAAAICWhmAHAAAAABZHsAMAAAAAiyPYAQAAAIDFEeyAJlJ5XCLGKEJDlZaWhrsIAKIYn1uA9RDsgCZy+PBhSVJZWZkMw5DP5wtziWAVb775psaPH6+DBw+GuygAosjGjRt1/fXXS5IMwwhzaQA0VGy4CxCpNmzYoF27dikxMVGdO3dW7969w10kWMjKlSu1fPlyFRQUqEePHrrzzjvVtm3bcBcLFvDXv/5VM2bMUOvWreV0OnXyySfLNE1OslAvpaWliouLC3cxYEGbN2/WBRdcoEmTJlVZzvsPYB202NXgpZde0uWXX66nn35ac+fO1eTJk/XMM8+Eu1iwiGXLlumGG25Qr169dOKJJ2rTpk166aWXAuvp3oLavPDCC5o1a5b++te/qkuXLlqyZIkkrpyjfrZt26a7775b3377bbiLAovZvHmzRo4cqd/97nd66KGHqqzj/QewDlrsjvLxxx/r3nvv1UMPPaSLLrpIP/zwgx5//HHNmTNHBw4c0B//+MdwFxER7K233tL8+fO1ZMkSjR49WpI0efJkJSQkSJI8Ho/i4+Pl8/kUE8N1FRzxl7/8JRDqxowZo927d+u5557Txo0b1a9fv3AXDxFux44duuCCC3Tw4EEdPnxYU6ZMUc+ePcNdLFjA7t27df755+v888/XfffdJ4/Ho/nz5+vHH39Ufn6+xo4dq9/85jfq0qVLuIsK4Bg4szzKli1b9Ktf/Upjx46VYRjq0aOHBg8erLZt22r+/Pl68sknw11ERKjS0lJ9//33mjhxorKzswPLCwsL9fe//11ZWVm68MILlZubq5iYGO65Q8CmTZv05JNP6oUXXtCYMWMkSYMGDVJhYaE++eQTSbT0onYHDx7Uww8/rMGDB2vGjBn6/PPP9fTTT+v7778Pd9FgAXv27FH//v21ceNGffPNN5o8ebI+//xzderUSR06dNCLL76oP/3pT9qzZ0+4iwrgGAh2RykpKZHT6dQvv/wS6H5w8OBBDRs2TDNnztSf//xnffXVV2EuJSJRXFycJkyYoKuuukrx8fGSpKuuukpOp1PXXXedrr32WiUlJWns2LEqKiqixQ4BJ510kl5//XWNHj06EOBOPfVUXXHFFXryySe1a9cuukOhVomJiRoyZIhGjBihW265Rddee602bNhAuEO9nHrqqbrnnnvUrVs3DR48WF6vV8uWLdNDDz2kv/3tb5o8ebI+/PBDbd26NdxFBXAMdMU8ykknnSSfz6fnnntOAwYM0J49ezRnzhy9+OKLOvPMM/XGG28oPz8/3MVEhPDfVO7vWtmxY8fAury8PCUlJSknJ0eZmZmSpHbt2umGG25Qbm6uTj311HAVGxEmKSlJJ510UqA++b8PGzZMy5cv1+eff64uXbrI6/XKZrOFu7iIMDExMbr44osDg6ZMmjRJPp9Pzz//vJ5++mlNnTpVPXv2VGlpqQoKCpSenh7mEiPc/O8l/veaU089VbNmzdLJJ5+sIUOGyOFwBLa59tpr9dBDD+njjz/W2WefHe6iA6hD1Ae7vLw8eTweSVJGRoays7P1v//9TytWrNBrr70mSVqyZIl+85vfSJJ8Pp9++OEHDRs2LGxlRuTIy8tTp06dAl0r/a1wpmkqPT1dixcvls1mC6yz2WzKzMxUampqmEuOcPvqq6+0fft22Ww29e7dW927dw+0yvm/n3322erevbsWL16siy66iFCHavwn3/5eAv7fr7jiCpmmqb/+9a96+umn9fvf/14vv/yyPvzwQ61ZsyZw3y+iz9atW/WXv/xF3377rX71q19p2LBhOvvss3XGGWeoQ4cOgQuUNptNXq9XLpdL3bp10ymnnBLmkgM4lqgOdq+99pqef/557dixQ127dlVWVpZmz56tadOm6cILLwycXB1//PGSJKfTqeTkZJ144onhLDYixD/+8Q/dfvvtmj9/vi6//HLFxMQErn76644/6MXExKikpETPPPOMjj/+eHXu3DmcRUeY+bs5paSkaP/+/erUqZMefvhhnXbaaYFt/Cfo06dP10033aR///vfuvDCC8NYakSK3Nxcbdq0SaNHj65y4UhSld+vvPJKGYahF154QRMmTFBhYaFWrlxJqIti33zzjUaPHq3s7Gx16tRJn3zyif73v/+pW7du6tSpU+B8x89ms+kvf/mLCgsL6WUCWEDUBrvXX39dt956qx588EE5HA59+eWXWrNmjbKysvSrX/1Kxx9/fODk3OPxaNeuXbr99tsVHx+vIUOGhLn0CLf//Oc/mjdvnjp37qzHH39chmHosssuq9KNTipveSkpKdE333yj+++/X3l5eXr//ferdN9EdMnJydEdd9yhhQsX6rzzztOmTZu0aNEirV+/Xqeddlqg/vhb504++WS53W5t3ryZYAdt27ZNv/nNb9SmTRu53W6NGzeuWo+Byr9fccUVevXVV7V//3698847tLpEsby8PN1www2aNGmS7rnnHknln2XXXnutcnNz1alTpyrbv/fee3rvvff097//XTk5OdVCH4DIE5Vnld99952eeuopPfDAA5o0aZLOP/98XXnllfrpp5+0efNmSVXnbdm2bZtuv/127d69W2+99VagewKik9vt1vLly5Wdna358+dr4MCBWrhwoV5//XVJCoQ2v08//VQvvPCCDMPQ+++/r7i4OJWVlRHqotDevXv16quv6vrrr9fFF1+sNm3aaPDgwcrMzNSqVaskVX3vMU1TDodDf//73zVnzpxwFRsRIj8/X7Nnz1a/fv10xhln6K9//ateeeUVSao20m5MTIzKysp0yy236NNPP1VOTg6hLsp99dVX6tKli8aNGxcYpGno0KE68cQTtWPHDklVR9/dunWrfv75Z7399tu01gEWEZUtdm63W7169dIZZ5whqfyN7Pjjj9egQYNUUFAgSVUGKcjIyNCMGTN0xhlnyGazqaysTLGxUfmngyS73a5rrrlGe/fu1eDBg9W+fXuZpqmFCxdKki677LIq3TIHDhwoh8Oh3r17B062qD/RKSYmRr169dKgQYMkKdCqMmDAAH399deSVKXF17/N6aefLknUnShXUlKi1q1b66qrrlKnTp302GOP6W9/+5skacKECdVa7mJjYzVo0CBdeeWVhDooLS1N5513nk4++WRJR0JcSUmJ9u7dK6nqhSV/615ycnLzFxZAUKLyDCEjI0PXXnut+vTpU2W5aZrav3+/JFUZpKB169bq37+/pPLAx4kV+vbtG/i5V69emjJliiTpkUcekVQe7vLz8/X5559r5MiRgbrm8/moP1GsXbt2uvLKK5WRkSHpyEmUw+GQVDW4ffvttzr55JOrnGhRd6Jb586d9eCDDwa6zN188816/PHH9be//U2maWrixInVLh5dfvnl4SwyIki/fv3Ur18/SVUvIKWkpFQ553n22WcDg8kR6gBricqzhA4dOqhDhw6SqnY78Hg8KikpCfx+6aWXasiQIZo2bVpgGaPSoTL/h+PJJ5+sa6+9VoZh6NFHH9X+/fv1j3/8QwUFBfrNb35TbTAVRC9/qKt8YrVv3z4VFxcHTsYvvvhiHT58ONA9E/Dzhzqv16vevXtr+vTpWrRokV588UUZhqEJEyZoxowZ6tevn66++uowlxaRqvIFo9atWwdGVb333nv15z//WevWrQtX0QCEIOrPMiuPYNi2bVu1atVKUvmJ1Y8//qjrr78+nMVDhKv84di7d29dd911OvPMMzVz5kyVlJTo448/DgyoAlR29ITj/pEKL7vsMu3cuVP/+te/wlAqWIX/ImOvXr00ffp0nXDCCVq2bJkuuOACvfTSS1V6FQB1fQbt27dPPp9PixYt0tNPP6233npLvXr1asbSAWgsUdliV5u4uDiVlJRo8uTJ+vHHH/XJJ58EBrqgCxTqo3PnztqwYYNOP/10rV69WrGxsdQfHFNaWpri4+N1wQUX6JdfftGnn37Kew+qOPrey8p69eqlm266SZdffrkOHjyo9evXV7vVANHFP05AQUGB2rVrV2vdkcpb7B588EF5PB699dZbge6aAKynRbfYNbSVpKioSE8//bScTiehDoH6U7keVR517milpaW6++67ZZqm3nnnHUJdFGto3SksLNTnn38ut9tNqIMkBUZe9g/oVdeJucfjCUxp8NZbbxHqoti2bduUk5Mjm82mf/3rX7r++usDA6PUJjU1VXFxcVq9enVgoCYA1tRig13lq5svvvii1q5de8x9fvWrXyk7O1vr1q3jxCrK+Xy+QP3Jz8/XgQMHZJpmnffIxcXF6ZprrtGHH35I/YliwdSdE088UTfccIPWrFlD3YlywZyY79+/X5999plWrFih3r17N1NJEWl8Pp/eeOMNXXHFFbrzzjv1u9/9ThdffHFgTIHajBs3Tu+++y4jpwItgGG2wJt/Kg/3vGnTJt1555365Zdf9NRTT2nAgAG17rd792516NCBIekR8Kc//UkrVqxQTEyM2rdvrz/96U/VRiqsSeXpMhCdgq07vPdEL5/Pp4cfflgPP/ywbrzxRj311FNasmSJxo0bV+s+/ouYHo8nMAAGotull16qdevW6Xe/+50WLFhQ5ZwIQMvWIv/T/W9gf/rTn/Twww/r8OHD2rVrl/7whz/o//2//1frfh07dgzMP8aJVXSq3F3ulVde0dKlS3X99dfrqquuUkxMjEaNGqV3331XUt1dfQl10SfYunN0PeK9J3rFxMRozpw5ysrK0pIlS3TNNddo3LhxdXbj9V8oiIuLa65iIgL530dKS0vlcDh01lln6fnnn9ebb74ZOK85+r2mBV7XB6Jei2yxk6Tnn39e8+bN09///nf17NlTn3zyiZYtW6adO3fq4Ycf1tlnnx3uIiKCvfPOO/ryyy/VtWtXjR8/PrB86tSpevfdd/XRRx8pPT09jCVEpKLuIBj+lrfS0lLddNNN+vnnn/Xxxx/rmWee0cUXXxw4Ca/c4lvXgCqIHv56sGHDBhUUFGjgwIFq3bq17r77bj355JNaunSpLrnkksB2ubm5gWlXALQsLbLFTpI2bNig888/X2effbbat2+vUaNGadq0aWrTpo1uvfVWffrpp+EuIiLUhg0bdOedd2rx4sWBkyaPxyNJevrpp9W5c2c9+eST4SwiIhR1B8GofGL+wQcfaOHChVq5cqWmTZumKVOm6I033qgS4HJzcyXVPaAKooO/7qxYsUKXXnqpvvjiC/3888+SpBkzZmjatGm6/vrrA3Vo4cKFmjVrltxud5hLDqAptIhgV1M3ldTUVDmdThUXFweWnX322Ro1apS+//57zZw5Ux999FFzFhMR6uhG627duumaa65RamqqXn/9dUlSfHy8ysrK5PV6ddxxx+nw4cPhKCoiDHUHoeLEHKEwDEOffPKJpk2bpjvuuEN/+MMfdNJJJ0mS2rRpoxkzZmj69OmaMmWKsrOztXDhQt12222y2+1hLjmAptAigp3/nro1a9YElvXu3Vu7d+/WO++8U+UDsGvXrho1apROPvlkPffccyoqKmr28iJyVB7BUJLcbrdSUlJ01VVXacaMGfrxxx81ZcoUSeX3PtlsNu3duzcwmTSiF3UHjYETcwTLf2Fp3bp1Gjx4sK666iolJiZKOjJdRps2bTR37lz9/e9/19ixY/XRRx8xeT3QgrWYe+y+/fZbnX322Zo8ebIef/xxSdL111+v9evX69Zbbw10ybzpppt0xhlnqFOnTrr99tu1bt06nXjiiWEuPcKh8khhixcv1saNG/XVV19p8uTJGjFihHr06KHnn39ejz32mNq2bauTTjpJMTEx2rhxoz799FMGuYhi1B00Bn9r3QMPPKCvv/5aL7/8cmDd0SPrvvfee9q+fbvOO+88de3aNRzFRYQ4+t7Km2++WXv27NFrr71WbQTMTZs2qWfPnkpMTOSeTCAKtIgWO0k64YQTtGTJEv3zn//ULbfcIkn685//rPPOO0/PP/+8RowYod/85jf64YcfNHPmTP36179WWlpanaONoWXzf/jdc889evLJJ3XGGWfohhtu0MKFC/XAAw/o0KFDGj9+vKZPny6Px6PvvvtOkydP1hdffBGYfBzRibqDUBw9EEpeXl6ghcX/meQPdZs2bdLhw4c1YsQITZkyhVAXxQ4dOqSSkhLt2rVLJSUlgeXHHXecPv30UxUUFARGwJTK5zdcvnx5YEwBQh3Q8rWYy8ZJSUm66KKLFBMTo1tuuUWmaerxxx/XY489pg0bNuiXX36RYRg677zzJEnPPfeckpKSjjlxJ1q2DRs2KCcnR8uWLVP//v21YcMGHThwQOeff75at24tSZo4caJ8Pp9ef/11LV++XEOHDpXEh2S0o+6goQ4dOqSYmBjt2bNHaWlpgW65xx13nFauXKmCggK1a9cu0LLiPzEfNmyYzj33XOpNFPv+++91//33a9u2bdq6datOPvlkDR06VPfee6+mTZumt99+W6NHj9a//vUvdejQQWVlZVq0aJHefPNNXXvtteEuPoDmYlrYk08+ad5zzz1Vlh06dMh87bXXzA4dOpizZ8+uts/HH39s3njjjWa3bt3Mr776qrmKighx+PDhKr9/8cUX5rBhw0zTNM3ly5ebXbp0MZ977jnTNE1z//795rp160zTNM3i4mJz6dKl5tChQ82rr766eQuNiEDdQSi+++47c/LkyeagQYPM9u3bm+ecc4555513mqZpmgcOHDCHDBliDho0yNy9e7fp8/nM0tJS85577jFPOeUUc+fOnWEuPcJpy5YtZkZGhnnrrbeaL774orly5UpzwoQJZlpamnn55Zebhw4dMr/66iszKyvLzMzMNLOzs81Ro0aZ3bt3Nzdt2hTu4gNoRpZtsTt06JAOHjyopUuXym63a8aMGZKkxMREjRkzRh988IGeeeYZ7d+/X0899VRgv9jYWBUUFGjlypXq3bt3uIqPMFi3bp22bNmis88+W2eeeaak8qHo8/Ly9OKLL+rOO+/UXXfdpWuuuUaS9MUXX+j5559X586dddJJJ2nChAk6dOiQVq9erby8POYiiyLUHYTi66+/1vnnn6/LLrtMI0aMUGpqql599VUtXbpU//vf//TCCy9o8eLFmj59ugYMGKBevXopLi5O3377rZYvX64uXbqE+ykgTPLz83XDDTfod7/7ne66667A8oEDB+qf//yn7rrrLv3hD3/Q0qVL9d577+nZZ59Vfn6+WrdurSeeeIKuu0C0CXeyrC+v11vlu2maZn5+vvnkk0+aGRkZ5oIFC6psv2DBAvPSSy81L7744ir7mGZ5qx6iy7Jly8zevXubf/zjH80vvviiyrprrrnGTE1NNR966KHAssOHD5uXX365ecUVV1SpP/v37zcLCwubq9iIANQdhGLv3r3mkCFDzLvvvrva8meeecbs1KmTOWXKFNM0TdPn85lLly4177//fvPxxx83t2/fHo4iI4Js2rTJHDRokPn111+bZWVlpmkeOQ/at2+fuWDBArNTp07mypUrw1lMABHCEi12b775pt5//33dcsst6tSpU2CY53bt2mncuHHy+Xx69NFHJUm33nqrDhw4oG+++UYXXnihJk6cKKnqKHb+4YARHd58803NmjVLixcvVlZWlpKTk6usnzJlivbs2aNXXnlFGRkZ2rdvn9577z39/PPPWr9+vWJiYgJD2/vvnUJ0oO4gVD///LNKS0t16aWXBka69Pl8at++vS677DIVFRXp0Ucf1ejRozVq1KjAFBmAJG3ZskU7duwI9DAyTTNwLpOSkqJLL71UTz75pHbs2FFlP5MRMIGoFPHTHRQXF2vo0KHav3+/0tLSdOaZZ2rQoEEaP358YJs9e/Zo+fLlmjdvnjIzM2UYhuLi4vTBBx8oNjaWN7golp+fr6uvvlpjxoypcgP5gQMH9N133yk2Nlb9+vXTtm3b9Nhjj+k///mPunXrphNOOEGPPvpoYARDhqePPtQdNIZXXnlFM2bM0C+//CKp+gm30+nUkCFDdOutt2ratGmB5XxuQZL+7//+T2PHjtXSpUs1ZsyYGrc599xzdfbZZ+uBBx5o5tIBiDQRf8Zht9t10UUX6fjjj9cZZ5yh9evX67bbbtO6devUq1cv3XzzzUpLS9P111+vs846S6tWrVLbtm117bXXKjY2ttpcQIg++fn5Ou644wK//+Uvf9H/+3//TytWrFBaWpp69uypf//731q8eHFgVDo/TsyjG3UHofLf47RixQqNGTOmWljLzMzUCSecEAh+foQ6SFJGRobatGmj1157Tf369VNGRoakI72Q9u3bp8TERCYdByDJAvPY2Ww2DRo0SHfddZdsNpumTZum7777Tl27dtX999+vrKwsPf744/rqq6902mmn6bbbbtPUqVMDV8sJdSguLta7776r9evX68orr9Tzzz+vdu3a6c0339RDDz0kp9OpBQsWSCrv2uJnmiYn5lGOuoNQVT4xz83NDSz3z1fHiTnq0rlzZy1cuFBr167VAw88oG+//VbSkbk0n3rqKeXl5WnQoEHhLCaACBHxXTH9br31VknSI488IkkaNGiQunfvrq5du+qbb77R+++/ryeeeEKTJk0KZzERgT744ANdccUVcjgcat26te6//3716dNHDodD+/bt05gxY3T++edrzpw54S4qIgx1B41h5cqV+v3vf6/f/va3+sMf/qCTTz45sO7+++/X66+/rpUrVwZaY4DKvF6vXnzxRc2aNUtdu3bVr3/9a3Xs2FFOp1Nr1qzRv//9b5122mnhLiaACGCZS8p9+/bVyy+/rH379unCCy9USkqKlixZouTkZP3888/65JNPau1/juh27rnn6osvvpDb7VZmZma19a1bt2b4edSIuoPGcP755+vBBx/UrFmz9OWXX9Z4Yk6oQ21sNpuuvvpqnXrqqXriiSf0+eefKyUlRX369NHq1at10kknhbuIACKEZVrsJCkrK0sbNmzQWWedpZdeekmpqanVtuG+FtRXfn6+brzxRrlcLr3zzjt020W9UXcQjM8//1xPPPGEtm7dGjgxnzJlCifmqDev16uYmBgZhlFltG8AkCwS7Pyjg/3973/X448/riVLlqhfv36MGoagFBQU6MUXX9Qnn3yi/Px8vfPOO4qLi2OgHRwTdQeh4sQcoah83sM5EICjWeITxf/Gdc4556iwsFDvv/9+leVAQ/z888/69NNP1a1bN61evVpxcXEMtIN6oe4gVP5QJ/EZhoarXGeoPwCOZokWu8qeeeYZPfTQQ1q1apV69eoV7uLAooqKipScnCzDMGhtQYNQdwAAQCSy3M1oI0aM0IYNG7gnASHxD01vmiYn5mgQ6g4AAIhElmuxk470K+dqOQAAAABYNNgBAAAAAI6wxOApAAAAAIDaEewAAAAAwOIIdgAAAABgcQQ7AAAAALA4gh0AAAAAWBzBDgAAAAAsjmAHAAAAABZHsAMAAAAAiyPYAQAAAIDF/X+95fssMgCURwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print('\\n=== without marketcolor overrides: ===')\n", + "mpf.plot(df,volume=True,type='candle',style='yahoo',figscale=1.4)\n", + "\n", + "print('\\n=== WITH MARKETCOLOR OVERRIDES: ===')\n", + "mco = df['MCOverrides'].values\n", + "mpf.plot(df,volume=True,type='candle',style='yahoo',marketcolor_overrides=mco,figscale=1.4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TO DO:\n", + "1. `marketcolor_overrides` should affect volume *when the override is a marketcolor object* that includes a 'volume' key.\n", + "2. support `marketcolor_overrides` in **`mpf.make_addplot()`**\n", + "3. support \"hollow and filled\" candles (both `mpf.plot()` and `mpf.make_addplot()`).\n", + "4. support renko and point-and-figure. This may be tricky (since one \"box\" may cover more and/or less than one date). Also, is support for marketcolor overrides even needed for renko and pnf? (find out from those who commonly use them)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/scratch_pad/pr451_test.py b/examples/scratch_pad/pr451_test.py new file mode 100644 index 00000000..da439c37 --- /dev/null +++ b/examples/scratch_pad/pr451_test.py @@ -0,0 +1,31 @@ +import pandas as pd +import mplfinance as mpf +import ast + +df = pd.read_csv('pr451data.csv',index_col=0,parse_dates=True) + +print(df.head(3)) + +custom_colors = [] +for i in range(len(df)): + if i % 3 == 0: + #custom_colors.append(mpf.make_marketcolors(up='#29c9ff', down='#f3b5ff', edge='#29c9ff', wick='#29c9ff', ohlc='#32a852', volume='#a89132')) + custom_colors.append(mpf.make_marketcolors(up='#29c9ff',down='#f3b5ff',edge='#29c9ff',wick='#29c9ff', + ohlc={'up':'lime','down':'blue'}, volume='#a89132')) + elif i%5 == 0: + custom_colors.append("#000000") + else: + custom_colors.append(None) + +#STYLE = 'binance' +STYLE = 'yahoo' + +#mpf.plot(df, type='candle',style=STYLE,volume=True,block=False,figscale=1.25,savefig='pr451t2no.jpg') +#mpf.plot(df, type='ohlc',style=STYLE,volume=True,block=False,figscale=1.25) +mpf.plot(df, type='candle',style=STYLE,volume=True,block=False,figscale=1.25) +#mpf.plot(df, type='hollow',style=STYLE,volume=True,block=False,figscale=1.25) + +#mpf.plot(df, type='candle',style=STYLE,marketcolor_overrides=custom_colors,volume=True,figscale=1.25,savefig='pr451t2ye.jpg') +#mpf.plot(df, type='ohlc',style=STYLE,marketcolor_overrides=custom_colors,volume=True,figscale=1.25) +mpf.plot(df, type='candle',style=STYLE,marketcolor_overrides=custom_colors,volume=True,figscale=1.25) +#mpf.plot(df, type='hollow',style=STYLE,marketcolor_overrides=custom_colors,volume=True,figscale=1.25) diff --git a/examples/scratch_pad/pr451_testing.ipynb b/examples/scratch_pad/pr451_testing.ipynb new file mode 100644 index 00000000..6e517a9d --- /dev/null +++ b/examples/scratch_pad/pr451_testing.ipynb @@ -0,0 +1,180 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "\n", + "## PR451 Testing\n", + "\n", + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# This allows multiple outputs from a single jupyter notebook cell:\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = \"all\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import mplfinance as mpf\n", + "#import datetime as datetime\n", + "#import numpy as np\n", + "#import matplotlib.dates as mdates\n", + "#import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Open Close High Low Date.1 Volume\n", + "Date \n", + "2019-09-01 29 20 29 20 2019-09-01 10787\n", + "2019-09-02 29 31 33 23 2019-09-02 17215\n", + "2019-09-03 29 20 29 20 2019-09-03 16697\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHcCAYAAACUORFqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWfUlEQVR4nO3de3wTdf7v8XeS0guXXii2gNACUgtYBNYtLKiARXRVRBZYXRTQVcTLHtdVuQmiIivKT3S9IIoo608RUS7rBVbAgwjeVpEVBQRsD1BEoeXWlgKlbTLnj9pIek2amSZpX8/Hg0fp5DvTbz6ZmbwzmZmvzTAMQwAAAICF7IHuAAAAABo+QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAy4V508jlcrn/b7PZLOsMAABAsDhz/By7neN0/vIqdErS8ePHrewHAABAUGrRokWgu9AgeB06JSkyMjLoj3Q6nU5lZmYqJSVFDocj0N0JedTTfNTUXNTTfNTUfNTUXPVVT8MwVFRUZNnyGxuvQmd50LTZbEEfOm02mwzDCIm+hgLqaT5qai7qaT5qaj5qaq76rievmTk4QQEAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAEJAXl6e3nvvPeXl5QW6K0CdEDoBAAgB+fn5WrlypfLz8wPdFaBOCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAAAwwSuvvKILL7xQSUlJSkpK0mWXXaYPP/zQ/fiQIUMUFxfn8e+ee+4JYI/rV1igOwAAANAQtG3bVg899JDOOeccGYahN998UzfccIM2bNigrl27SpJuvPFG3X///e55oqKiAtXdekfoBAAAMMEVV1zh8fv06dO1cOFCff311+7QGRUVpcTExEB0L+D4eh0AAMBkTqdTy5cv18mTJ5Wenu6evnTpUp1zzjnq27evZsyYoZMnTwawl/XLpyOdTqdTNpvNqr6Ywul0evyEf6in+aipuain+aip+cyoqcvlcv9s7K9Nfa2jhmFIkgoKCjzyT0REhCIiIqqcZ/v27br88stVVFSkZs2a6fXXX1eXLl0kSSNHjlT79u3VunVrbd++XTNmzFBWVpZef/11S59HsLAZ5RWtgWEYKigoUHZ2trxoDgAATJabm6vFixfr+uuvV0JCQqC70yjYbDYlJycrLS1NhYWF7umTJ0/WlClTqpynuLhY+/fvV0FBgd599129/vrrWrlypTt4nmnjxo265ppr9N///lcdO3a07HkEC5+OdKakpITEkc6srCx17txZDocj0N0JedTTfNTUXNTTfNTUfGbUtPyCk+TkZCUlJZnZvZBTX+uoYRgqLi7Wtm3bKh3prE54eLg6deokSerZs6e++eYbvfjii3r66acrtb3gggskSbt37yZ0VuRwOII+dJZzOBzsLE1EPc1HTc1FPc1HTc3nT03tdrv7J69LGavX0fJvd6Ojo+ucf1wul4qLi6t8bOvWrZLUaC4s4up1AAAAE8yYMUOXXnqp2rdvr+PHj2vZsmX69NNPtXz5cu3Zs0fLli3T4MGD1bJlS23btk3Tpk1Tv379lJaWFuiu1wtCJwAAgAkOHz6sO+64Qzk5OYqOjtZ5552n5cuX65JLLtH+/fv18ccf64UXXtDJkyd19tln6+qrr9aECRMC3e16Q+gEAAAwwXPPPVftY+3atdOqVavqsTfBh/t0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAACNRF5ent577z3l5eUFuitohAidAAA0Evn5+Vq5cqXy8/MD3RU0QoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByYYHuAAAAqGDfPunkSc9pOTllP/fulU6d+nV606ZSUlK9dQ2oK0JnBXl5edq4caP69++v2NjYQHcHANDY7NunsJHXVpocHxamoa3iFX//NIWVlno8VrrsbYIngh5fr1fAEGEAgICqeITzF7GlpRp2MEexFQJnTfMAwYTQCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQCA1/Ly8vTee+8pLy8vIPMjdBE6AQCA1/wdLprhphsvQicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYLmwQHcg0DJP5KiwtMj9+6HCA5KkXYUHdLTCfWubh0UqpVlifXYPAIDA2bdPOnnSc1pOTtnPvXulU6d+nd60qZSUVGkRvM+iXKMOnZkncnTehuke06KKpNRU6a1dC3Uqu/I82wfMZIMAAPgkPz9fX3zxhVq3bq2WLVsGujve2bdPYSOvrTQ5PixMQ1vFK/7+aQorLfV4rHTZ2x7Bk/dZnKlRf71+5ievcqcipS1dy356Ow8AADXJz8/Xl19+GVpDP1Y8wvmL2NJSDTuYo9gKgbOqeXifxZkadegEAABA/SB0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAACACV555RVdeOGFSkpKUlJSki677DJ9+OGH7seLioo0YcIEderUSe3atdPYsWOVm5sbwB7XL0InAACACdq2bauHHnpI69ev10cffaSLL75YN9xwg3bs2CFJmjp1qlavXq1XX31VK1eu1MGDBzVmzJgA97r+NOqbwwMAAJjliiuu8Ph9+vTpWrhwob7++mu1bdtWixYt0oIFC9S/f39J0ty5c9WnTx9t2rRJ6enpgehyvfIpdDqdTtlsNqv6Ygqn0+nxs8a2Lpfvy3e5vFp2Q+FLPVGZ7ccfK90s2eV0KurH/XI5nbI5HL8+0LSpjPbt67mHoadiTautp1RtTat6XarVCF8Xtnv/VLndHygb+tG1e7dcFYaOrLh+2erw3uRyuWR48Xq5flm2y4v3MjP6YdX7bH2to4ZhSJIKCgo88k9ERIQiIiJqnNfpdOqdd97RyZMnlZ6erm+//VYlJSUaOHCgu825556rdu3aETqrkpmZ6X4Bgl1WVlatbbJP+34eRfbebDWNOFV7wwbGm3rCU/jBHHWZcn+Vj6VUM8/Oxx9TcWuGf6tOdTWtrp5S5ZrW9Lp4u4zGgu3ed9WtX4m/DB2ZOP0hhVcYyafi+hW1N7vGdboq2Xuz5c07U/n5g9nZ2Tp1quY5zOjHoZJjlZdbJKXukXZ1rHpUokP7ftauJt69z1q9jtpsNiUnJystLU2FhYXu6ZMnT9aUKVOqnGf79u26/PLLVVRUpGbNmun1119Xly5dtHXrVoWHhysmJsajfUJCgnLKx7Nv4HwKnSkpKSFxpDMrK0udO3eWo+JRjwpOFkRJB3xbfnKHZKVGJ9XesIHwpZ7wVJctpVPrRBmpqab3paEwo6a8LrVju6+76tav8qEjq2LGOprcIdmrdTQqKqqsfXKykpJqfi8zox+pkrZ27KTjzl+Htjz800GtWP1PPXL5n9Xq7NYe87dwRKpzs4Ra/059raOGYai4uFjbtm2rdKSzOikpKdq4caMKCgr07rvv6s4779TKlSst62Mo8Sl0OhyOoA+d5RwOR60rosPu+3VUDru9Ue6EvaknKqjD+mW32yXqXD0zasrr4jW2+zoI8nXU/suy7d68l5nUj9ToNh6/ZxeULbdri7ZKjkv2+W+cyep1tPzb3ejoaK/zT3h4uDp16iRJ6tmzp7755hu9+OKLGj58uIqLi5Wfn+9xtDM3N1eJiY3jmxSuXgcAALCIy+VScXGxevTooSZNmmjDhg3uxzIzM7V///5GcT6nxNXrAAAAppgxY4YuvfRStW/fXsePH9eyZcv06aefavny5YqJidHo0aM1bdo0xcXFqUWLFpo0aZLS09MJnQAAAPDe4cOHdccddygnJ0fR0dE677zztHz5cl1yySWSpFmzZslut2vs2LEqLi5WRkaG5syZE+Be1x9CJwAAgAmee+65Gh+PjIzUnDlzGlXQPBPndAIAAMByhE4AAABYjtAJAAAAy4X2OZ379lUaaszmcilqb3bZTW3PvMdY06ZSLTfCNbMf1bKyH0CQyzyRo8LSotobSmoeFqmUZo3j3nUA0BiEbujct09hI6+t8qHqhu0qXfa2R+BrHlZ5/K3ahueqNE8N/ahOxX4AjUHmiRydt2G6T/NsHzAzZIJnXl6eNm7cqP79+ys2NjbQ3YGJeG0Bc4Ru6PT2yGIN86Q0S9T2ATM9jrwc2n9Ay1Yv1N9/f7POauc5ikKVR15M6AfQGHh7hNPfeQIlPz9fK1euVI8ePQgmDQyvLWCO0A2dJqkYIrPzyn6mNm+j5Bj/hucCAABAGS4kAgAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGC5Rn+fTgDeYQhLNAZVreeHCg9IknYVHtDR/F+ns54DviF0AqhVQx/CEpCqX8+jiqTUVOmtXQt1KtvzMUvW86ZNq5ycFxamj1vFa+DhI4otLfVqHiCYEDoB1KqhD2EJSNWvs6cipS1dfZvHL0lJKl32dqUhk4/k5Oi9N95Q9/vuVfPEM4Ju06ZSUpL5/QBMRugEACDYVBUio6LKfnboICUzTDNCDxcSAQAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAc9+kEgDqoOFxidUMlSgyXCAASoROAF5qHRVY5PapISt0j7epYNmqLN/MEXBXDBdY4vGAV81Q1XGJNQyVKDAsK/8XExGjIkCGKiYmpnz/IcJwwGaETQK1SmiVq+4CZlYb8O7T/gJatXqi///5mndWujXt6UB/Zq2KIwWqHF5SqHGKwqqEPaxoqsbp5AF/ExsZq6NCh9fcHGY4TJiN0AvBKVSEyO6/sZ2rzNkqOCaFh+Sq+MTK8IFA1huOEibiQCAAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAQIgpLi5WZmamSqu6t3CQInQCAACEiJMnT+quu+5S27Zt1bdvX+3fv1+SNGnSJP3jH/8IcO9qRugEAKAh2rdP2rnT89/evWWP7d3rOX3fvkD2FD545JFHtG3bNr3//vuKjPx15LeBAwfqX//6VwB7VjtuDg+EoLy8PG3cuFH9+/dXbGxswJbhi7oMi1lfQ2nW+/CC8Eoorud1GgbSiqEj9+1T2MhrK02ODwvT0Fbxir9/msIqfC1buuxtRhQKAatWrdLChQuVnp4um83mnt6lSxftLf9QEaQInUAIys/P18qVK9WjR486v5GasQxfVDeUZnXqcyjNeh9eEF4JxfW8uqEjXS6XsvdmK7lDsuz2M75ktGroyAp/v1xsaamGHczxaR4ElyNHjuiss86qNP3EiRMB6I1vCJ0A6k3QjscOmKmKEGk4nTolyUhNlRyO+u8TGoyePXtq7dq1Gj9+vCS5j3a+/vrr6t27dyC7VitCJwAAQIiYPn26rr32Wu3cuVOlpaV68cUXtWvXLn311VdauXJloLtXIy4kAgAACBF9+/bVxo0b5XQ61a1bN61fv16tWrXSmjVr1LNnz0B3r0Yc6QQAAAghHTt21DPPPBPobviMI50AAAAmeOqpp5SRkaH27dsrJSVFN9xwgzIzMz3aDBkyRHFxcR7/7rnnHq//xtq1a7Vu3bpK09etW6cPP/zQ7+dgJUInAACACT7//HONGzdOa9eu1YoVK1RSUqLhw4dXurL8xhtv1M6dO93/ZsyY4fXfmDFjhpxOZ6XphmH4tJxA4Ot1AAAAEyxbtszj93nz5iklJUVbtmzRhRde6J4eFRWlxMS63c1j9+7d6tKlS6Xp5557rvbs2VOnZdYXjnQCAABYoKCgQJIUFxfnMX3p0qU655xz1LdvX82YMUMnfbhHanR0dJU3gd+9e7eaWjHQgIl8OtLpdDo97n4fSDaXy+d5XC6XjCoOSVdsU/6zqsPX9dWPYFFeA29q0dBkncjVcad3NzJv4YhU52YJHtPMWjeq6sfh4wclSTuO/6xDx379O1X1o6a/Vf6zrq+vGcvwRbBsb8469MNZTzUyQ122e3+3l6r4un75u61Y+brW977Uym3F3+3ejP1GfdXTMAxJZeHxzPwTERGhiIiIGud1uVy6//771adPH3Xr1s09feTIkWrfvr1at26t7du3a8aMGcrKytLrr7/uVZ+uuOIK3X///Vq0aJE6duwoqSxwPvDAA7riiit8fYr1yqfQmZmZ6X4BAi1qb7ZSfJwne2+2TtXSJjc3t6xtdrZOnaqttXX9MMOJEyf03Xff6fzzz1ezZs38WlZWVpZJvQoN2SXHdM1P/+vTPO+efaOSm/z6adaMdaO6fkQVSamp0ls//FOnKgyZXLEf1fF1XbdqGb4Ilu0t+3Su7/PszVbTiPrY8s3j7XZvxvZSFV/WLzO2lfp4XetrXxp+MEeVv4Ct2e6DOSr2op2/272Z+w2r62mz2ZScnKy0tDQVFha6p0+ePFlTpkypcd4JEyZox44d+uCDDzym33TTTe7/n3feeWrdurWuueYa7dmzxx0iazJjxgz98Y9/VO/evdW2bVtJ0s8//6y+fftq5syZPjy7+udT6ExJSQmeI511mCe5Q3LZaBA1iIqKKmubnKwkL4Yms6ofZti3b5++/PJLZWRkePVcquJ0OpWVlaXOnTvL0YhG0ThZsE/6ybd5zkpqq9ToX+tsxrpRXT9ORUpbunrXj+r4uq5btQxfBMv2drIgSjrgez+8eV2Cga/bvRnbS1V8Wb/M2FasfF3rfV+amqrit5d4P7Rl06bq2L69V0393e7N2G/UVz0Nw1BxcbG2bdtW6UhnTSZOnKg1a9bo3//+t84+++wa215wwQWSyo5WehM6Y2JitGbNGq1fv17btm1TZGSkzjvvPI9zRoOVT6HT4XAETeiU3ffTUe12e63Dj5WPiWu3271bkS3qhxl8fi41cDgcjSp0Ourwujoq1tmEdcOUftT0t+Tf+mHmOublH6zDLOZvb1a+LsHE2+3eqnr4sn6Z0Yf6eF3rdV/aoYMli/V3uw+l96byb3ejo6O9yj+GYWjSpElatWqV3n//fSUnJ9c6z9atWyXJpwuLbDabMjIylJGR4fU8wYCr1wEAAEwwYcIELVu2TIsXL1bz5s2Vk5MjqSy0RkVFac+ePVq2bJkGDx6sli1batu2bZo2bZr69euntLS0apc7f/583XjjjYqMjNT8+fNr7MNtt91m6nMyE6ETAADABAsXLpRUdgP4Mz3//PO6/vrr1aRJE3388cd64YUXdPLkSZ199tm6+uqrNWHChBqXO2/ePP3xj39UZGSk5s2bV207m81G6AQAAGjojh07VuPj7dq106pVq3xe7rffflvl/0MN9+kEAAAIASUlJerVq5d27doV6K7UCaETAAAgBDRp0kSnT58OdDfqjNAJAAAQIm655RY988wzKi0tDXRXfMY5ncFi3z6f7qcmi+6JmHkiR4Wlv47o4XS5lH06VycLoirdTqR5WKRSmtVt7FgAQaTC/sfmcilqb3bZfVEr3kbIwv0PgNp988032rhxo9avX69u3bpVGvrS25GNAoHQGQz27VPYyGt9mqV02dum7/gzT+TovA3Tq36wmhsmbx8wk+BZnWrGwM0LC9PHreI18PARxVb8pFphnuZhkVUuI6pISt0j7epYdvNrb+ZB45CXl6eNGzeqf//+io2NrX2GavY/NY38ZMX+B6EjJiZGQ4YMUUxMTKC70ijFxMTo6quvDnQ36oTQGQy8PcLp7zy1OPMIp5XzNBpJSWVvzhVeq8MHD+q9xYuVdu89at669a8PVHEEKaVZorYPmFmpzof2H9Cy1Qv199/frLPatXFP5+gz8vPztXLlSvXo0cO70Bkk+x+EjtjYWA0dOjTQ3Wh0XC6Xnn32WWVlZamkpEQXX3yxpkyZ4h7hKRQQOgErVXE0yPhl+DQjOVnyYsizqkJkdl7Zz9TmbZQcU/uIFwCA0Pbkk0/q8ccf18CBAxUZGamXXnpJR44c0dy5cwPdNa9xIREAAECQW7JkiebMmaPly5frjTfe0JtvvqmlS5fK5XIFumteI3QCAAAEuf3792vw4MHu3wcOHCibzaYDB6q56CIIEToBAACCXGlpqSIjPS8UbdKkSUjdOolzOgEAAIKcYRi68847FfHLdQGSVFRUpHvvvdfjtkncMgkAAAB1NmrUqErTrr3Wt9stBhqhEwAAIMg9//zzge6C3zinEwAAAJbjSGdDUnEozZycsp9790qnTnm2ZSg7IOAqDjtbkwZ/4/+qhgKubh/G/gsISYTOCkJ2eK8qhrKLDwvT0Fbxir9/msKquLqNoewCIyYmRn369Am9dSwYVDG0aI3DilYzTzCocdjZalgy7Gww1LSaoThr2odZsf+qyxCyDDvru5B9n4XfCJ0VhOzwXlUMSxdbWqphB3N8mgfWi4mJUd++fdnh1kUVQ4tWO6yoFNRHxIJm2NlgqGk1+6Ia92EW7L+qG3a2Og3+6LNFQvZ9Fn4jdAIILRUCj6/DiqIK1NSNEAlYhwuJAAAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO+3QCjcHhw2X/zlTdEIOtWpX9AwDARIROuFU1nFtUkZS6R9rVUTpVxWhv3gwBl5eXp40bN6p///6KjY01oafwlX3Fv2R/+RWPaU0iI3Vuu7ZqMv0hhRX9OgKLa9wtco2/tb67GFIYLhEAfEfohFtVQ8Dl/PizVqz+px65/M9KbN/Wo723Q8Dl5+dr5cqV6tGjB6EzQFzD/yBX/4s9ppXk5OiHN95QycwZKk0843XkKGetGC4RAHxH6ISHim+Me466JEmpzVqrY0xyILoEM1T1lXlUVNnPDh2kZF5bXxEiAcA3XEgEAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHLcpxMAQtm+fdLJk7/+Xt3wppLUtKmUlFRvXQOAMxE6gUYqJiZGQ4YMUUxMTECX4a+YmBj16dMnoH0ImH37FDbyWo9J8WFhGtoqXvH3T1NYaWmlWUqXvU3wBBAQhE6gkYqNjdXQoUMDvgx/xcTEqG/fvo0zdJ55hPMXsaWlGnYwx6d5AKA+cE4nAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAEzz11FPKyMhQ+/btlZKSohtuuEGZmZkebYqKijRhwgR16tRJ7dq109ixY5WbmxugHtcvQicAAIAJPv/8c40bN05r167VihUrVFJSouHDh+vEiRPuNlOnTtXq1av16quvauXKlTp48KDGjBkTwF7XH+7TCQAAYIJly5Z5/D5v3jylpKRoy5YtuvDCC5Wfn69FixZpwYIF6t+/vyRp7ty56tOnjzZt2qT09PRAdLve+BQ6nU6nbDabVX3xic3l8nkel8slw+kMun4EyzKqa1P+01nH2pmxDF/ZfvzR+5tgN20qo317j0nOOtTT6eXzK2/jTy0CUdNgZUY9A8GMdSxYtnt/n4sZz8PKbdYMobqeBqv6qqdhGJKkgoICj/wTERGhiIiIWucvKCiQJMXFxUmSvv32W5WUlGjgwIHuNueee67atWtH6KwoMzPT/QIEWvjBHHXxcZ7dB3NUHIT9iNqbrRQfl5G9N1tnjqpcVT/ywsL0cat4DTx8RLFVDIfnTT1OnDihPn366OjRozp9+rSPvSxTfq5Kdna2TlUcC9oC4Qdz1GXK/T7Ns/Pxx1TcOtH9e/Zp38+vyd6braYR3j+/rKwsn/9GufquaSjwp56BYMY6Zsa+oyrl69ePP/7o1Xbv73Opbj9a0z6s4v6rPrZZM4TaehrsrK6nzWZTcnKy0tLSVFhY6J4+efJkTZkypcZ5XS6X7r//fvXp00fdunWTJOXk5Cg8PLzSCGoJCQnKyalhJLEGwqfQmZKSEjRHOpWaquK3l1Q6muV0OrX/x/1q176dHA7Hrw80baqOFY5mWdmPalXRj7pUNLlDsozU1Br7cTg3V+8tXqy0e+9R04SEWvtRFafTqWbNmqlz586e9fRBVFRUWZ+Tk5VUD2M+16WenVonetTzZEGUdMC3ZSR3SFZqdO3Pz+l0KisrK6RqGszMqGcgmLGOmbLvqEL5EZz27durQ4cOtS7T7+dSzX602n1YFfsvK7dZM4Tqehqs6quehmGouLhY27Ztq3SkszYTJkzQjh079MEHH1jWv1DjU+h0OBzBEzolqYqdoeF06pTDIXtqquz1tWF7sVOukd3367nsdrtU8flV6IetWbOynx07yp6cXNfeSSp77eu6Ydt/eX52u71+drYm1NNRh2U4fHx+IVXTEOBPPQPBlHXMrH1HVW3k/fplynOpYj/qyz6sPrZZM4TaehrsrK5n+be70dHRPuWfiRMnas2aNfr3v/+ts88+2z09MTFRxcXFys/P9zjamZubq8TExKoW1aBw9ToAAIAJDMPQxIkTtWrVKr333ntKrvBhqUePHmrSpIk2bNjgnpaZman9+/c3+PM5Ja5eBwAAMMWECRO0bNkyLV68WM2bN3efpxkdHa2oqCjFxMRo9OjRmjZtmuLi4tSiRQtNmjRJ6enphE4AAAB4Z+HChZKkIUOGeEx//vnndf3110uSZs2aJbvdrrFjx6q4uFgZGRmaM2dOvfc1EAidAAAAJjh27FitbSIjIzVnzpxGEzTPxDmdAAAAsByhEwAAAJYjdAIAAMBynNMJ8+3b53mT5/JRFvbulSqOntO0qdTIb24OAEBjQOiEufbtU9jIaz0mxYeFaWireMXfP01hVQzHWbrsbYKnj2JiYjRkyJBKQ6khdDQPi6w0LapISt0j7eoonar8cJXzWCEmJkZ9+vRh/QJgKkInzFXFcKCxpaUadrCGMWW9HUIUbrGxsRo6dGiguwE/pDRL1PYBM1VYWuSedmj/AS1bvVB///3NOqtdG4/2zcMildKsfkYsiYmJUd++fQmdAExF6ASAAKkYIrPzyn6mNm+j5Bj/hq4FgGDDhUQAAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAQJBje1JMv9ahuiNCoIqnnjrKf3s4DwBqMSAQAQYLhTT35Uo+qhhWVqh9atD6HFQVQhtAJAGgQqgqRDC0KBA++XgcAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBKrAkHpAw8DQokDwYEQioAoMqQc0DAwtCgQPQidQDYbUAwDAPHy9DgAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAZDJo2rTQpLyxM77ROVF5YNffvr2Ie/KKa2tRYUy/ryZB6AADUDSMSBYOkJJUue1s6edI96UhOjt574w11v+9eNU+sMDJO06ZSUlI9dzKEVFFPqYaa+lBPhtQDAKBuCJ3BomLoiYoq+9mhg5TMcIs+qypEUlMAAAKGr9cBAABgOUInAAAALEfoBAAAgOUInQAAACb47LPP9Kc//Uldu3ZVXFycVq1a5fH4nXfeqbi4OI9/I0eODFBv6x8XEgEAAJjg5MmTSktL0+jRozVmzJgq2wwaNEjPP/+8+/eIiIj66l7AEToBAABMMHjwYA0ePLjGNhEREUqseCvERsKn0Ol0OmWz2azqiymcTqfHz1DlcrncP+v6XMxYhq/1tP3yN33hcrlk1MPrZUY9zNBQ1tFg0ZjradX25mtNnXXohzPA22F9a8zrqRXqq56GYUiSCgoKPPJPREREnY9Qfvrpp0pJSVFsbKwuvvhiPfDAA2rZsqUp/Q12PoXOzMxM9wsQ7LKysgLdBb+cOHFCffr00eHDh3Xq1KmALaOct/UMP5ijLhWm5YWF6eNW8Rp4+IhiS0srzbP7YI6Ka1nuiRMn9N133+n8889Xs2bNvOt0Bbm5uZKk7Oxsv+thhlBfR4NNY6xn1N5spfg4T/bebHm79ntb00Mlx3zshXRo38/a1STw22F9a4zrqZWsrqfNZlNycrLS0tJUWFjonj558mRNmTLF5+UNGjRIQ4YMUXJysvbu3auZM2fqj3/8o9auXSuHw2Fm14OST6EzJSUlJI50ZmVlqXPnziH/Av7mN78J+DJ8rmdqqorfXuIxGtDh3Fy9t3ix0u69R00TEjzbN22qju3b17rYffv26csvv1RGRoaS6jgaU9QvN4dPTk6u8zLM0JDW0WDQmOtZl71xcodkGampNbbxtaapkrZ27KTjziKv+tDCEanOzRJqb9iANOb11Ar1VU/DMFRcXKxt27ZVOtJZFyNGjHD//7zzztN5552nXr166dNPP9WAAQP87m+w8yl0OhyOoA+d5RwOBxu2iXyqZ4cOHr/afjkyaevYUfY6jgRkt9vdP+v6upqxDDOxjpqrUdbT7vsNSOx2u+RlnXypaWp0G5/70hg1yvXUQlbXs/zb3ejoaEvyT4cOHRQfH6/du3c3itDJLZMAAAAC4KefftLRo0cbzYVFXL0OAABggsLCQu3Zs8f9e3Z2trZu3arY2FjFxcVp9uzZGjp0qBITE7Vnzx499NBD6tSpkwYNGhTAXtcfQicAAIAJtmzZoquvvtr9+7Rp0yRJo0aN0pNPPqnvv/9eS5YsUX5+vlq3bq2MjAxNnTq10dyrk9AJAABggosuukjHjlV/N4fly5fXY2+CD+d0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInLBcTE6MhQ4YoJiaGfgBmatq0fuYBABNw9TosFxsbq6FDhwa6G0HTD8A0SUkqXfa2x7CzNWraVArgELAAGjdCJwCEMkIkgBDB1+sAAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALMd9OhGcDh8u+1cuJ6fs59690qlTnm1btSr7BwAAghahE0HJvuJfsr/8ivv3+LAwDW0Vr/j7pymstNSjrWvcLXKNv7W+uwgAAHxA6ERQcg3/g1z9L3b/3lzSkF/+X1qxMUc5AQAIeoROBCe+MgcAoEHhQiIAAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFjOqxGJnE6n+6fdHtw51eVyyW63y+VyyWazBbo7IY96mo+amot6mo+amo+amqu+6ulyuSSV5Z+wMAZx9JfNMAyjtkalpaU6ceJEffQHAAAgqDRr1ozQaQKfKhgZGRn0n9CcTqcyMzOVkpIih8MR6O6EPOppPmpqLuppPmpqPmpqrvqqp2EYKioqsmz5jY1XobP8BbXZbEEfOm02mwzDCIm+hgLqaT5qai7qaT5qaj5qaq76ricfFMwR3CdoAgAAoEEgdAIAAMByhE4AAABYjtAJAAAAyxE6AQAATPDUU08pIyND7du3V0pKim644QZlZmZ6tCkqKtKECRPUqVMntWvXTmPHjlVubq5Hmx9//FHXXnut2rZtq5SUFE2fPl2lpaUebT799FMNGDBAiYmJ+s1vfqPFixdX6s+CBQt0/vnnq3Xr1rr00ku1efNm85+0DwidAAAAJvj88881btw4rV27VitWrFBJSYmGDx/uca/zqVOnavXq1Xr11Ve1cuVKHTx4UGPGjHE/7nQ6dd1116mkpERr1qzRvHnz9Oabb2rWrFnuNtnZ2bruuut08cUXa+PGjbr99tv117/+VevWrXO3WbFihR544AFNnjxZH3/8sdLS0jRixAgdOnSofopRBUInAACACZYtW6brr79eXbt2Vffu3TVv3jzt379fW7ZskSTl5+dr0aJFevTRR9W/f3/17NlTc+fO1VdffaVNmzZJkj766CPt2rVL8+fPV/fu3TV48GBNnTpVL7/8soqLiyVJCxcuVFJSkv7+978rNTVV48eP19ChQ/XCCy+4+zJv3jyNHTtWN9xwg7p06aKnnnpKTZs21aJFi+q9LuV8ujm80+kM+vuLnTlkJ/xHPc1HTc1FPc1HTc1HTc1VX/UsH7SxoKDAI/9EREQoIiKi1vkLCgokSXFxcZKkb7/9ViUlJRo4cKC7zbnnnqt27dpp06ZNSk9P16ZNm9StWzclJCS42wwaNEj33Xefdu7cqfPPP1+bNm3yWEZ5m/vvv1+SVFxcrC1btuiee+5xP2632zVgwAB3uA0En0JnZmamvBg1MyhkZWUFugsNCvU0HzU1F/U0HzU1HzU1l9X1tNlsSk5OVlpamgoLC93TJ0+erClTptQ4r8vl0v33368+ffqoW7dukqScnByFh4crJibGo21CQoJycnIkSbm5uR6BU5LOOuss9/zlbcqnndnm+PHjOnXqlPLy8uR0OqtsU/Ec0/rkU+hMSUkJiSOdWVlZ6ty5MyMImIB6mo+amivU6tnkL3dJR4/6t5CWLVXy/HPmdKgKoVbTUEBNzVVf9TQMQ8XFxdq2bVulI521mTBhgnbs2KEPPvjAsv6FGp9Cp8PhCPrQWc7hcLBhm4h6mo+amitk6nn0qGxnt/VrEcZPP9fLcw2ZmoYQamouq+tZ/u1udHS0T/ln4sSJWrNmjf7973/r7LPPdk9PTExUcXGx8vPzPY525ubmKjExUVLZUc+KV5mXX/xzZpuKFwQdOnRILVq0UFRUlLsuVbWpeBS1PvkUOgEADcOYr1/SkeIT1TxqyOUyZP9ytaSq32jjw5vp9d+Ot6x/QCgyDEOTJk3SqlWr9P777ys5Odnj8R49eqhJkybasGGDhg4dKqns1MX9+/crPT1dkpSenq4nn3xShw4dcn89vn79erVo0UKpqanuNh9++KHHstevX6/evXtLksLDw9WzZ09t2LBBV111laSyr/s3btyocePGWVeAWhA6AaAROlJ8QlFefEVY7fynqwusoanmEF47Qjiksq/Uly1bpsWLF6t58+buczCjo6MVFRWlmJgYjR49WtOmTVNcXJxatGihSZMmKT093R06MzIylJqaqttvv10PP/ywcnNz9eijj2rcuHHur/Vvvvlmvfzyy3rwwQc1evRobdy4Ue+8847eeustd1/uvPNO3XnnnerVq5d+85vf6IUXXtCJEyd0ww031H9hfkHoBAA0eoRwmGHhwoWSpCFDhnhMf/7553X99ddLkmbNmiW73a6xY8equLhYGRkZmjNnjrutw+HQkiVLdN999+nyyy9X06ZNNWrUKE2dOtXdJjk5WW+99ZamTp2q+fPnq23btnr22Wc1aNAgd5vhw4fr8OHDmjVrlnJzc9W9e3ctW7aMr9cBAABC3bFjx2ptExkZqTlz5ngEzYqSkpK0dOnSGpdz0UUXaePGjTW2GT9+vMaPD54j8IROAACCgL9f8Ut8zY/gRugEACAI+PsVv8TX/AhuhE6gAi4oAADAfIROoAIuKADgq1de+kr2p/9U7eN2Sd0Ml+w2e/ULuaOn5OeRTiCYEToBAPBTfGGxbO2Ta2xT6y3MQ2SYaaCuavjIBQAAAJiDI51oUMw4HxPBx377ndWOV+7V15aS1LKlXC/OM79zAACvEDrRoHA+ZgNVy3jl3oy8bPz0s3n9QVDhwyYQGgidAICQxodNIDRwTicAAAAs1yiPdDLqAwD4j3vaAvBFowydjPqAxqCmi2+8xsU3qAFfawPwRaMMnUCjUMvFN97g4hsAgFkInXVU2+gTXuEoEgDARLw3IZgROuvIm9EnasNRJACAmXhvQjAjdAJoFEaP6abDn//Dr2Vw4QsA1B2hE0CjcLhZEy4gBIAA4j6dAAAA8PD5559r/Pjxuuyyy/Tzz2WnXCxZskRffPFFnZdJ6AQAAIDbe++9p5EjRyoqKkrfffediouLJUkFBQV66qmn6rxcQicAAIAJPvvsM/3pT39S165dFRcXp1WrVnk8fueddyouLs7j38iRIz3aHDt2TLfeequSkpKUnJysu+66S4WFhR5ttm3bpiuuuEKtW7fWeeedp2eeeaZSX9555x317t1brVu3Vr9+/bR27Vqvn8ecOXP01FNP6ZlnnlGTJk3c03/3u9/pu+++83o5FRE6AQAATHDy5EmlpaXpiSeeqLbNoEGDtHPnTve/l19+2ePxW2+9VTt37tSKFSu0ZMkSff755/rb3/7mfrygoEAjRoxQ+/bttX79ej3yyCOaPXu2Xn31VXebL7/8UuPGjdPo0aO1YcMGXXXVVRo9erS+//57r55HVlaW+vXrV2l6dHS08vPzvVpGVbiQCAAAwASDBw/W4MGDa2wTERGhxMTEKh/btWuX1q1bp48++ki9evWSJM2ePVvXXnutZs6cqTZt2mjp0qUqLi7W3LlzFR4erq5du2rr1q2aN2+ebrrpJknS/PnzNWjQIP31r3+VJE2bNk0ff/yxFixYoH/8o/a7eCQkJGj37t1KSkrymP6f//xHHTp0qHX+6nCkEwAAoJ58+umnSklJUXp6uu69914dPWO44k2bNikmJsYdOCVp4MCBstvt2rx5s7tNv379FB4e7m4zaNAgZWZmKi8vT5L01VdfaeDAgR5/NyMjQ5s2bfKqj2PHjtX999+vr7/+WjabTQcOHNDbb7+t6dOn6+abb67jM/fxSKfT6ZTNZqvzH6sPTqfT42fVjPrpjBdq7mfgeVfPYOLva2vGumHUWK/6qqlZnyiD4bUPnk/HNb+23gie1yX4txVflhPY+RueYNjua1Jf+1HDKFs3CgoKPPJPRESEIupwC7ZBgwZpyJAhSk5O1t69ezVz5kz98Y9/1Nq1a+VwOJSTk6OzzjrLY56wsDDFxcUpJydHkpSbm1vpCGT5PDk5OYqNjVVubm6l5Zx11lnKzc31qp/33HOPXC6Xhg0bppMnT+qqq65SRESE/s//+T8aP77u9yr2KXRmZma6X4Bgl5WVVe1jLldwPAeX4dKuXbsC3Q2v1FTPYOLva2vGuuFyGV69rlbXtJvhksPPZQTLOmrGczGDt69tTYLldQmlbcXqvgTLe0KwCJbt3htW70dtNpuSk5OVlpbmcTHP5MmTNWXKFJ+XN2LECPf/zzvvPJ133nnq1auXPv30Uw0YMMCUPpvBZrNpwoQJ+utf/6rdu3frxIkTSk1NVfPmzf1ark+hMyUlJSSOdGZlZalz585yOKretdu/XF3Pvaqa3WZXampqoLtRI2/qGUz8fW3tdv/Xb7vdVuPrWl81tdv8P6YWLOuoGc/FDLW9tl4tw4zXpbhEaQ8/UvcFtGwp+9jO/vWhHrYVr5cTBNt9QxIs231N6ms/ahiGiouLtW3btkpHOs3QoUMHxcfHa/fu3RowYIASExN16NAhjzalpaU6duyY+zzQhISESm3Kf6+tTUJCgk/9Cw8PV5cuXXyapyY+hU6HwxH0obOcw+GoYUUMnucQCkFOqq2ewcTf19aMdcPmVa1Cpaah0Mf6491rWx9sZ7et87xlY2uHzrbizXICO3/DEyzreW2s3o+Wf7sbHR1tSf756aefdPToUXdYTE9PV35+vrZs2aKePXtKkjZu3CiXy6ULLrjA3ebvf/+7SkpK3LczWr9+vVJSUhQbGytJ6t27tzZs2KA77rjD/bfWr1+v9PR0r/pVVFSkl156SZ988okOHz4sl8vl8fiGDRvq9Hy5eh0AAMAEhYWF2rNnj/v37Oxsbd26VbGxsYqLi9Ps2bM1dOhQJSYmas+ePXrooYfUqVMnDRo0SJKUmpqqQYMG6e6779ZTTz2lkpISTZo0ScOHD1ebNm0kSSNHjtT//M//6K677tLdd9+tHTt2aP78+Xr00Ufdf/e2227TkCFDNHfuXF122WVasWKFtmzZoqefftqr53HXXXdp/fr1Gjp0qC644ALTAjehEwAAwARbtmzR1Vdf7f592rRpkqRRo0bpySef1Pfff68lS5YoPz9frVu3VkZGhqZOnerxdf2CBQs0ceJEDRs2TDabTUOHDtXjjz/ufjwmJkbLly/XxIkTdckllyg+Pl4TJ0503y5Jkvr06aMFCxbo0Ucf1cyZM9WpUyctWrRI3bp18+p5rFmzRm+//bZ+97vf+VkRT4ROAAAAE1x00UU6duxYtY8vX7681mXExcVVumF8RWlpafrggw9qbDNs2DANGzas1r9XlbZt2/p90VBVguPsfAAAAASFmTNn6uGHH9a+fftMXS5HOgEAAODWq1cvnT59Wr169VLTpk0VFuYZF888b9UXhE5ozNcv6UjxiWoeNeRyGb/ckqTqE4njw5vpjZe3SGeMquCzli3lenFe3ecHAACmGDdunA4cOKDp06crISGBC4lgniPFJxTlxz3Hjpw+IR096vctXOy33+l3cNXYlLrPDwAA9NVXX2nNmjXq3r27qcsldCJ4mBBcAQCAf1JSUlRUVGT6cgmdAKo1ekw3Hf78H34tIz68mV7/bd3H6gUA1K+HHnpIDzzwgKZPn65u3bpVOqczOjq6TssldAKo1uFmTfw69UL65fQLAEDIGDlypCTpmmuu8ZhuGIZsNpuOHDlSp+USOgEAAOD2/vvvW7JcQicAAHAz47SaElepmtj9ixicmhM4F154oSXLJXQCAAA3M06rKTpZrGhOzQlZn332WY2P1zWUEjoBAADgdub48eXOvFcn53SGotOnZb/2T34tYvRN3XU4tql/3XCWKEr+fSIFAAANQ8URh0pLS/Xdd99p1qxZeuCBB+q8XEJngPlzX0pJOhxpN+VrEAC1e+Wlr2R/2r8Pijp92pzOAIBFYmJiKk275JJLFB4ermnTpunjjz+u03IJnQDgpfjCYtnaJ/u1DGN33cYsBoBAO+uss5SVlVXn+QmdAAAAcNu2bZvH74ZhKCcnR08//bTS0tLqvFxCJwAAANz69+8vm80mwzA8pv/2t7/V3Llz67xcQicAAADctmzZ4vG73W5Xq1atFBkZ6ddyCZ0AAABwS0pKsmS5hE4AAIBGbv78+V63ve222+r0N0IudNpvv1M6erT6xyV1M1yy2+zVL+SOnpKftxkC4J3TzhJd6eeQeu+6SuXflzoIVrXt02vVsqU0NsW8DgGN1Lx587xqZ7PZGk/o1NGjtd7b0lHbMiqcGAvAOoYMv+8la4httsHyYp9eE+Onn03sDOCfzz77TM8995y+/fZbHTx4UIsWLdJVV13lftwwDD322GN67bXXlJ+frz59+ujJJ5/UOeec425z7NgxTZo0SWvWrJHNZtPQoUP12GOPqXnz5u4227Zt08SJE/XNN98oPj5e48eP19133+3Rl3feeUezZs3Svn371KlTJz388MO67LLLqu37t99+a2IlqlbD4UAAAAB46+TJk0pLS9MTTzxR5ePPPPOM5s+fr6eeekoffvihmjZtqhEjRqioqMjd5tZbb9XOnTu1YsUKLVmyRJ9//rn+9re/uR8vKCjQiBEj1L59e61fv16PPPKIZs+erVdffdXd5ssvv9S4ceM0evRobdiwQVdddZVGjx6t77//3ufnZBhGpavY64rQCQAAYILBgwfrgQce0JAhQyo9ZhiGXnzxRU2YMEFXXnml0tLS9MILL+jgwYNatWqVJGnXrl1at26dnn32Wf32t79V3759NXv2bK1YsUIHDhyQJC1dulTFxcWaO3euunbtqhEjRmj8+PEeX4/Pnz9fgwYN0l//+lelpqZq2rRp6tGjhxYsWOD1c1myZIn69eunNm3aqE2bNrrwwgu1ZMkSv+rj09frTqfTY8D3QCAlB6Ng+urT376Y8VyMGs9T8+q845YtVfL8c371gm0FNQuObcUcwfBcYD5DTqezykfKp1f3uGk9+OUIX0FBgUf+iYiIUISPpw1lZ2crJydHAwcOdE+LiYnRBRdcoE2bNmnEiBHatGmTYmJi1KtXL3ebgQMHym63a/PmzRoyZIg2bdqkfv36KTw83N1m0KBBeuaZZ5SXl6fY2Fh99dVX+stf/uLx9zMyMtzhtjbPP/+8Zs2apXHjxqlPnz6SpP/85z+67777dPToUd15550+PfdyPoXOzMxM0w6x1lU3w1X7OZsho2Hs6FwuQy4/XxeX4ZLkxfm4tSzD5fKvpv7OX74M15HDcrRrV22b2p7n9RmxOvTF03714z1XiaL8WgKsEfiwFlTbign7jmB4LjCfy2Vo165dNbbxZ0hGb9hsNiUnJystLU2FhYXu6ZMnT9aUKVN8WlZOTo6ksqEkz5SQkKDc3Fx3m4qPh4WFKS4uzj1/bm5upVsalc+Tk5Oj2NhY5ebmVlrOWWed5f47tXnppZf05JNP6k9/+pN72pVXXqmuXbvq8ccfr5/QmZKSEvgjnTUdHQo5ga2lWex2m9+vixmvq91ml93uX039nb98Gf4+nyPNmqhZFJGxYTJju/dzPW9A20qwPBeYz263KTU1tcrHnE6nsrKy1LlzZzkc1h2KMgxDxcXF2rZtW6UjnQ1ZTk6OevfuXWl679693eG3LnwKnQ6HI+ChE8EomNYJf/sS+EAA1I+GtK0Ew3OB+Wy1BkqHw2F56JSk6Ohov/NPYmKiJOnQoUNq3bq1e3pubq66d+/ubnPo0CGP+UpLS3Xs2DH3/AkJCZXalP9eW5uEhASv+tqxY0f961//0n333ecx/V//+pc6derk1TKq0pAOGwIAAASl5ORkJSYmasOGDe5pBQUF2rx5s9LT0yVJ6enpys/P9xiGcuPGjXK5XLrgggvcbT7//HOVlJS426xfv14pKSmKjY2VVHZE8sy/U96m/O9Up/zq9qlTp+qxxx7TyJEj9cQTT+iJJ57QyJEjNXv2bE2dOrXONSB0AgAAmKCwsFBbt27V1q1bJZVdPLR161b9+OOPstlsuv322zVnzhz9+9//1vbt23XHHXeodevW7nt5pqamatCgQbr77ru1efNm/ec//9GkSZM0fPhwtWnTRpI0cuRIhYeH66677tKOHTu0YsUKzZ8/3+M8y9tuu03r1q3T3Llz9cMPP+jxxx/Xli1bdOutt9bY/4suukiXXnqpjhw5onfffVctW7bUqlWrtGrVKrVs2VLr1q2r8sp8b4XezeEBAACC0JYtW3T11Ve7f582bZokadSoUZo3b57uvvtunTx5Uvfcc4/y8/P1u9/9TsuWLVNk5K9jri1YsEATJ07UsGHD3DeHf/zxx92Px8TEaPny5Zo4caIuueQSxcfHa+LEibrpppvcbfr06aMFCxbo0Ucf1cyZM9WpUyctWrRI3bp1q7H/K1eu1OLFi/Xggw/K5XLp6quv1qOPPqoLL7zQlPoQOgEAAExw0UUX6dixY9U+brPZNHXq1Bq/oo6Li9PLL79c499JS0vTBx98UGObYcOGadiwYTW2qahfv37q16+fZs+erXfeeUeLFy/W0KFD1bFjR40ePVqjRo1ynzdaF3y9DgAAALdmzZrphhtu0KpVq7Rp0yZdc801evnll9W9e3eNGjWqzssldAIAAKBKnTp10r333qsJEyaoefPmWrt2bZ2XxdfrAAAAqOSzzz7TG2+8offff182m01/+MMfNHr06Dovj9AJAAAASdKBAwe0ePFivfnmm9q9e7d69+6txx9/XMOGDVOzZs38WjahEwAAABo5cqQ2bNig+Ph4XXfddRo9erRSUlJMWz6hEwAAAGrSpIn+93//V5dffrklIz0ROgEAAKA333zT0uVz9ToAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAABM8/vjjiouL8/jXu3dv9+NFRUWaMGGCOnXqpHbt2mns2LHKzc31WMaPP/6oa6+9Vm3btlVKSoqmT5+u0tJSjzaffvqpBgwYoMTERP3mN7/R4sWL6+X5+YvQCQAAYJIuXbpo586d7n8ffPCB+7GpU6dq9erVevXVV7Vy5UodPHhQY8aMcT/udDp13XXXqaSkRGvWrNG8efP05ptvatasWe422dnZuu6663TxxRdr48aNuv322/XXv/5V69atq9fnWRdhge4AAABAQxEWFqbExMRK0/Pz87Vo0SItWLBA/fv3lyTNnTtXffr00aZNm5Senq6PPvpIu3bt0jvvvKOEhAR1795dU6dO1cMPP6wpU6YoPDxcCxcuVFJSkv7+979LklJTU/Wf//xHL7zwggYNGlSvz9VXPh3pdDqdAf+HYGQEugNn8LcvhknLAIJdQ9pWguG5wHxGrXmgvnJHQUGBx7/Tp09X2+vdu3era9eu6tmzp2699Vb9+OOPkqRvv/1WJSUlGjhwoLvtueeeq3bt2mnTpk2SpE2bNqlbt25KSEhwtxk0aJCOHz+unTt3utucuYzyNl999ZXfFbeaT0c6MzMzZRiB3TC7GS45AtoDMzWMnZzLZcjl5+viMlyS5PcyXC7/aurv/OXL8LceaMjM2O79XM8b0LYSLM8F5nO5DO3atavGNllZWZb2wWazKTk5WWlpaSosLHRPnzx5sqZMmVKp/QUXXKDnn39enTt3Vk5OjmbPnq0rr7xSn3/+uXJychQeHq6YmBiPeRISEpSTkyNJys3N9QicknTWWWdJkkeb8mlntjl+/LhOnTqlqKgo/5+4RXwKnSkpKbLZbFb1xSt2W0M6DTWwtTSL3W7z+3Ux43W12+yy2/2rqb/zly+jYa2nMJcZ272f63kD2laC5bnAfHa7TampqVU+5nQ6lZWVpc6dO8vhsO4jvmEYKi4u1rZt2zzyT0RERJXtBw8e7P5/Wlqafvvb36p79+565513FBkZaVk/Q4VPodPhcAQ8dCIYBdM64W9fAh8IgPrRkLaVYHguMJ+t1kDpcDgsD52SFB0dXaf8ExMTo86dO2v37t265JJLVFxcrPz8fI+jnbm5ue5zQBMSErR582aPZRw6dEiSPNqUTzuzTYsWLYL6KKfE1esAAACWKCws1J49e9S6dWv16NFDTZo00YYNG9yPZ2Zmav/+/UpPT5ckpaen6/vvv/cIlevXr1eLFi3cR33T09M9llHe5sxbMwUrQicAAIAJpk+frs8++0z79u3Tl19+qTFjxsjhcGjEiBGKiYnR6NGjNW3aNH3yySfasmWL/vKXvyg9Pd0dOjMyMpSamqrbb79dW7du1bp16/Too49q3Lhx7q/0b775ZmVnZ+vBBx/UDz/8oJdfflnvvPOO7rjjjkA+da9wyyQAAAAT/PTTTxo3bpyOHj2qVq1aqU+fPvrwww/VqlUrSdKsWbNkt9s1duxYFRcXKyMjQ3PmzHHP73A4tGTJEt133326/PLL1bRpU40aNUpTp051t0lOTtZbb72lqVOnav78+Wrbtq2effbZoL9dkkToBAAAMMXChQtrfDwyMlJz5szxCJoVJSUlaenSpTUu56KLLtLGjRvr1MdA4ut1AAAAWI7QCQAAAMsROgEAAGA5QicAAAAs59WFROU3Rw30EJiSZERGStWMBOCtKEe4Iu1N/O6H4Wc/jKiooHguUfYm/i3D7vL7dTHKR2rwcxlmPBdJAa9HsKyjQbF+KXieS7Bs9/4uoyFtK8HyXBrSOhos273srmpzh2EYstlsMgzD0mxyZv5hcBz/2QwvXi2Xy6Xjx4/XR38AAACCSosWLWS38+Wwv7wOne4ZgjzpFxQUKC0tTdu2bVN0dHSguxPyqKf5qKm5qKf5qKn5qKm56queZ0YkQqf/vPp6PZQKbbPZVFhYKJvNFvQBORRQT/NRU3NRT/NRU/NRU3PVVz15rcwVOmkSAAAAIYvQCQAAAMs1uNAZERGhyZMnK8LPq/dQhnqaj5qai3qaj5qaj5qai3qGJq8uJAIAAAD80eCOdAIAACD4EDoBAABgOUInAAAALEfoBAAAgOUInTAV16Uh2J05whoQrNiXoiFq1KGTjdpcn376qdasWaOSkpJAd6VBYT01z7p16/TGG2/o9OnTge5Kg8I6ai72pWioGmXo3L59u3Jzc2Wz2dhZmuT111/X6NGjlZubq2PHjknijchfX3/9tfbt28d6apLXX39dN998s06fPq0jR464p1PbumNfaj72pWjIGl3oXLp0qa666io9++yzysnJYWdpgnXr1mn69Ol64oknNHbsWCUkJEiSnE6nJL7OrIvly5fryiuv1NSpU7V3717WUz998sknmjFjhp544gmNGzdOrVu3liSVlpYytnIdsS81H/tSNHSN6ubwn332mf72t78pPj5epaWluvjii3X77bcrMTFRhmHw5uOj8prNnDlThw8f1jPPPKOsrCy9+OKLOnDggMLDw/Xggw+qY8eOge5qSPniiy903333KSkpSadOnVJ8fLwefPBBdejQgfXUR+X1evbZZ/Xtt9/qlVde0Q8//KAnnnhCOTk5On36tB544AH17dtXYWFhge5uyGBfai72pWgsGs2RTsMw9P/+3/9T9+7d9c9//lOXX365PvroI7344ot8SvfTnj17dM455+jEiRMaMmSITp8+rfj4eB09elQDBgzQ119/LYlP6d46cOCAOnTooMcff1zXXXedcnJy9Mgjj7iPeFJH75WHn5ycHCUmJqqwsFDXXHONmjdvrr59+6p9+/YaOXKk3n33XUmso95gX2od9qVo6BrNR3ubzaahQ4fq/PPPV5s2bTRx4kQ5nU598MEHkqTbbrvN/ZUbn9S9U16jxMREvf/++zIMQ5deeqmee+45SVJxcbH+8pe/aNy4cfrkk0/UokWLQHY3ZAwfPlwpKSnq0KGDOnToIKfTqSVLluiRRx7R9OnT3Uc7ytdTl8slu73RfH6sk7i4OL322mtKTU1VRkaG/vGPf7gfmz59uqZMmaIBAwaoVatWAexlaGBfaj72pWgsGtU7VUxMjHr27On+FD5lyhRdeeWV+uijjzR//nwdOnRIJ06c0JQpU5Sfnx/g3oaOa665RlFRUXrjjTfUrFkzSWXnIIWHh+uWW26R0+nU/v37A9zL4FW+Pp559KJ79+7u/48ZM0Z/+tOfdPDgQc2cOVP79u1TUVGRbrnlFh07dozAWUF5PQ3DcP9/9OjRSk5O1uOPP66CggJJZW/kknTrrbcqPDxcu3btCkyHQ1BsbKx69uzp/p19qTmGDh2qpk2bsi9Fg9Wgj3R+9tln+v7779WkSROdf/75+s1vfiOp7FNlaWmpwsLCNHnyZEnS6tWrVVRUpK+++kpHjx7VrFmzAtn1oFVVTXv27Knzzz9fX3zxhZo1a6aSkhI1adJEktSiRQvFxsbK4XAEuOfB6+DBg2rTpo3sdnulI0PlRzHHjBkjm82mJUuWaNq0afrpp5+UnZ3NEY8qlNfzzK95W7VqpSuvvFLPP/+8tm/frhMnTrjf1A3DUFxcnKKiogLZ7aD23Xffaffu3XI4HOratas6d+7sfqx8HWVf6puqatqjRw9169ZNX3zxhb766iv2pWh4jAbqtddeM5KSkoxLL73U6NOnj5GQkGDMmTPHyMvLc7cpKSlx///BBx804uLijIEDBxrFxcWGYRhGaWlpvfc7mFVV0yeeeMJwOp3GyZMnjcmTJxsdO3Y0/vCHPxg7duww/vvf/xrXX3+9MXz4cMPpdAa6+0Hp7bffNjp37mwsWbLEPc3lcnm0ObN28+bNM+Li4oxBgwaxnlahqnqWb+enTp0ynn32WaNz585G7969jfXr1xv/9//+X+P66683rrrqKtbRarz++utGWlqaceGFFxrnn3++cfnllxvffvutR5sz10H2pbWrqqb//e9/DcMwjMLCQmPSpElGp06d2JeiwWmQofOHH34wunXrZixdutQwDMM4dOiQsXDhQiM+Pt647777jCNHjrjbulwuIy8vz7jiiiuMQYMGud+gzgykqLmmd999t1FcXGycOnXKeOmll4yMjAzjrLPOMvr162f8/ve/d7/xsLP0tH79eqNLly7GgAEDjL59+xpvvfWW+7GKwbN8Pb3yyiuN/v37s55WoaZ6ltfp9OnTxtq1a40RI0YYycnJxoUXXmgMGzaMdbQa77//vpGcnGwsW7bMKCgoMD755BNj+PDhxnPPPWcYhud6yr7UO7XV1DAM4+TJk+xL0SA1yNC5Y8cOo1evXsbOnTs9pv/73/824uPjjRkzZhiG8esO89VXXzXOOecc9wbNTrKy2mr64IMPGobx6xGN//73v8aePXvcO0dq6qmwsNC46667jLvvvtv45JNPjHvuucfo3bu3R1Cq+MayfPlyo2/fvqynVfCmnhXrlZmZaeTm5rKOViM3N9e4/vrrjccee8xj+j333GP8/ve/r3Ie9qU186am5etj+fsT+1I0JA3ynE6Xy6Xs7GwdOHBAqampcjqdstlsuuKKK/TCCy/otttuU9++fTV48GBJ0o033qgxY8bIbre7z/WEJ29q2q9fP11++eWSpF69ennMS009NWvWTLfccosOHTqkiy66SK1atZJhGHryySclSddee22lczyHDx+uP/zhDx7nJKOMN/UMCwuTy+WSzWaTzWZTp06d3BdhsY5WZrfb1aVLF/Xt21fSr+du9u7dW9u3b5dU+ep09qU186am5fUs/9mjRw/WUzQYDfKy127dumnUqFGaPn26duzY4T7x2ul06o9//KOuvvpqvffee3I6ne6xbcvf4Nmgq+ZNTVeuXCmn01npHnJcXV21Hj166NJLL5UkdenSRePHj1e/fv00Z84cvf3225Kkw4cPa82aNe55yi+OYT2tzJt6HjlyRGvXrpXkuV6yjlYWHx+vG2+8UQMGDJD0awhq2bKlJM/RnHbs2OGej31p9epSU9ZTNCQNdq9w3XXX6aefftLMmTP10EMPKTU11X0la3R0tAoKCuRwODyuBOR+cjXztqbwTfnRoq5du+rWW2+VzWbTU089pePHj2vp0qU6cuSILrvsskpHQFA1X+uJ6iUlJUnyPKKZl5engoICd6gcMWKEioqKtGrVKvd81LZ6da0p0BA02I9NF198sUaNGqXCwkLdd999+uabb2Sz2XTy5En9+OOPatOmTaC7GHKoqTXOfIPu1q2bbrvtNl1wwQWaOHGiTp8+rc8//5xRXnxAPc1XMURGRERIKjtt4ccff9Q777wTgF6FNmqKxqhBHuks/wR57bXXqkWLFnrrrbc0aNAg9ezZU6dOnZLNZtPSpUs92qJm1LT+nH322frmm2/Uq1cvrVmzRmFhYZwf5wfqaa6EhASFh4frqquu0oEDB/Tll1+qSZMm1NQP1BSNRciuzeXB5syAU35S9plDA15xxRW66KKLdN111yk7O1vNmjXTqFGjeOOpAjU1X001rUpJSYkefvhhGYah1atXU9MKqKf5fK3psWPH9PXXX+v8888nHFWDmgJVsxkh+B3TmRvvoUOHFBUVpWbNmlU6ulbTETen08n5h2egpubztqYV7dixQ+eee64cDgdvPGegnuarS023bt2qt956Sw8//DAhvgrUFKheSIbOco899pjee+892e12tWrVSo899pi6du3KV7t+oKbmq2tNCfFVo57mq2tNCUfVo6ZAZSF1IdGZt+JZvHix5s+fr9tvv1033XST7Ha7hgwZ4r4dSghn6XpFTc1nVk0JSGWop/nqWtOK9SUc/YqaArULySOdq1ev1n//+1917NhRo0aNck+/4447tHbtWn322Wdq3bp1AHsYeqip+aipuain+aip+agpUL2QOtIpSd98842mT5+uuXPnur+mKC4uliS98MILOvvss/Xcc88Fsoshh5qaj5qai3qaj5qaj5oCNQv60FnxQGynTp10yy23KC4uzj3KSHh4uEpLS+V0OtW2bVsVFRUFoqshg5qaj5qai3qaj5qaj5oCvgnq0Fk+TnK5EydOKCYmRjfddJPuu+8+7d27V+PHj5dUdh6Mw+HQoUOH3DfZRWXU1HzU1FzU03zU1HzUFPBd0J7TeeZtJ+bOnastW7bou+++05gxYzR48GClpKRo4cKFevrppxUbG6tzzz1XdrtdW7Zs0ZdffsnJ2FWgpuajpuainuajpuajpkAdGUHu4YcfNs4991zj+eefN/75z38aycnJxpgxY4zjx48bx48fNxYsWGD89re/NX73u98Z69evd89XUlISuE4HOWpqPmpqLuppPmpqPmoK+CaoP2598803WrlypRYtWqT09HR98803Kiws1JVXXqnmzZtLkm644Qa5XC69/fbbWrFihQYOHCip8ri2KENNzUdNzUU9zUdNzUdNgToIdOo9U1FRkcfvmzdvNjIyMgzDMIwVK1YY7dq1M15++WXDMAzj+PHjxkcffWQYhmEUFBQY8+fPNwYOHGj8+c9/rt9OBzlqaj5qai7qaT5qaj5qCvgvaC4k+uijjzR//nxt3rzZPa24uFgHDx7Ua6+9pr/97W966KGHdMstt0iSNm/erIULF+qHH35QixYtdP3112vYsGE6ePCgDh48GKinEVSoqfmoqbmop/moqfmoKWCSQKdewzCMRYsWGd26dTPuvfdeY/PmzR6P3XLLLUZcXJwxe/Zs97SioiLjuuuuM8aOHWs4nU739OPHjxvHjh2rr24HNWpqPmpqLuppPmpqPmoKmCfg53QuX75ckyZN0ty5czVo0CBFR0d7PD5+/Hjl5uZq8eLFSkpKUl5enj788EP9/PPP2rhxo+x2u/vWFeXn0TR21NR81NRc1NN81NR81BQwV0BvmXT48GH9+c9/1tChQ3Xrrbe6pxcWFmrnzp0KCwtTz549lZWVpaeffloff/yxOnXqpA4dOuipp55SWFiYSktLuf3EGaip+aipuain+aip+agpYL6Abw2HDx9W27Zt3b+/8sor+uSTT/Tee+8pISFBqampevfddzV37lwdOXJE8fHx7rZs0FWjpuajpuainuajpuajpoC5An4hUUFBgdauXauNGzfqxhtv1MKFCxUfH6/ly5dr9uzZys7O1hNPPCFJiomJcc9nGAYbdDWoqfmoqbmop/moqfmoKWCugG4VrVq10rx58zR27Fht3LhRzZs312OPPaa0tDS1bNlSeXl5io6OltPpLOvsGRsx9zmrGjU1HzU1F/U0HzU1HzUFzBfwj2IDBgzQ5s2bdeLECSUnJ1d6vHnz5mrdunUAeha6qKn5qKm5qKf5qKn5qClgrqAde/3w4cP6y1/+oqNHj2r16tVyOByB7lLIo6bmo6bmop7mo6bmo6ZA3QT8SGdFR44c0Wuvvab//Oc/Onz4sHuDdjqdbNh1RE3NR03NRT3NR03NR00B/wT8QqKKfv75Z3355Zfq1KmT1qxZoyZNmqi0tJQN2g/U1HzU1FzU03zU1HzUFPBPUH69np+fr+joaNlsNj5BmoSamo+amot6mo+amo+aAnUXlKGznGEYXAVoMmpqPmpqLuppPmpqPmoK+C6oQycAAAAahqA7pxMAAAAND6ETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACW+/8YGgsZjss0lQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHcCAYAAACUORFqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY00lEQVR4nO3de3wU9f3v8ffu5g7kQiABhCwgMVyCQG2g4AUE0aqIFKgWBbSKeOmxVuWOqEhF+YnUC6KIpf4qIsqlXqAKHkTw0ipSUUDA5ABBLCRcE0IISXbn/IFZ2Vx3szPZTfJ6Ph48lsx+Z/Ldz87MvjM7M1+bYRiGAAAAAAvZg90BAAAANHyETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWC/Olkdvt9vzfZrNZ1hkAAIBQce74OXY7x+kC5VPolKSTJ09a2Q8AAICQ1KxZs2B3oUHwOXRKUlRUVMgf6XS5XMrMzFRqaqocDkewu1PvUU/zUVNzUU/zUVPzUVNz1VU9DcNQUVGRZctvbHwKnWVB02azhXzotNlsMgyjXvS1PqCe5qOm5qKe5qOm5qOm5qrrevKemYMTFAAAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAoB44ceKE3n33XZ04cSLYXQFqhdAJAEA9kJeXp9WrVysvLy/YXQFqhdAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAE/z1r3/VxRdfrJSUFKWkpOjKK6/Uhx9+6Hl+yJAhSkhI8Pp3//33B7HHdSss2B0AAABoCNq0aaNHHnlE559/vgzD0BtvvKGbb75ZGzduVJcuXSRJt9xyi6ZOneqZJzo6OljdrXOETgAAABNcffXVXj/PmDFDixcv1ldffeUJndHR0UpOTg5G94KOr9cBAABM5nK5tHLlShUWFiojI8Mzffny5Tr//PPVt29fzZw5U4WFhUHsZd3y60iny+WSzWazqi+mcLlcXo8IDPU0HzU1F/U0HzU1nxk1dbvdnsfG/t7U1TpqGIYkKT8/3yv/REZGKjIystJ5duzYoauuukpFRUVq0qSJXnvtNXXu3FmSNHLkSLVr106tWrXSjh07NHPmTGVlZem1116z9HWECptRVtFqGIah/Px8ZWdny4fmAADAZLm5uVq6dKluuukmJSUlBbs7jYLNZpPT6VR6eroKCgo80ydPnqwpU6ZUOk9xcbEOHDig/Px8vfPOO3rttde0evVqT/A816ZNm3T99dfrP//5jzp06GDZ6wgVfh3pTE1NrRdHOrOystSpUyc5HI5gd6feo57mo6bmop7mo6bmM6OmZRecOJ1OpaSkmNm9eqeu1lHDMFRcXKzt27dXONJZlYiICHXs2FGS1LNnT3399dd66aWX9Mwzz1Roe9FFF0mS9uzZQ+gsz+FwhHzoLONwONhZmoh6mo+amot6mo+ami+Qmtrtds8j78tZVq+jZd/uxsbG1jr/uN1uFRcXV/rctm3bJKnRXFjE1esAAAAmmDlzpq644gq1a9dOJ0+e1IoVK/Tpp59q5cqV2rt3r1asWKHBgwerefPm2r59u6ZPn65+/fopPT092F2vE4ROAAAAExw5ckR33323cnJyFBsbq27dumnlypW6/PLLdeDAAX388cd68cUXVVhYqPPOO0/XXXedJkyYEOxu1xlCJwAAgAmef/75Kp9r27at1qxZU4e9CT3cpxMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAaCQOl0gvHrTrcEmwe4LGiNAJAEAjcaREeumQQ0cInQgCQicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYLmwYHcAAACUs3+/VFjoPS0n5+zjvn3S6dM/T4+JkVJS6qxrQG0ROss5ceKENm3apMsuu0zx8fHB7g4AoLHZv19hI2+oMDkxLExDWyQqcep0hZWWej1XuuItgidCHl+vl5OXl6fVq1crLy8v2F0BADRG5Y9w/iS+tFTDDuUovlzgrG4eIJQQOgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAA8NmJEyf07rvv6sSJE0GZH/UXoRMAAPgs0OGiGW668SJ0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWCwt2B4It81SOCkqLPD8fLjgoSdpdcFDHyt23tmlYlFKbJNdl9wAACJ79+6XCQu9pOTlnH/ftk06f/nl6TIyUklJhEXzOokyjDp2Zp3LUbeMMr2nRRVJamvTm7sU6nV1xnh39Z7FBAAD8cvDgQb344ouaPHmy2rZtG+zu+Gb/foWNvKHC5MSwMA1tkajEqdMVVlrq9Vzpire8giefszhXo/56/dy/vMqcjpK2djn76Os8AABU59ChQ1q4cKEOHToU7K74rvwRzp/El5Zq2KEcxZcLnJXNw+csztWoQycAAADqBqETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABM8Ne//lUXX3yxUlJSlJKSoiuvvFIffvih5/mioiJNmDBBHTt2VNu2bTV27Fjl5uYGscd1i9AJAABggjZt2uiRRx7Rhg0b9NFHH+nSSy/VzTffrJ07d0qSpk2bpg8++ECvvvqqVq9erUOHDmnMmDFB7nXdadQ3hwcAADDL1Vdf7fXzjBkztHjxYn311Vdq06aNlixZokWLFumyyy6TJM2fP199+vTR5s2blZGREYwu1ym/QqfL5ZLNZrOqL6ZwuVxej9W2dbv9X77b7dOyGwp/6omKsrKydPLkSa9pbrdbP/zwgwoKCmS3//xlQ7NmzdSpU6e67mK9s/+MTafOWR3dbkM/uKNVWmDIbvfepps4pJRIo8IybD/8UOWNryuIiZHRrl0gXa532O4DU9l2X3akq+yxTGXbva0Wn01ut1uGL597LttPj265XBW3DbP7YdXnbF2to4Zxtkb5+fle+ScyMlKRkZHVzutyufT222+rsLBQGRkZ+uabb1RSUqIBAwZ42lxwwQVq27YtobMymZmZnjcg1GVlZdXYJvuM/+dRZO/LVkzk6ZobNjC+1BPesrOzdf311/s1zzvvvCOn02lRj+q/g+4IPVDSpZJnLpD2VD7PvPCdam0v9vwccShHnadM9ev37nryCRW3anzD8rHd+6+m7f7222+vMK38dh+9L1up/v7efdny5ZMp2x0t6QJlZ2fLbq9+DjP6cbjkeMXlFklpe6XdHSoflejw/v9qd7hvn7NWr6M2m01Op1Pp6ekqKCjwTJ88ebKmTJlS6Tw7duzQVVddpaKiIjVp0kSvvfaaOnfurG3btikiIkJxcXFe7ZOSkpRTNp59A+dX6ExNTa0XRzqzsrLUqVMnORyOatsW5kdLB/1bvrO9U2mxKTU3bCD8qSe8Ffp6JO0cLVu2VFpamgW9aRjchTYpS3rspNS+khH4zrUvTHq4mZTs7Ki0mJ//WK7NHqxjq2QZjeh9YbuvPTO2+9qso872Tp/W0bJtyOl0em0XlTGjH2mStnXoqJOun4e2PPLjIa364G967Krfq8V5rbzmb+aIUqcmSTX+nrpaRw3DUHFxsbZv317hSGdVUlNTtWnTJuXn5+udd97RPffco9WrV1vWx/rEr9DpcDhCPnSWcTgcNa6IDrv/11E57PZGuRP2pZ7wVpt6UefqlZWmfanU2cdv1RwOu7xKWovt3m63S43wfWF99J8p272F62hZkwrbReULNaUfabGtvX7Ozj+73C7N2siZENg3O1avo2Xf7sbGxvqcfyIiItSxY0dJUs+ePfX111/rpZde0vDhw1VcXKy8vDyvo525ublKTm4c36Rw9ToAAIBF3G63iouL1aNHD4WHh2vjxo2e5zIzM3XgwIFGcT6nxNXrAAAAppg5c6auuOIKtWvXTidPntSKFSv06aefauXKlYqLi9Po0aM1ffp0JSQkqFmzZpo0aZIyMjIInQAAAPDdkSNHdPfddysnJ0exsbHq1q2bVq5cqcsvv1ySNHv2bNntdo0dO1bFxcUaOHCg5s6dG+Re1x1CJwAAgAmef/75ap+PiorS3LlzG1XQPBfndAIAAMByhE4AAABYjtAJAAAAy9Xrczqzi6TCciNsuVw2Zbuj5S60ed0qLMYuOSsZ+cAU+/f7NaSeUhrPzeWBc2WeylFBaVHNDSU1DYtSapPGce86AGgM6m3ozC6Shu4Mr+LZC6RKRsZ6t0uJV/BsGlYxhdY0PFeFefbvV9jIG3zvuKTSFW8RPNHoZJ7KUbeNM/yaZ0f/WfUmeJ44cUKbNm3SZZddpvj4+GB3ByY6XCKtOGLXyBZutazqYwdAjept6Cw7wunPcHjlj4qmNknWjv6zvI68HD5wUCs+WKw///o2tWzrPYpCpUdeajHkWa3mAeo5X49wBjpPsOTl5Wn16tXq0aMHobOBOVIivXTIoQFxhE4gEPU2dJbxZzi8ypQPkdknzj6mNW0tZ1xgw3MBAADgLC4kAgAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGC5en+fTgB1gyEs0RhUNrzy3iLvxzKWDq8MNECETgA1auhDWAJSTcMrS1OzKz5XfnhlU8TEVDr5RFiYPm6RqAFHjiq+tNSneYBQQugEUKOGPoQlIFU8wmnVPDVKSVHpircqDJl8NCdH777+uro/+ICaJp/zB11MjJSSYkFHAHMROgEACDWVhcjo6LOP7dtLToZpRv3DhUQAAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALMd9OgGgFsoPC3q44KAkaXfBQR3L827LsKAAQOgE4IOmYZWP8xddJKXtlXZ3kE5H+TZP0FUyXGC1wwtWMk9lw4JGF0lpadKbuxfrdHbFRTAsKAIVFxenIUOGKC4urm5+IcNxwmSETgA1Sm2SrB39Z1UY2vLwgYNa8cFi/fnXt6ll29ae6SF9ZK+SIQarHF5QqnSIwcqG+DwdJW3tUvWvZVhQBCo+Pl5Dhw6tu1/IcJwwGaETgE8qC5HZJ84+pjVtLWdcPRqWr/wHI8MLApVjOE6YiAuJAAAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAA1DPFxcXKzMxUaWX3Fg5RhE4AAIB6orCwUPfee6/atGmjvn376sCBA5KkSZMm6S9/+UuQe1c9QicAAA1QdpG0s9D7396fxijYW+65bMYuqDcee+wxbd++Xe+9956ion4e+W3AgAH6xz/+EcSe1YybwwP10IkTJ7Rp0yZddtllio+Pr9UyDpdIK47YNbKFWy3Dze1fZWozLGZdDaVZ58MLwidmrOdmLMMfTZs2rZN5apJdJA3dWfWGPTW74nPvdimRM0RHr8XP1qxZo8WLFysjI0M2m80zvXPnztq3b1/wOuYDQidQD+Xl5Wn16tXq0aNHrT9Ij5RILx1yaEBc3YTOqobSrEpdDqVZ58MLwidmrOdmLMMfqamp2rFjhwoKCrymu1wuZWdny+l0yuFweKY3bdpUqamppvej0H328bGTUvsaTvnbFyY93OzneRDajh49qpYtW1aYfurUqSD0xj+ETgB1JmTHYwdMVFmIdLlciomJUVpamlfotFr7Uqmzq85+HepAz549tW7dOo0fP16SPEc7X3vtNfXu3TuYXasRoRMAAKCemDFjhm644Qbt2rVLpaWleumll7R79259+eWXWr16dbC7Vy0uJAIAAKgn+vbtq02bNsnlcqlr167asGGDWrRoobVr16pnz57B7l61ONIJAABQj3To0EHPPvtssLvhN450AgAAmGDevHkaOHCg2rVrp9TUVN18883KzMz0ajNkyBAlJCR4/bv//vt9/h3r1q3T+vXrK0xfv369Pvzww4Bfg5UInQAAACb4/PPPNW7cOK1bt06rVq1SSUmJhg8fXuHK8ltuuUW7du3y/Js5c6bPv2PmzJlyuSpeHWYYhl/LCQa+XgcAADDBihUrvH5esGCBUlNTtXXrVl188cWe6dHR0UpOrt3dPPbs2aPOnTtXmH7BBRdo7969tVpmXeFIJwAAgAXy8/MlSQkJCV7Tly9frvPPP199+/bVzJkzVVhY6PMyY2NjK70J/J49exQTExNQf63m15FOl8vldff7YHK5/O+Hy+WWy2VU28btdnseKzt8XZ7N7f/ddN1utwwflh0KymrgSy0amv1nbDrl48tu4pBSIr3XrdrUzOVyVZgv61SuTrq8b6h+5OQhSdLOk//V4eM/r4PNHFHq1CTJx99l++mx5u2iKv5uL4Gyarv3e5m12O5ddVQjM9Rmuw90e6mMv+tXoNuKletXXe9Ly17LPh8+5cva+PpaAt3uzdhv1FU9DeNsPfLz873yT2RkpCIjI6ud1+12a+rUqerTp4+6du3qmT5y5Ei1a9dOrVq10o4dOzRz5kxlZWXptdde86lPV199taZOnaolS5aoQ4cOks4GzoceekhXX321vy+xTvkVOjMzMz1vQLBlu6MlXeDfPNnZsttPV9smNzfX0/b06erbSlL0vmz5O5ZE9r5s1bzkwJ06dUrffvutLrzwQjVp0iSgZWVlZZnUq/rhoDtCD5R08WueeeE71dpe7Pk5Ozvb79+bnZ3t9ZdqdslxXf/j/1ZoF10kpaVJb37/N53e7/3cO+fdImd4QoV5Kvyun7YhX7aLqvi7vQTKqu3e736cyfV/nn3Ziomsiy3fPL5u92ZsL5XxZ/0yY1upi/WrrvalOe4ISV30cDM/5sneI3sN74kU+HZv5n7D6nrabDY5nU6lp6d7jTI1efJkTZkypdp5J0yYoJ07d+r999/3mn7rrbd6/t+tWze1atVK119/vfbu3esJkdWZOXOmfvvb36p3795q06aNJOm///2v+vbtq1mzZvnx6uqeX6EzNTU1ZI50ugttkp/rmtPpVFpM9aE5Ojra0zYlJaXGZdamGs72ThlpabWY0z/79+/XF198oYEDB/r0WirjcrmUlZWlTp061ekoGsFWm/Ur2dnRa/3y5+uSMk6nU2nnrBuF+fulHyu2Ox0lba3iM75lShulxdb8fpe9Rl+2i6r4u70Eyqrt3l+F+dHSQT/70d7p0/sSCvzd7s3YXirjz/plxrZi5fpV1/vSNElvnznj59HnmgOPFPh2b8Z+o67qaRiGiouLtX379gpHOqszceJErV27Vv/85z913nnnVdv2oosuknT2aKUvoTMuLk5r167Vhg0btH37dkVFRalbt25e54yGKr9Cp8PhCJnQWZt1zOGw1zif3W73PPq0Itv9Py3WbrfX7gXU5vfIj9dSDYfD0ahCpxnrV23qVb7OjlqsXw4f3++yJr5sF1Uxcx3zhVXbvd/LtPB9CSW+bvehsD824z2pi/WrLvelHSw6vS/Q7b4+fTaVfbsbGxvrU/4xDEOTJk3SmjVr9N5778npdNY4z7Zt2yTJrwuLbDabBg4cqIEDB/o8Tyjg6nUAAAATTJgwQStWrNDSpUvVtGlT5eTkSDobWqOjo7V3716tWLFCgwcPVvPmzbV9+3ZNnz5d/fr1U3p6epXLXbhwoW655RZFRUVp4cKF1fbhzjvvNPU1mYnQCQAAYILFixdLOnsD+HO98MILuummmxQeHq6PP/5YL774ogoLC3Xeeefpuuuu04QJE6pd7oIFC/Tb3/5WUVFRWrBgQZXtbDYboRMAAKChO378eLXPt23bVmvWrPF7ud98802l/69vuE8nAABAPVBSUqJevXpp9+7dwe5KrRA6AQAA6oHw8HCdOXMm2N2oNUInAABAPXH77bfr2WefVWlpabC74jfO6QwR2UVSoY+DnMTYJWeUNf3IzMz0ugGuy+VSdna2CgsLK9yWomnTpkpN9ffW+ABCDds9UH98/fXX2rRpkzZs2KCuXbtWGPrS15GNgoHQGQKyi6ShO8P9mufdLiWmB8/MzEx169bNr3l27NjBB1AVmjZtGvA8TcMqf5Oji6S0vdLuDmdvfu3LPGgcTpw4oU2bNumyyy5TfHx8je3Z7uGvuLg4DRkyRHFxccHuSqMUFxen6667LtjdqBVCZwgoO8L52EmpfQ1Hy/eFSQ838/2oqD/OPdJh5TyNRWpqqnbs2FGhRt99951+//vf629/+5vXeLyVHUFKbZKsHf1nqaDUezzpwwcOasUHi/XnX9+mlm1b/7yMsCilNvH9BsNoePLy8rR69Wr16NHDp9DJdg9/xcfHa+jQocHuRqPjdrv13HPPKSsrSyUlJbr00ks1ZcoUzwhP9QGhM4S0L5U6+zhkGeqHyo4GuVxn3+S0tDT16tWr5mVUEiKzT5x9TGvaWs64mke8AADUb08//bSefPJJDRgwQFFRUXr55Zd19OhRzZ8/P9hd8xkXEgEAAIS4ZcuWae7cuVq5cqVef/11vfHGG1q+fLncbgu++rQIoRMAACDEHThwQIMHD/b8PGDAANlsNh08eDCIvfIPoRMAACDElZaWKirK+0LR8PDwenXrJM7pBAAACHGGYeiee+5RZGSkZ1pRUZEeeOABr9smccskAAAA1NqoUaMqTLvhhhuC0JPaI3QCAACEuBdeeCHYXQgY53QCAADAchzpbEj275cKC3/+OSfn7OO+fdLp095tY2KklJQ66xpgpn0+7Ll8aRNsoTL8bUgov/+Sqt6Hsf8C6qV6sFuuW/V2eK/9+xU20vvcjsSwMA1tkajEqdMVVsnVbaUr3mLHHQStWrXSnXfeqVatWgW7K/VOzE/fzTzczP95Qk2oDH9rxnCtAatk/yVVvw+zYv9Vm3UlVNevUFZvP2cRMEJnOfV2eK/yRwgkxZeWatihHL/mgfVat26tu+++W61bt665Mbw4o84Gr3OPDmadMvTQgQj9uW2xOjWxebUP5aODtRnK1orhbysbrrWqoVqlyodrDVgV+6Jq92EW7L8qW7+qE8rrVyirt5+zCBihE0C9Uv5D3uUyJEkdogx1ibFVMgdqUj5E+jtUa0NCiASswxcDAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACzHfTqBRuBwiXSkxHva3iLvxzItwqWW/g2UAwBAjQid8LBqOLzDJdKKI3aNbOEmzATJiiN2vXTIUelzU7O935S7Wrl0d2sLhr5pQJqG+X8H8drMAwANCaETHlYNh3ekRHrpkEMD4gidwTKyhVsD4ryD5N6is4HzCWeJOpyTh1rwHtUotUmydvSfpYLSopob62zgTG2SbHGvACC0ETrhheHwGqaW1Xxl3iFK6hJTt/1pCAiRAOAfLiQCAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDnu0wkA9dn+/VJh4c8/5+Scfdy3Tzp92rttTIyUklJnXQOAcxE6gUaqRfjZIS8DGYEoLi5OQ4YMUVxcnHkd81OLcEMjHIfUIjw+aH0Imv37FTbyBq9JiWFhGtoiUYlTpyustLTCLKUr3iJ4AggKQifQSLUMV8BjrMfHx2vo0KEm9ah2WoZLI8Ny1LIxhs5zj3D+JL60VMMO5fg1DwDUBc7pBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAYIJ58+Zp4MCBateunVJTU3XzzTcrMzPTq01RUZEmTJigjh07qm3btho7dqxyc3OD1OO6RegEAAAwweeff65x48Zp3bp1WrVqlUpKSjR8+HCdOnXK02batGn64IMP9Oqrr2r16tU6dOiQxowZE8Re1x3u0wkAAGCCFStWeP28YMECpaamauvWrbr44ouVl5enJUuWaNGiRbrsssskSfPnz1efPn20efNmZWRkBKPbdcav0OlyuWSz2azqi19crrP92OfDKyhr43K55XIZpvbD5vb/5tput1uGy+X5uey1+KP8azGjH1W1KXt01dC2KmWvz4r6V8X2ww++3wQ7JkZGu3Zek8x4T6pu5/J6rA0z3peGwox6BkND2u4DfS2m7EdrsQxXHW4/9XU9DVV1VU/DOLuO5ufne+WfyMhIRUZG1jh/fn6+JCkhIUGS9M0336ikpEQDBgzwtLngggvUtm1bQmd5mZmZnjcg2HLcEZK66OFmfsyTvUd2e7Gp/Yg4lKPOfs6z51COzu1Ftjta0gV+LSM7O1t2+8/jKlfWjxNhYfq4RaIGHDmq+EqGwyvfj8qcPn1ad955p06fPq3du3f71UdPX396feX7bJWIQznqPGWqX/PsevIJFbdK9vxsxntSk6ysLL+Wf66y83+ys7N1uvz42o1UIPUMBjPWseh92Ur19/fuy1ZNa8wPP/zgeWzatGnNywzwtVS1H61uH1ZhP3rG/3PisvdlKyaybref+raehjqr62mz2eR0OpWenq6CggLP9MmTJ2vKlCnVzut2uzV16lT16dNHXbt2lSTl5OQoIiKiwtDBSUlJysmpZiSxBsKv0JmamhoyRzrTJL195oxOlfsjx+1264cfflC7du1kt/98ymoTh5QS2cGCjqSp+K1lfh1V61DuqJq70Cb5ud04nU6lxZzzB0Al/TiSm6t3ly5V+gP3KyYpqcZ+VKZTp05q2bKlOnXqJIfD4V8nf1L2+ir02SK1WUM7tkqWkZbm+dmU96QKLpdLWVlZAdU0Ojra8ztTGvk42mbUMxjMWMdqs6472zu91vXKlH24tmvXTmk1tJVMeC1V7Eer3IdVsv8qzI+WDvrZh/ZOpcXWzfZTX9fTUFVX9TQMQ8XFxdq+fXuFI501mTBhgnbu3Kn333/fsv7VN36FTofDETKhU5I6xFSc5nIZCrOfVlpTmxyOOrpOqn37gGavzfbicNgrzleuH7YmTc4+duggu9NZu855fp+j1ht22WyV9tkKdv/fd7vd7vVGmPaeVNu+9jUt+4PKbrfzAfaTQOoZDKasYyas61W2ke/rlymvpZL9qD/7MEctauEIwvZT39bTUGd1Pcu+3Y2NjfUr/0ycOFFr167VP//5T5133nme6cnJySouLlZeXp7X0c7c3FwlJydXtqgGhavXAQAATGAYhiZOnKg1a9bo3XfflbPcH0s9evRQeHi4Nm7c6JmWmZmpAwcONPjzOSWuXgcAADDFhAkTtGLFCi1dulRNmzb1nKcZGxur6OhoxcXFafTo0Zo+fboSEhLUrFkzTZo0SRkZGYROAAAA+Gbx4sWSpCFDhnhNf+GFF3TTTTdJkmbPni273a6xY8equLhYAwcO1Ny5c+u8r8FA6AQAADDB8ePHa2wTFRWluXPnNpqgeS7O6QQAAIDlCJ0AAACwHKETAAAAluOcTpguu0gqPGdEur1F3o/nirFLzqi66RcAAAgeQidMlV0kDd0ZXulzU7Mrn/5ulxKCp5/i4uI0ZMiQCkOpof6IqcX3TLWZpzZatWqlO++8U61ataqbXwigUSB0wlRlRzgfOym1rzjcu5d9YdLDzbyPisI38fHxGjp0aLC7gQA4o87+wVX+W4Gp2eF6wlmiDuX+EKvLbwVat26tu+++W61bt66bXwigUSB0whLtS6XOrmD3AghtVYXIDlFSl0qG+QWA+owLiQAAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6ASBEtAiX7mrlUovKR4xtdPwZ7rVpWOV32o8uknruPPvo6zwArMGIRAAQIlqGS3e3ZlzYMv4M95raJFk7+s9SQal3ujx84KBWfLBYf/71bWrZ9udhPZuGRSm1SbKp/QVQPUInAKBBqCxEZp84+5jWtLWccc667RAAL3y9DgAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJVCKmFltGbeYBYC1/htIEYC1GJAIq4YyS3u1SosJyIxLuLZKmZofrCWeJOpwzbHOM/ew8AEKLP0NpArAWoROoQnUhskOU1CWm7voCAEB9xxeCAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACzHfTpDyD4f3g1f2gAAAIQaIkwIKBs+8eFm/s+DSsRUftf2E2Fh+rhFogYcOar40lKf5imvRbh0VyuXWoQH2kkAABoXQmcIqGzIxaqGW5QYcrFGKSkqXfGWVFjoNfloTo7eff11dX/wATVNTv75iZgYKSXFp0W3DJfubu2uuSEAAPBC6AwRVYVIhluspcpCZHT02cf27SWns067AwBAY8eXtAAAALAcoRMAAACWI3QCAADAcoROAAAAE3z22Wf63e9+py5duighIUFr1qzxev6ee+5RQkKC17+RI0cGqbd1jwuJAAAATFBYWKj09HSNHj1aY8aMqbTNoEGD9MILL3h+joyMrKvuBR2hEwAAwASDBw/W4MGDq20TGRmp5HNv29eI+BU6XS6XbDabVX0xhcvl8nqsr1wu20+PbrlcRq2W4Xa7PY+1rYe/9Szrtz+jKwXyGv1hRj3M0FDW0VDRmOtpc/t/z1i32y2jhlrVdrv3R11t96GiMa+nVqirehrG2XU0Pz/fK/9ERkbW+gjlp59+qtTUVMXHx+vSSy/VQw89pObNm5vS31DnV+jMzMz0vAGhLisrK9hdCEieEaYRjkTl7T+q3bbSmmeoxKlTp9SnTx8dOXJEp0+fDqg/vtYzxx0hqYtfoyvlZO+R3V5cbZtTp07p22+/1YUXXqgmTZr4vvBz5ObmSpKys7MDrocZ6vs6GmoaYz2j92Ur1c95svdly9e139/t3h++bPcNUWNcT61kdT1tNpucTqfS09NVUFDgmT558mRNmTLF7+UNGjRIQ4YMkdPp1L59+zRr1iz99re/1bp16+RwOMzsekjyK3SmpqbWiyOdWVlZ6tSpU71/A38lSYoPaBm/+MUvAprf33qmSXr7zBmdOuePz71FNj10IEJ/blusDlHef7Q0cUgpkR1qXO7+/fv1xRdfaODAgUrxcfSg8qJ/ujm80+ms9TLM0JDW0VDQmOtZm72xs71TRlpatW3M2O6r4+t235A05vXUCnVVT8MwVFxcrO3bt1c40lkbI0aM8Py/W7du6tatm3r16qVPP/1U/fv3D7i/oc6v0OlwOEI+dJZxOBxs2Cbyp54dyo2gVDZbpyY2dYmp3fpjt9s9j7V9X81YhplYR83VKOtp9/8GJHa7/eeNsgaBbPeoXKNcTy1kdT3Lvt2NjY21JP+0b99eiYmJ2rNnT6MIndwyCQAAIAh+/PFHHTt2rNFcWMTV6wAAACYoKCjQ3r17PT9nZ2dr27Ztio+PV0JCgubMmaOhQ4cqOTlZe/fu1SOPPKKOHTtq0KBBQex13SF0AgAAmGDr1q267rrrPD9Pnz5dkjRq1Cg9/fTT+u6777Rs2TLl5eWpVatWGjhwoKZNm9Zo7tVJ6AQAADDBJZdcouPHj1f5/MqVK+uwN6GHczoBAABgOUInAAAALEfoBAAAgOUInQAAALAcoROWaxEu3dXKpRbhwe1HXFychgwZori4uOB2BDBLTC3uyF6beQDABFy9Dsu1DJfubu0OdjcUHx+voUOHBrsbgHlSUlS64i2psNC39jExUhCHgAXQuBE6AaA+I0QCqCf4eh0AAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5bhPJ0LTkSNn/5XJyTn7uG+fdPq0d9sWLc7+AwAAIYvQiZBkX/UP2V/5q+fnxLAwDW2RqMSp0xVWWurV1j3udrnH31HXXQQAAH4gdCIkuYf/Ru7LLvX83FTSkJ/+X1q+MUc5AQAIeYROhCa+MgcAoEHhQiIAAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFjOpxGJXC6X59FuD+2c6na7Zbfb5Xa7ZbPZgt2deo96mo+amot6mo+amo+amquu6ul2uyWdzT9hYQziGCibYRhGTY1KS0t16tSpuugPAABASGnSpAmh0wR+VTAqKirk/0JzuVzKzMxUamqqHA5HsLtT71FP81FTc1FP81FT81FTc9VVPQ3DUFFRkWXLb2x8Cp1lb6jNZgv50Gmz2WQYRr3oa31APc1HTc1FPc1HTc1HTc1V1/XkDwVzhPYJmgAAAGgQCJ0AAACwHKETAAAAliN0AgAAwHKETgAAABPMmzdPAwcOVLt27ZSamqqbb75ZmZmZXm2Kioo0YcIEdezYUW3bttXYsWOVm5vr1eaHH37QDTfcoDZt2ig1NVUzZsxQaWmpV5tPP/1U/fv3V3Jysn7xi19o6dKlFfqzaNEiXXjhhWrVqpWuuOIKbdmyxfwX7QdCJwAAgAk+//xzjRs3TuvWrdOqVatUUlKi4cOHe93rfNq0afrggw/06quvavXq1Tp06JDGjBnjed7lcunGG29USUmJ1q5dqwULFuiNN97Q7NmzPW2ys7N144036tJLL9WmTZt011136Y9//KPWr1/vabNq1So99NBDmjx5sj7++GOlp6drxIgROnz4cN0UoxKETgAAABOsWLFCN910k7p06aLu3btrwYIFOnDggLZu3SpJysvL05IlS/T444/rsssuU8+ePTV//nx9+eWX2rx5syTpo48+0u7du7Vw4UJ1795dgwcP1rRp0/TKK6+ouLhYkrR48WKlpKToz3/+s9LS0jR+/HgNHTpUL774oqcvCxYs0NixY3XzzTerc+fOmjdvnmJiYrRkyZI6r0sZv24O73K5Qv7+YucO2YnAUU/zUVNzUU/zUVPzUVNz1VU9ywZtzM/P98o/kZGRioyMrHH+/Px8SVJCQoIk6ZtvvlFJSYkGDBjgaXPBBReobdu22rx5szIyMrR582Z17dpVSUlJnjaDBg3Sgw8+qF27dunCCy/U5s2bvZZR1mbq1KmSpOLiYm3dulX333+/53m73a7+/ft7wm0w+BU6MzMz5cOomSEhKysr2F1oUKin+aipuain+aip+aipuayup81mk9PpVHp6ugoKCjzTJ0+erClTplQ7r9vt1tSpU9WnTx917dpVkpSTk6OIiAjFxcV5tU1KSlJOTo4kKTc31ytwSlLLli0985e1KZt2bpuTJ0/q9OnTOnHihFwuV6Vtyp9jWpf8Cp2pqan14khnVlaWOnXqxAgCJqCe5qOm5qpv9Qz/w73SsWOBLaR5c5W88Lw5HapEfatpfUBNzVVX9TQMQ8XFxdq+fXuFI501mTBhgnbu3Kn333/fsv7VN36FTofDEfKhs4zD4WDDNhH1NB81NVe9qeexY7Kd1yagRRg//rdOXmu9qWk9Qk3NZXU9y77djY2N9Sv/TJw4UWvXrtU///lPnXfeeZ7pycnJKi4uVl5entfRztzcXCUnJ0s6e9Sz/FXmZRf/nNum/AVBhw8fVrNmzRQdHe2pS2Vtyh9FrUt+hU4AQMMw5quXdbT4VBXPGnK7Ddm/+EBS5R+0iRFN9Novx1vWP6A+MgxDkyZN0po1a/Tee+/J6XR6Pd+jRw+Fh4dr48aNGjp0qKSzpy4eOHBAGRkZkqSMjAw9/fTTOnz4sOfr8Q0bNqhZs2ZKS0vztPnwww+9lr1hwwb17t1bkhQREaGePXtq48aNuvbaayWd/bp/06ZNGjdunHUFqAGhEwAaoaPFpxTtw1eEVc5/pqrAWj9VH8JrRgiHdPYr9RUrVmjp0qVq2rSp5xzM2NhYRUdHKy4uTqNHj9b06dOVkJCgZs2aadKkScrIyPCEzoEDByotLU133XWXHn30UeXm5urxxx/XuHHjPF/r33bbbXrllVf08MMPa/To0dq0aZPefvttvfnmm56+3HPPPbrnnnvUq1cv/eIXv9CLL76oU6dO6eabb677wvyE0AkAaPQI4TDD4sWLJUlDhgzxmv7CCy/opptukiTNnj1bdrtdY8eOVXFxsQYOHKi5c+d62jocDi1btkwPPvigrrrqKsXExGjUqFGaNm2ap43T6dSbb76padOmaeHChWrTpo2ee+45DRo0yNNm+PDhOnLkiGbPnq3c3Fx1795dK1as4Ot1AACA+u748eM1tomKitLcuXO9gmZ5KSkpWr58ebXLueSSS7Rp06Zq24wfP17jx4fOEXhCJwAAISDQr/glvuZHaCN0AgAQAgL9il/ia36ENkInUA4XFAAAYD5CJ1AOFxQA8NdfX/5S9md+V+XzdkldDbfsNnvVC7m7pxTgkU4glBE6AQAIUGJBsWztnNW2qfEW5vVkmGmgtqr5kwsAAAAwB0c60aCYcT4mQo/9rnuqHK/cp68tJal5c7lfWmB+5wAAPiF0okHhfMwGqobxyn0Zedn48b/m9QchhT82gfqB0AkAqNf4YxOoHzinEwAAAJZrlEc6GfUBAALHPW0B+KNRhk5GfUBjUN3FNz7j4htUg6+1AfijUYZOoFGo4eIbX3DxDQDALITOWqpp9AmfcBQJAGAiPpsQygidteTL6BM14SgSAMBMfDYhlBE6ATQKo8d01ZHP/xLQMrjwBQBqj9AJoFE40iScCwgBIIi4TycAAAC8fP755xo/fryuvPJK/fe/Z0+5WLZsmf71r3/VepmETgAAAHi8++67GjlypKKjo/Xtt9+quLhYkpSfn6958+bVermETgAAABN89tln+t3vfqcuXbooISFBa9as8Xr+nnvuUUJCgte/kSNHerU5fvy47rjjDqWkpMjpdOree+9VQUGBV5vt27fr6quvVqtWrdStWzc9++yzFfry9ttvq3fv3mrVqpX69eundevW+fw65s6dq3nz5unZZ59VeHi4Z/qvfvUrffvttz4vpzxCJwAAgAkKCwuVnp6up556qso2gwYN0q5duzz/XnnlFa/n77jjDu3atUurVq3SsmXL9Pnnn+tPf/qT5/n8/HyNGDFC7dq104YNG/TYY49pzpw5evXVVz1tvvjiC40bN06jR4/Wxo0bde2112r06NH67rvvfHodWVlZ6tevX4XpsbGxysvL82kZleFCIgAAABMMHjxYgwcPrrZNZGSkkpOTK31u9+7dWr9+vT766CP16tVLkjRnzhzdcMMNmjVrllq3bq3ly5eruLhY8+fPV0REhLp06aJt27ZpwYIFuvXWWyVJCxcu1KBBg/THP/5RkjR9+nR9/PHHWrRokf7yl5rv4pGUlKQ9e/YoJSXFa/q///1vtW/fvsb5q8KRTgAAgDry6aefKjU1VRkZGXrggQd07Jzhijdv3qy4uDhP4JSkAQMGyG63a8uWLZ42/fr1U0REhKfNoEGDlJmZqRMnTkiSvvzySw0YMMDr9w4cOFCbN2/2qY9jx47V1KlT9dVXX8lms+ngwYN66623NGPGDN122221fOV+Hul0uVyy2Wy1/mV1weVyeT1Wzqibzvig+n4Gn2/1DCWBvrdmrBtGtfWqq5qa9RdlKLz3ofPXcfXvrS9C530J/W3Fn+UEd/6GJxS2++rU1X7UMM6uG/n5+V75JzIyUpG1uAXboEGDNGTIEDmdTu3bt0+zZs3Sb3/7W61bt04Oh0M5OTlq2bKl1zxhYWFKSEhQTk6OJCk3N7fCEciyeXJychQfH6/c3NwKy2nZsqVyc3N96uf9998vt9utYcOGqbCwUNdee60iIyP1f/7P/9H48bW/V7FfoTMzM9PzBoS6rKysKp9zu0PjNbgNt3bv3h3sbvikunqGkkDfWzPWDbfb8Ol9tbqmXQ23HAEuI1TWUTNeixl8fW+rEyrvS33aVqzuS6h8JoSKUNnufWH1ftRms8npdCo9Pd3rYp7JkydrypQpfi9vxIgRnv9369ZN3bp1U69evfTpp5+qf//+pvTZDDabTRMmTNAf//hH7dmzR6dOnVJaWpqaNm0a0HL9Cp2pqan14khnVlaWOnXqJIej8l27/YsP6rhXlbPb7EpLSwt2N6rlSz1DSaDvrd0e+Pptt9uqfV/rqqZ2W+DH1EJlHTXjtZihpvfWp2WY8b4Ulyj90cdqv4DmzWUf2ymwPtTBtuLzckJgu29IQmW7r05d7UcNw1BxcbG2b99e4UinGdq3b6/ExETt2bNH/fv3V3Jysg4fPuzVprS0VMePH/ecB5qUlFShTdnPNbVJSkryq38RERHq3LmzX/NUx6/Q6XA4Qj50lnE4HNWsiKHzGupDkJNqqmcoCfS9NWPdsPlUq/pS0/rQx7rj23tbF2zntan1vGfH1q4/24ovywnu/A1PqKznNbF6P1r27W5sbKwl+efHH3/UsWPHPGExIyNDeXl52rp1q3r27ClJ2rRpk9xuty666CJPmz//+c8qKSnx3M5ow4YNSk1NVXx8vCSpd+/e2rhxo+6++27P79qwYYMyMjJ86ldRUZFefvllffLJJzpy5IjcbrfX8xs3bqzV6+XqdQAAABMUFBRo7969np+zs7O1bds2xcfHKyEhQXPmzNHQoUOVnJysvXv36pFHHlHHjh01aNAgSVJaWpoGDRqk++67T/PmzVNJSYkmTZqk4cOHq3Xr1pKkkSNH6n/+539077336r777tPOnTu1cOFCPf74457fe+edd2rIkCGaP3++rrzySq1atUpbt27VM88849PruPfee7VhwwYNHTpUF110kWmBm9AJAABggq1bt+q6667z/Dx9+nRJ0qhRo/T000/ru+++07Jly5SXl6dWrVpp4MCBmjZtmtfX9YsWLdLEiRM1bNgw2Ww2DR06VE8++aTn+bi4OK1cuVITJ07U5ZdfrsTERE2cONFzuyRJ6tOnjxYtWqTHH39cs2bNUseOHbVkyRJ17drVp9exdu1avfXWW/rVr34VYEW8EToBAABMcMkll+j48eNVPr9y5coal5GQkFDhhvHlpaen6/3336+2zbBhwzRs2LAaf19l2rRpE/BFQ5UJjbPzAQAAEBJmzZqlRx99VPv37zd1uRzpBAAAgEevXr105swZ9erVSzExMQoL846L55636g9CJzTmq5d1tPhUFc8acruNn25JUvmJxIkRTfT6K1ulc0ZV8Fvz5nK/tKD28wMAAFOMGzdOBw8e1IwZM5SUlMSFRDDP0eJTig7gnmNHz5ySjh0L+BYu9rvuCTi4amxq7ecHAAD68ssvtXbtWnXv3t3U5RI6ETpMCK4AACAwqampKioqMn25hE4AVRo9pquOfP6XgJaRGNFEr/2y9mP1AgDq1iOPPKKHHnpIM2bMUNeuXSuc0xkbG1ur5RI6AVTpSJPwgE69kH46/QIAUG+MHDlSknT99dd7TTcMQzabTUePHq3VcgmdAAAA8HjvvfcsWS6hEwAAeJhxWk2Ju1Th9sAiBqfmBM/FF19syXIJnQAAwMOM02qKCosVy6k59dZnn31W7fO1DaWETgAAAHicO358mXPv1ck5nfXRmTOy3/C7gBYx+tbuOhIfE1g3XCWKVmB/kQIAgIah/IhDpaWl+vbbbzV79mw99NBDtV4uoTPIArkvpSQdibKb8jUIgJr99eUvZX8msD8UdeaMOZ0BAIvExcVVmHb55ZcrIiJC06dP18cff1yr5RI6AcBHiQXFsrVzBrQMY0/txiwGgGBr2bKlsrKyaj0/oRMAAAAe27dv9/rZMAzl5OTomWeeUXp6eq2XS+gEAACAx2WXXSabzSbDMLym//KXv9T8+fNrvVxCJwAAADy2bt3q9bPdbleLFi0UFRUV0HIJnQAAAPBISUmxZLmETgAAgEZu4cKFPre98847a/U76l3otN91j3TsWNXPS+pquGW32ateyN09pQBvMwTAN2dcJbomwCH13nGXKrAvdRCqatqn16h5c2lsqnkdAhqpBQsW+NTOZrM1ntCpY8dqvLelo6ZllDsxFoB1DBkB30vWENtsg+XDPr06xo//NbEzQGA+++wzPf/88/rmm2906NAhLVmyRNdee63necMw9MQTT+jvf/+78vLy1KdPHz399NM6//zzPW2OHz+uSZMmae3atbLZbBo6dKieeOIJNW3a1NNm+/btmjhxor7++mslJiZq/Pjxuu+++7z68vbbb2v27Nnav3+/OnbsqEcffVRXXnlllX3/5ptvTKxE5ao5HAgAAABfFRYWKj09XU899VSlzz/77LNauHCh5s2bpw8//FAxMTEaMWKEioqKPG3uuOMO7dq1S6tWrdKyZcv0+eef609/+pPn+fz8fI0YMULt2rXThg0b9Nhjj2nOnDl69dVXPW2++OILjRs3TqNHj9bGjRt17bXXavTo0fruu+/8fk2GYVS4ir22CJ0AAAAmGDx4sB566CENGTKkwnOGYeill17ShAkTdM011yg9PV0vvviiDh06pDVr1kiSdu/erfXr1+u5557TL3/5S/Xt21dz5szRqlWrdPDgQUnS8uXLVVxcrPnz56tLly4aMWKExo8f7/X1+MKFCzVo0CD98Y9/VFpamqZPn64ePXpo0aJFPr+WZcuWqV+/fmrdurVat26tiy++WMuWLQuoPn59ve5yubwGfA8GUnIoCqWvPgPtixmvxaj2PDWfzjtu3lwlLzwfUC/YVlC90NhWzBEKrwXmM+RyuSp9pmx6Vc+b1oOfjvDl5+d75Z/IyEhF+nnaUHZ2tnJycjRgwADPtLi4OF100UXavHmzRowYoc2bNysuLk69evXytBkwYIDsdru2bNmiIUOGaPPmzerXr58iIiI8bQYNGqRnn31WJ06cUHx8vL788kv94Q9/8Pr9AwcO9ITbmrzwwguaPXu2xo0bpz59+kiS/v3vf+vBBx/UsWPHdM899/j12sv4FTozMzNNO8RaW10Nd83nbNYbDWNH53Ybcgf4vrgNtyQfzsetYRlud2A1DXT+smW4jx6Ro23bKtvU9DpvGhivw/96JqB+vOsuUXRAS4A1gh/WQmpbMWHfEQqvBeZzuw3t3r272jaBDMnoC5vNJqfTqfT0dBUUFHimT548WVOmTPFrWTk5OZLODiV5rqSkJOXm5nralH8+LCxMCQkJnvlzc3Mr3NKobJ6cnBzFx8crNze3wnJatmzp+T01efnll/X000/rd7/7nWfaNddcoy5duujJJ5+sm9CZmpoa/COd1R0dqneCW0uz2O22gN8XM95Xu80uuz2wmgY6f9kyAn09R5uEq0k0kbFhMmO7D3A9b0DbSqi8FpjPbrcpLS2t0udcLpeysrLUqVMnORzWHYoyDEPFxcXavn17hSOdDVlOTo569+5dYXrv3r094bc2/AqdDocj6KEToSiU1olA+xL8QADUjYa0rYTCa4H5bDUGSofDYXnolKTY2NiA809ycrIk6fDhw2rVqpVnem5urrp37+5pc/jwYa/5SktLdfz4cc/8SUlJFdqU/VxTm6SkJJ/62qFDB/3jH//Qgw8+6DX9H//4hzp27OjTMirTkA4bAgAAhCSn06nk5GRt3LjRMy0/P19btmxRRkaGJCkjI0N5eXlew1Bu2rRJbrdbF110kafN559/rpKSEk+bDRs2KDU1VfHx8ZLOHpE89/eUtSn7PVUpu7p92rRpeuKJJzRy5Eg99dRTeuqppzRy5EjNmTNH06ZNq3UNCJ0AAAAmKCgo0LZt27Rt2zZJZy8e2rZtm3744QfZbDbdddddmjt3rv75z39qx44duvvuu9WqVSvPvTzT0tI0aNAg3XfffdqyZYv+/e9/a9KkSRo+fLhat24tSRo5cqQiIiJ07733aufOnVq1apUWLlzodZ7lnXfeqfXr12v+/Pn6/vvv9eSTT2rr1q264447qu3/JZdcoiuuuEJHjx7VO++8o+bNm2vNmjVas2aNmjdvrvXr11d6Zb6v6t/N4QEAAELQ1q1bdd1113l+nj59uiRp1KhRWrBgge677z4VFhbq/vvvV15enn71q19pxYoVior6ecy1RYsWaeLEiRo2bJjn5vBPPvmk5/m4uDitXLlSEydO1OWXX67ExERNnDhRt956q6dNnz59tGjRIj3++OOaNWuWOnbsqCVLlqhr167V9n/16tVaunSpHn74Ybndbl133XV6/PHHdfHFF5tSH0InAACACS655BIdP368yudtNpumTZtW7VfUCQkJeuWVV6r9Penp6Xr//ferbTNs2DANGzas2jbl9evXT/369dOcOXP09ttva+nSpRo6dKg6dOig0aNHa9SoUZ7zRmuDr9cBAADg0aRJE918881as2aNNm/erOuvv16vvPKKunfvrlGjRtV6uYROAAAAVKpjx4564IEHNGHCBDVt2lTr1q2r9bL4eh0AAAAVfPbZZ3r99df13nvvyWaz6Te/+Y1Gjx5d6+UROgEAACBJOnjwoJYuXao33nhDe/bsUe/evfXkk09q2LBhatKkSUDLJnQCAABAI0eO1MaNG5WYmKgbb7xRo0ePVmpqqmnLJ3QCAABA4eHh+t///V9dddVVloz0ROgEAACA3njjDUuXz9XrAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABM8OSTTyohIcHrX+/evT3PFxUVacKECerYsaPatm2rsWPHKjc312sZP/zwg2644Qa1adNGqampmjFjhkpLS73afPrpp+rfv7+Sk5P1i1/8QkuXLq2T1xcoQicAAIBJOnfurF27dnn+vf/++57npk2bpg8++ECvvvqqVq9erUOHDmnMmDGe510ul2688UaVlJRo7dq1WrBggd544w3Nnj3b0yY7O1s33nijLr30Um3atEl33XWX/vjHP2r9+vV1+jprIyzYHQAAAGgowsLClJycXGF6Xl6elixZokWLFumyyy6TJM2fP199+vTR5s2blZGRoY8++ki7d+/W22+/raSkJHXv3l3Tpk3To48+qilTpigiIkKLFy9WSkqK/vznP0uS0tLS9O9//1svvviiBg0aVKev1V9+Hel0uVxB/4dQZAS7A+cItC+GScsAQl1D2lZC4bXAfEaNeaCuckd+fr7XvzNnzlTZ6z179qhLly7q2bOn7rjjDv3www+SpG+++UYlJSUaMGCAp+0FF1ygtm3bavPmzZKkzZs3q2vXrkpKSvK0GTRokE6ePKldu3Z52py7jLI2X375ZcAVt5pfRzozMzNlGMHdMLsabjmC2gMzNYydnNttyB3g++I23JIU8DLc7sBqGuj8ZcsItB5oyMzY7gNczxvQthIqrwXmc7sN7d69u9o2WVlZlvbBZrPJ6XQqPT1dBQUFnumTJ0/WlClTKrS/6KKL9MILL6hTp07KycnRnDlzdM011+jzzz9XTk6OIiIiFBcX5zVPUlKScnJyJEm5ublegVOSWrZsKUlebcqmndvm5MmTOn36tKKjowN/4RbxK3SmpqbKZrNZ1Ref2G0N6TTU4NbSLHa7LeD3xYz31W6zy24PrKaBzl+2jIa1nsJcZmz3Aa7nDWhbCZXXAvPZ7TalpaVV+pzL5VJWVpY6deokh8O6P/ENw1BxcbG2b9/ulX8iIyMrbT948GDP/9PT0/XLX/5S3bt319tvv62oqCjL+llf+BU6HQ5H0EMnQlEorROB9iX4gQCoGw1pWwmF1wLz2WoMlA6Hw/LQKUmxsbG1yj9xcXHq1KmT9uzZo8svv1zFxcXKy8vzOtqZm5vrOQc0KSlJW7Zs8VrG4cOHJcmrTdm0c9s0a9YspI9ySly9DgAAYImCggLt3btXrVq1Uo8ePRQeHq6NGzd6ns/MzNSBAweUkZEhScrIyNB3333nFSo3bNigZs2aeY76ZmRkeC2jrM25t2YKVYROAAAAE8yYMUOfffaZ9u/fry+++EJjxoyRw+HQiBEjFBcXp9GjR2v69On65JNPtHXrVv3hD39QRkaGJ3QOHDhQaWlpuuuuu7Rt2zatX79ejz/+uMaNG+f5Sv+2225Tdna2Hn74YX3//fd65ZVX9Pbbb+vuu+8O5kv3CbdMAgAAMMGPP/6ocePG6dixY2rRooX69OmjDz/8UC1atJAkzZ49W3a7XWPHjlVxcbEGDhyouXPneuZ3OBxatmyZHnzwQV111VWKiYnRqFGjNG3aNE8bp9OpN998U9OmTdPChQvVpk0bPffccyF/uySJ0AkAAGCKxYsXV/t8VFSU5s6d6xU0y0tJSdHy5curXc4ll1yiTZs21aqPwcTX6wAAALAcoRMAAACWI3QCAADAcoROAAAAWM6nC4nKbo4a7CEwJcmIipKqGAnAV9GOCEXZwwPuhxFgP4zo6JB4LdH28MCWYXcH/L4YZSM1BLgMM16LpKDXI1TW0ZBYvxQ6ryVUtvtAl9GQtpVQeS0NaR0Nle1edneVucMwDNlsNhmGYWk2OTf/MDhO4GyGD++W2+3WyZMn66I/AAAAIaVZs2ay2/lyOFA+h07PDCGe9PPz85Wenq7t27crNjY22N2p96in+aipuain+aip+aipueqqnudGJEJn4Hz6er0+Fdpms6mgoEA2my3kA3J9QD3NR03NRT3NR03NR03NVVf15L0yV/1JkwAAAKi3CJ0AAACwXIMLnZGRkZo8ebIiA7x6D2dRT/NRU3NRT/NRU/NRU3NRz/rJpwuJAAAAgEA0uCOdAAAACD2ETgAAAFiO0AkAAADLEToBAABgOUInTMV1aQh1546wBoQq9qVoiBp16GSjNtenn36qtWvXqqSkJNhdaVBYT82zfv16vf766zpz5kywu9KgsI6ai30pGqpGGTp37Nih3Nxc2Ww2dpYmee211zR69Gjl5ubq+PHjkvggCtRXX32l/fv3s56a5LXXXtNtt92mM2fO6OjRo57p1Lb22Jeaj30pGrJGFzqXL1+ua6+9Vs8995xycnLYWZpg/fr1mjFjhp566imNHTtWSUlJkiSXyyWJrzNrY+XKlbrmmms0bdo07du3j/U0QJ988olmzpypp556SuPGjVOrVq0kSaWlpYytXEvsS83HvhQNXaO6Ofxnn32mP/3pT0pMTFRpaakuvfRS3XXXXUpOTpZhGHz4+KmsZrNmzdKRI0f07LPPKisrSy+99JIOHjyoiIgIPfzww+rQoUOwu1qv/Otf/9KDDz6olJQUnT59WomJiXr44YfVvn171lM/ldXrueee0zfffKO//vWv+v777/XUU08pJydHZ86c0UMPPaS+ffsqLCws2N2tN9iXmot9KRqLRnOk0zAM/b//9//UvXt3/e1vf9NVV12ljz76SC+99BJ/pQdo7969Ov/883Xq1CkNGTJEZ86cUWJioo4dO6b+/fvrq6++ksRf6b46ePCg2rdvryeffFI33nijcnJy9Nhjj3mOeFJH35WFn5ycHCUnJ6ugoEDXX3+9mjZtqr59+6pdu3YaOXKk3nnnHUmso75gX2od9qVo6BrNn/Y2m01Dhw7VhRdeqNatW2vixIlyuVx6//33JUl33nmn5ys3/lL3TVmNkpOT9d5778kwDF1xxRV6/vnnJUnFxcX6wx/+oHHjxumTTz5Rs2bNgtndemP48OFKTU1V+/bt1b59e7lcLi1btkyPPfaYZsyY4TnaUbaeut1u2e2N5u/HWklISNDf//53paWlaeDAgfrLX/7ieW7GjBmaMmWK+vfvrxYtWgSxl/UD+1LzsS9FY9GoPqni4uLUs2dPz1/hU6ZM0TXXXKOPPvpICxcu1OHDh3Xq1ClNmTJFeXl5Qe5t/XH99dcrOjpar7/+upo0aSLp7DlIERERuv322+VyuXTgwIEg9zJ0la2P5x696N69u+f/Y8aM0e9+9zsdOnRIs2bN0v79+1VUVKTbb79dx48fJ3CWU1ZPwzA8/x89erScTqeefPJJ5efnSzr7QS5Jd9xxhyIiIrR79+7gdLgeio+PV8+ePT0/sy81x9ChQxUTE8O+FA1Wgz7S+dlnn+m7775TeHi4LrzwQv3iF7+QdPavytLSUoWFhWny5MmSpA8++EBFRUX68ssvdezYMc2ePTuYXQ9ZldW0Z8+euvDCC/Wvf/1LTZo0UUlJicLDwyVJzZo1U3x8vBwOR5B7HroOHTqk1q1by263VzgyVHYUc8yYMbLZbFq2bJmmT5+uH3/8UdnZ2RzxqERZPc/9mrdFixa65ppr9MILL2jHjh06deqU50PdMAwlJCQoOjo6mN0Oad9++6327Nkjh8OhLl26qFOnTp7nytZR9qX+qaymPXr0UNeuXfWvf/1LX375JftSNDxGA/X3v//dSElJMa644gqjT58+RlJSkjF37lzjxIkTnjYlJSWe/z/88MNGQkKCMWDAAKO4uNgwDMMoLS2t836Hsspq+tRTTxkul8soLCw0Jk+ebHTo0MH4zW9+Y+zcudP4z3/+Y9x0003G8OHDDZfLFezuh6S33nrL6NSpk7Fs2TLPNLfb7dXm3NotWLDASEhIMAYNGsR6WonK6lm2nZ8+fdp47rnnjE6dOhm9e/c2NmzYYPzf//t/jZtuusm49tprWUer8Nprrxnp6enGxRdfbFx44YXGVVddZXzzzTdebc5dB9mX1qyymv7nP/8xDMMwCgoKjEmTJhkdO3ZkX4oGp0GGzu+//97o2rWrsXz5csMwDOPw4cPG4sWLjcTEROPBBx80jh496mnrdruNEydOGFdffbUxaNAgzwfUuYEU1df0vvvuM4qLi43Tp08bL7/8sjFw4ECjZcuWRr9+/Yxf//rXng8edpbeNmzYYHTu3Nno37+/0bdvX+PNN9/0PFc+eJatp9dcc41x2WWXsZ5Worp6ltXpzJkzxrp164wRI0YYTqfTuPjii41hw4axjlbhvffeM5xOp7FixQojPz/f+OSTT4zhw4cbzz//vGEY3usp+1Lf1FRTwzCMwsJC9qVokBpk6Ny5c6fRq1cvY9euXV7T//nPfxqJiYnGzJkzDcP4eYf56quvGueff75ng2YnWVFNNX344YcNw/j5iMZ//vMfY+/evZ6dIzX1VlBQYNx7773GfffdZ3zyySfG/fffb/Tu3dsrKJX/YFm5cqXRt29f1tNK+FLP8vXKzMw0cnNzWUerkJuba9x0003GE0884TX9/vvvN379619XOg/70ur5UtOy9bHs84l9KRqSBnlOp9vtVnZ2tg4ePKi0tDS5XC7ZbDZdffXVevHFF3XnnXeqb9++Gjx4sCTplltu0ZgxY2S32z3nesKbLzXt16+frrrqKklSr169vOalpt6aNGmi22+/XYcPH9Yll1yiFi1ayDAMPf3005KkG264ocI5nsOHD9dvfvMbr3OScZYv9QwLC5Pb7ZbNZpPNZlPHjh09F2GxjlZkt9vVuXNn9e3bV9LP52727t1bO3bskFTx6nT2pdXzpaZl9Sx77NGjB+spGowGedlr165dNWrUKM2YMUM7d+70nHjtcrn029/+Vtddd53effdduVwuz9i2ZR/wbNCV86Wmq1evlsvlqnAPOa6urlyPHj10xRVXSJI6d+6s8ePHq1+/fpo7d67eeustSdKRI0e0du1azzxlF8ewnlbkSz2PHj2qdevWSfJeL1lHK0pMTNQtt9yi/v37S/o5BDVv3lyS92hOO3fu9MzHvrRqtakp6ykakga7V7jxxhv1448/atasWXrkkUeUlpbmuZI1NjZW+fn5cjgcXlcCcj+56vlaU/in7GhRly5ddMcdd8hms2nevHk6efKkli9frqNHj+rKK6+scAQElfO3nqhaSkqKJO8jmidOnFB+fr4nVI4YMUJFRUVas2aNZz5qW7Xa1hRoCBrsn02XXnqpRo0apYKCAj344IP6+uuvZbPZVFhYqB9++EGtW7cOdhfrHWpqjXM/oLt27ao777xTF110kSZOnKgzZ87o888/Z5QXP1BP85UPkZGRkZLOnrbwww8/6O233w5Cr+o3aorGqEEe6Sz7C/KGG25Qs2bN9Oabb2rQoEHq2bOnTp8+LZvNpuXLl3u1RfWoad0577zz9PXXX6tXr15au3atwsLCOD8uANTTXElJSYqIiNC1116rgwcP6osvvlB4eDg1DQA1RWNRb9fmsmBzbsApOyn73KEBr776al1yySW68cYblZ2drSZNmmjUqFF88FSCmpqvuppWpqSkRI8++qgMw9AHH3xATcuhnubzt6bHjx/XV199pQsvvJBwVAVqClTOZtTD75jO3XgPHz6s6OhoNWnSpMLRteqOuLlcLs4/PAc1NZ+vNS1v586duuCCC+RwOPjgOQf1NF9tarpt2za9+eabevTRRwnxlaCmQNXqZegs88QTT+jdd9+V3W5XixYt9MQTT6hLly58tRsAamq+2taUEF856mm+2taUcFQ1agpUVK8uJDr3VjxLly7VwoULddddd+nWW2+V3W7XkCFDPLdDqcdZuk5RU/OZVVMC0lnU03y1rWn5+hKOfkZNgZrVyyOdH3zwgf7zn/+oQ4cOGjVqlGf63XffrXXr1umzzz5Tq1atgtjD+oeamo+amot6mo+amo+aAlWrV0c6Jenrr7/WjBkzNH/+fM/XFMXFxZKkF198Ueedd56ef/75YHax3qGm5qOm5qKe5qOm5qOmQPVCPnSWPxDbsWNH3X777UpISPCMMhIREaHS0lK5XC61adNGRUVFwehqvUFNzUdNzUU9zUdNzUdNAf+EdOgsGye5zKlTpxQXF6dbb71VDz74oPbt26fx48dLOnsejMPh0OHDhz032UVF1NR81NRc1NN81NR81BTwX8ie03nubSfmz5+vrVu36ttvv9WYMWM0ePBgpaamavHixXrmmWcUHx+vCy64QHa7XVu3btUXX3zBydiVoKbmo6bmop7mo6bmo6ZALRkh7tFHHzUuuOAC44UXXjD+9re/GU6n0xgzZoxx8uRJ4+TJk8aiRYuMX/7yl8avfvUrY8OGDZ75SkpKgtfpEEdNzUdNzUU9zUdNzUdNAf+E9J9bX3/9tVavXq0lS5YoIyNDX3/9tQoKCnTNNdeoadOmkqSbb75Zbrdbb731llatWqUBAwZIqjiuLc6ipuajpuainuajpuajpkAtBDv1nquoqMjr5y1bthgDBw40DMMwVq1aZbRt29Z45ZVXDMMwjJMnTxofffSRYRiGkZ+fbyxcuNAYMGCA8fvf/75uOx3iqKn5qKm5qKf5qKn5qCkQuJC5kOijjz7SwoULtWXLFs+04uJiHTp0SH//+9/1pz/9SY888ohuv/12SdKWLVu0ePFiff/992rWrJluuukmDRs2TIcOHdKhQ4eC9TJCCjU1HzU1F/U0HzU1HzUFTBLs1GsYhrFkyRKja9euxgMPPGBs2bLF67nbb7/dSEhIMObMmeOZVlRUZNx4443G2LFjDZfL5Zl+8uRJ4/jx43XV7ZBGTc1HTc1FPc1HTc1HTQHzBP2czpUrV2rSpEmaP3++Bg0apNjYWK/nx48fr9zcXC1dulQpKSk6ceKEPvzwQ/33v//Vpk2bZLfbPbeuKDuPprGjpuajpuainuajpuajpoC5gnrLpCNHjuj3v/+9hg4dqjvuuMMzvaCgQLt27VJYWJh69uyprKwsPfPMM/r444/VsWNHtW/fXvPmzVNYWJhKS0u5/cQ5qKn5qKm5qKf5qKn5qClgvqBvDUeOHFGbNm08P//1r3/VJ598onfffVdJSUlKS0vTO++8o/nz5+vo0aNKTEz0tGWDrhw1NR81NRf1NB81NR81BcwV9AuJ8vPztW7dOm3atEm33HKLFi9erMTERK1cuVJz5sxRdna2nnrqKUlSXFycZz7DMNigq0BNzUdNzUU9zUdNzUdNAXMFdato0aKFFixYoLFjx2rTpk1q2rSpnnjiCaWnp6t58+Y6ceKEYmNj5XK5znb2nI2Y+5xVjpqaj5qai3qaj5qaj5oC5gv6n2L9+/fXli1bdOrUKTmdzgrPN23aVK1atQpCz+ovamo+amou6mk+amo+agqYK2THXj9y5Ij+8Ic/6NixY/rggw/kcDiC3aV6j5qaj5qai3qaj5qaj5oCtRP0I53lHT16VH//+9/173//W0eOHPFs0C6Xiw27lqip+aipuain+aip+agpEJigX0hU3n//+1998cUX6tixo9auXavw8HCVlpayQQeAmpqPmpqLepqPmpqPmgKBCcmv1/Py8hQbGyubzcZfkCahpuajpuainuajpuajpkDthWToLGMYBlcBmoyamo+amot6mo+amo+aAv4L6dAJAACAhiHkzukEAABAw0PoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5f4/CV7x8FnYepIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAHcCAYAAACUORFqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYX0lEQVR4nO3de3wTdf7v8XeS0guXXii0gNACUgtYBNYtLKiAILoqIguoiwK6injZ47oqN0FUZEX4ia4XRBFl/a2IKJf1AivgQQRvq8iKggK2Byii0HJrS4HSNpnzR2kkvSbNTJO0r+fjwaN08p3pN5/MTN6ZzMzXZhiGIQAAAMBC9kB3AAAAAPUfoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5cK8aeRyudz/t9lslnUGAAAgWJw9fo7dznE6f3kVOiXp+PHjVvYDAAAgKDVr1izQXagXvA6dkhQZGRn0RzqdTqcyMjKUkpIih8MR6O6EPOppPmpqLuppPmpqPmpqrrqqp2EYKiwstGz5DY1XobMsaNpstqAPnTabTYZhhERfQwH1NB81NRf1NB81NR81NVdd15PXzBycoAAAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAACEgNzdX7733nnJzcwPdFaBWCJ0AAISAvLw8rVq1Snl5eYHuClArhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHKETgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAACY4NVXX9VFF12kpKQkJSUl6fLLL9eHH37ofnzIkCGKi4vz+HffffcFsMd1KyzQHQAAAKgP2rRpo0ceeUTnnnuuDMPQm2++qZtuukkbN25Uly5dJEk333yzHnzwQfc8UVFRgepunSN0AgAAmODKK6/0+H369OlatGiRvv76a3fojIqKUmJiYiC6F3B8vQ4AAGAyp9OpFStW6OTJk0pPT3dPX7Zsmc4991z16dNHM2bM0MmTJwPYy7rl05FOp9Mpm81mVV9M4XQ6PX7CP9TTfNTUXNTTfNTUfGbU1OVyuX829NemrtZRwzAkSfn5+R75JyIiQhEREZXO8/333+uKK65QYWGhmjRpotdff12dO3eWJI0cOVLt2rVTq1at9P3332vGjBnKzMzU66+/bunzCBY2o6yi1TAMQ/n5+crKypIXzQEAgMlycnK0ZMkS3XjjjUpISAh0dxoEm82m5ORkpaWlqaCgwD198uTJmjJlSqXzFBUVaf/+/crPz9e7776r119/XatWrXIHz7Nt2rRJ1157rf773/+qQ4cOlj2PYOHTkc6UlJSQONKZmZmpTp06yeFwBLo7IY96mo+amot6mo+ams+MmpZdcJKcnKykpCQzuxdy6modNQxDRUVF2r59e4UjnVUJDw9Xx44dJUk9evTQN998o5deeknPPPNMhbYXXnihJGn37t2EzvIcDkfQh84yDoeDnaWJqKf5qKm5qKf5qKn5/Kmp3W53/+R1KWX1Olr27W50dHSt84/L5VJRUVGlj23btk2SGsyFRVy9DgAAYIIZM2bosssuU7t27XT8+HEtX75cn376qVasWKE9e/Zo+fLlGjx4sJo3b67t27dr2rRp6tu3r9LS0gLd9TpB6AQAADDB4cOHdddddyk7O1vR0dE6//zztWLFCl166aXav3+/Pv74Y7344os6efKkzjnnHF1zzTWaMGFCoLtdZwidAAAAJnj++eerfKxt27ZavXp1HfYm+HCfTgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBACggcjNzdV7772n3NzcQHcFDRChEwCABiIvL0+rVq1SXl5eoLuCBojQCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYLizQHQAAAOXs2yedPOk5LTu79OfevdKpU79Ob9xYSkqqs64BtUXoLCc3N1ebNm1Sv379FBsbG+juAAAamn37FDby+gqT48PCNLRFvOIfnKawkhKPx0qWv03wRNDj6/VyGCIMABBQ5Y9wnhFbUqJhB7MVWy5wVjcPEEwInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAeC03N1fvvfeecnNzAzI/QhehEwAAeM3f4aIZbrrhInQCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYLC3QHAi3jRLYKSgrdvx8qOCBJ2lVwQEfL3be2aVikUpok1mX3AAAInH37pJMnPadlZ5f+3LtXOnXq1+mNG0tJSRUWwfssyjTo0JlxIlvnb5zuMS2qUEpNld7atUinsirO833/mWwQAACf5OXl6YsvvlCrVq3UvHnzQHfHO/v2KWzk9RUmx4eFaWiLeMU/OE1hJSUej5Usf9sjePI+i7M16K/Xz/7kVeZUpLS1S+lPb+cBAKA6eXl5+vLLL0Nr6MfyRzjPiC0p0bCD2YotFzgrm4f3WZytQYdOAAAA1A1CJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAmODVV1/VRRddpKSkJCUlJenyyy/Xhx9+6H68sLBQEyZMUMeOHdW2bVuNHTtWOTk5Aexx3SJ0AgAAmKBNmzZ65JFHtGHDBn300Ue65JJLdNNNN2nHjh2SpKlTp2rNmjV67bXXtGrVKh08eFBjxowJcK/rToO+OTwAAIBZrrzySo/fp0+frkWLFunrr79WmzZttHjxYi1cuFD9+vWTJM2bN0+9e/fW5s2blZ6eHogu1ymfQqfT6ZTNZrOqL6ZwOp0eP6tt63L5vnyXy6tl1xe+1BMV2X76qcLNkl1Op6J+2i+X0ymbw/HrA40by2jXro57GHrK17TKekpV1rSy16VKDfB1Ybv3T6Xb/YHSoR9du3fLVW7oyPLrl60W700ul0uGF6+X68yyXV68l5nRD6veZ+tqHTUMQ5KUn5/vkX8iIiIUERFR7bxOp1PvvPOOTp48qfT0dH377bcqLi7WgAED3G3OO+88tW3bltBZmYyMDPcLEOwyMzNrbJN12vfzKLL2ZqlxxKmaG9Yz3tQTnsIPZqvzlAcrfSylinl2zn5CRa0Y/q0qVdW0qnpKFWta3evi7TIaCrZ731W1fiWeGToycfojCi83kk/59Stqb1a163RlsvZmyZt3prLzB7OysnTqVPVzmNGPQ8XHKi63UErdI+3qUPmoRIf2/aJdjbx7n7V6HbXZbEpOTlZaWpoKCgrc0ydPnqwpU6ZUOs/333+vK664QoWFhWrSpIlef/11de7cWdu2bVN4eLhiYmI82ickJCi7bDz7es6n0JmSkhISRzozMzPVqVMnOcof9SjnZH6UdMC35Se3T1ZqdFLNDesJX+oJT2VbyuisPdpRWP2wbl0iI7U4uYM6tkqUkZpqfedCVFlNC6+bKaNlh+rbHtqjyGXTK9S0Nnuwhva6sN3XXk3b/cyz/l/Vdl+bdTS5fbJX62hUVFRp++RkJSVV/15mRj9SJW3r0FHHnb/W4vDPB7VyzT/02BV/UotzWnnM38wRqU5NEmr8O3W1jhqGoaKiIm3fvr3Ckc6qpKSkaNOmTcrPz9e7776ru+++W6tWrbKsj6HEp9DpcDiCPnSWcTgcNa6IDrvv11E57PYGuRP2pp4o58z6taOwUN/UcETh11nsEnWu2pmaGi07yHVOl+qbumcpV9NabPcN9XVhu68FM7Z7C9dR+5ll2715LzOpH6nRrT1+z8ovXW6XZm2UHJfs8984m9XraNm3u9HR0V7nn/DwcHXs2FGS1KNHD33zzTd66aWXNHz4cBUVFSkvL8/jaGdOTo4SExvGNylcvQ4AAGARl8uloqIide/eXY0aNdLGjRvdj2VkZGj//v0N4nxOiavXAQAATDFjxgxddtllateunY4fP67ly5fr008/1YoVKxQTE6PRo0dr2rRpiouLU7NmzTRp0iSlp6cTOgEAAOC9w4cP66677lJ2draio6N1/vnna8WKFbr00kslSbNmzZLdbtfYsWNVVFSkgQMHau7cuQHudd0hdAIAAJjg+eefr/bxyMhIzZ07t0EFzbNxTicAAAAsR+gEAACA5QidAAAAsFxon9O5b1+FocZsLpei9maV3tT27HuMNW4s1XAjXDP7USUr+wEEuYwT2Sooqf5G+WWahkUqpUnDuHcdADQEoRs69+1T2MjrK32oqmG7Spa/7RH4moZVHH+rpuG5KsxTTT+qUr4fQEOQcSJb52+c7tM83/efGTLBMzc3V5s2bVK/fv0UGxsb6O7ARLy2gDlCN3SeObLoy3B45Y9GpjRJ1Pf9Z3oceTm0/4CWr1mkv/3+VrVs6zmKQqVHXrw9wunvPECI8/YIp7/zBEpeXp5WrVql7t27E0zqGV5bwByhGzrP8GU4vMqUD5FZuaU/U5u2VnKMf8NzAQAAoBQXEgEAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwXMjfpxNA3WAISzQEla3nhwoOSJJ2FRzQ0bxfp7OeA74hdAKoUX0fwhKQql7Powql1FTprV2LdCrL8zFL1vPGjSudnBsWpo9bxGvA4SOKLSnxah4gmBA6AdSovg9hCUi/rrNtYscrPMxzGOTcttLZ0bKo5IB+yX3ZmvU8KUkly9+uMGTykexsvffGG+r2wP1qmnhWbxo3lpKSzO8HYDJCJwAAZwkPa62oRu0D24nKQmRUVOnP9u2lZIZpRujhQiIAAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAluM+nQBQC+WHS6xqqESJ4RIBQCJ0AvBC07DISqdHFUqpe6RdHaRTkd7NE3CVDBdY7fCClcxT2XCJ1Q2VKDEsKPwXExOjIUOGKCYmpm7+IMNxwmSETgA1SmmSqO/7z6ww5N+h/Qe0fM0i/e33t6pl21+HDQzqI3uVDDFY5fCCUqVDDFY29OGpSGlrl6r/LMOCwl+xsbEaOnRo3f1BhuOEyQidALxSWYjMyi39mdq0tZJjQmhYvvJvjAwvCFSO4ThhIi4kAgAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAEGKKioqUkZGhksruLRykCJ0AAAAh4uTJk7rnnnvUpk0b9enTR/v375ckTZo0SX//+98D3LvqcZ9OAABM1iWy5hG5vGnjl337KtzYXdnZpT/37pVOnfp1Ojd2DxmPPfaYtm/frvfff1/XXXede/qAAQM0e/Zs3XfffQHsXfUInUAIys3N1aZNm9SvXz/FxsYGbBm+qM2wmHU1lGadDy8Ir4Tiel42DOTi5A4+z2OqffsUNvL6CpPjw8I0tEW84h+cprByX8uWLH+b4BkCVq9erUWLFik9PV02m809vXPnztq7d2/gOuYFQicQgvLy8rRq1Sp179691m+kZizDF1UNpVmVuhxKs86HF4RXQnE9r2roSJfLpay9WUpunyy7/awz26w6wnjm7xdeN1NGy18DcISkK878v+w4p+3QHkUum17xqCiC0pEjR9SyZcsK00+cOBGA3viG0AmgzgTteOyAmSoJkYbTqVOSjNRUyeGos64YLTvIdU6XattwcUdo6dGjh9atW6fx48dLkvto5+uvv65evXoFsms1InQCAACEiOnTp+v666/Xzp07VVJSopdeekm7du3SV199pVWrVgW6e9XiAw4AAECI6NOnjzZt2iSn06muXbtqw4YNatGihdauXasePXoEunvV4kgnAABACOnQoYOeffbZQHfDZxzpBAAAMMHTTz+tgQMHql27dkpJSdFNN92kjIwMjzZDhgxRXFycxz9fbnO0bt06rV+/vsL09evX68MPP/T7OViJ0AkAAGCCzz//XOPGjdO6deu0cuVKFRcXa/jw4RWuLL/55pu1c+dO978ZM2Z4/TdmzJghp9NZYbphGD4tJxD4eh0AAMAEy5cv9/h9/vz5SklJ0datW3XRRRe5p0dFRSkxsXZ389i9e7c6d+5cYfp5552nPXv21GqZdYUjnQAAABbIz8+XJMXFxXlMX7Zsmc4991z16dNHM2bM0Ekf7pEaHR1d6U3gd+/ercZWDDRgIp+OdDqdTo+73weSzeXyeR6XyyWjkkPS5duU/azs8HVd9SNYlNXAm1rUN5kncnTc6d2NzJs5ItWpSYLHNLPWjcr6cfj4QUnSjuO/6NCxX/9OZf2o7m+V/azt62vGMnwRLNubsxb9cNZRjcxQm+3e3+2lMr6uX/5uK1a+rnW9Ly3bVmyH9tR4dMl2qPTomLfbir/bvRn7jbqqp2EYkkrD49n5JyIiQhEREdXO63K59OCDD6p3797q2rWre/rIkSPVrl07tWrVSt9//71mzJihzMxMvf7661716corr9SDDz6oxYsXq0OH0hv/7969Ww899JCuvPJKX59infIpdGZkZLhfgECL2pulFB/nydqbpVM1tMnJySltm5WlU6dqam1dP8xw4sQJfffdd7rgggvUpEkTv5aVmZlpUq9CQ1bxMV378//6NM+759ys5Ea/fpo1Y92oqh9RhVJqqvTWj//QqX3V96Mqvq7rVi3DF8GyvWWdzvF9nr1ZahxRF1u+ebzd7s3YXirjy/plxrZSF69rXe1Lww9mq7NUOtKQl3YfzFaRF+383e7N3G9YXU+bzabk5GSlpaWpoKDAPX3y5MmaMmVKtfNOmDBBO3bs0AcffOAx/ZZbbnH///zzz1erVq107bXXas+ePe4QWZ0ZM2bouuuuU69evdSmTRtJ0i+//KI+ffpo5syZPjy7uudT6ExJSQmeI521mCe5fXLpaBDViIqKKm2bnKwkL4Yms6ofZti3b5++/PJLDRw40KvnUhmn06nMzEx16tRJjjocRSPQTubvk36W2sSOV3hY62rbFpUc0C+5L6tlUhulRv9aZzPWjbJ+lHcqUtpaxSAj5ftRFV/XdauW4Ytg2d5O5kdJB3zvhzevSzDwdbs3Y3upjC/rlxnbipWva53vS1NTVfT2Uu+HtmzcWB3atfOqqb/bvRn7jbqqp2EYKioq0vbt2ysc6azOxIkTtXbtWv373//WOeecU23bCy+8UFLp0UpvQmdMTIzWrl2rDRs2aPv27YqMjNT555/vcc5osPIpdDocjqAJnbL7fjqq3W6vcfixsjFx7Xa7dyuyRf0wg8/PpRoOh6NBhU7HmdqFh7VWVKP2Xs/jUSMT1g1HLZZRoR/V/S35t36YuY55+QdrMYv525uVr0sw8Xa7N2V7qYQv65cZr0ldvK51ui9t396Sxfq73YfSe1PZt7vR0dFe5R/DMDRp0iStXr1a77//vpKTk2ucZ9u2bZLk04VFNptNAwcO1MCBA72eJxhw9ToAAIAJJkyYoOXLl2vJkiVq2rSpsrOzJZWG1qioKO3Zs0fLly/X4MGD1bx5c23fvl3Tpk1T3759lZaWVuVyFyxYoJtvvlmRkZFasGBBtX244447TH1OZiJ0AgAAmGDRokWSSm8Af7YXXnhBN954oxo1aqSPP/5YL774ok6ePKlzzjlH11xzjSZMmFDtcufPn6/rrrtOkZGRmj9/fpXtbDYboRMAAKC+O3bsWLWPt23bVqtXr/Z5ud9++22l/w813KcTAAAgBBQXF6tnz57atWtXoLtSK4ROAACAENCoUSOdPn060N2oNUInAABAiLjtttv07LPPqqSkJNBd8RnndAaLfft8up+aLLonYsaJbBWU/Dqih9PlUtbpHJ3Mj6pwO5GmYZFKaVK7sWMbki6Rkaa0ASxTbv9jc7kUtTer9L6o5W8jZOH+B0DNvvnmG23atEkbNmxQ165dKwx96e3IRoFA6AwG+/YpbOT1Ps1Ssvxt03f8GSeydf7GKkavqOKGyd/3n0nwrMqZHcHiZM+b/eaGhenjFvEacPiIYst/Ui2382gaVnkYjSqUUvdIuzqU3vzam3nQMOTm5mrTpk3q16+fYmNja56hiv1PdSM/WbH/QeiIiYnRkCFDFBMTE+iuNEgxMTG65pprAt2NWiF0BoMzRxgKr5spo2X1oxHYDu0pHdbM26OiPnAf4Xx6k7Q/t/rGbWOl+/t5HBVFOUlJpW/O5V6rwwcP6r0lS5R2/31q2qrVrw9UcgQppUmivu8/s0KdD+0/oOVrFulvv79VLdv+OgIMR5+Rl5enVatWqXv37t6FzjPr5+isPdpRWP323CUysvRDlAX7H4SO2NhYDR06NNDdaHBcLpeee+45ZWZmqri4WJdccommTJniHuEpFBA6g4jRsoNc51QxXtsZdXIS7v5caffRuvhL9V8lR4OMM8OnGcnJkhdDnlUWIrNyS3+mNm2t5JiaR7wAarKjsFDf+DkONgDrPPXUU5o9e7YGDBigyMhIvfzyyzpy5IjmzZsX6K55jQuJAAAAgtzSpUs1d+5crVixQm+88YbefPNNLVu2TC6XK9Bd8xqhEwAAIMjt379fgwcPdv8+YMAA2Ww2HThQxUUXQYjQCQAAEORKSkoUWe5OJ40aNQqpWydxTicAAECQMwxDd999tyLOXBcgSYWFhbr//vs9bpvELZMAAABQa6NGjaow7frrfbvdYqAROgEAAILcCy+8EOgu+I1zOgEAAGA5jnTWJ+WH0szOLv25d69U/v57DGWHEGY7tKfGT8y2Q3vqpC/+KD/sbHWsvvF/wIdrrWwo4Kr2YRbvv4pKar4a2Js2ADwROssJ2eG9KhnKLj4sTENbxCv+wWkKq+TqNoayC4yYmBj17t079NaxYHDmZPnIZb8O11rtsKJnzRNsqh12tgqWDDtbyXCtdV7TKobirG4fZsX+q2wI2V9yX/Z5HngvZN9n4TdCZzkhO7xXJcPSxZaUaNjBbJ/mgfViYmLUp08fdri1UcnQolUOKyoF9RH9siOcbWLHKzysdbVti0oO6Jfcl60ZdjYYalrFvqjafZgF+6+qhp2tCsPO1k7Ivs/Cb4ROAKGlXODxdVjRYBMe1lpRjdoHthP1rKb+IEQC1uFCIgAAAFiO0AkAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACW4z6dqKhtrDltEDwOHy79d7aqhhhs0aL0HwAAJiJ0ws09nNv9/dzTogql1D3Srg7SqUpGe/NmCLjc3Fxt2rRJ/fr1U2xsrEm9hS/sK/8l+yuvekxrFBmp89q2UaPpjyis8NcRWFzjbpNr/O113cWQUpuhDxkuEUBDR+iEW2VDwGX/9ItWrvmHHrviT0ps18ajvbdDwOXl5WnVqlXq3r07oTNAXMP/IFe/SzymFWdn68c33lDxzBkqSTzrdeQoZ40YLhEAfEfohIfyb4x7jrokSalNWqlDTHIgugQzVPaVeVRU6c/27aVkXltfESIBwDdcSAQAAADLEToBAABgOUInAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADActynEwBC2b590smTv/5e1fCmktS4sZSUVGddA4CzETqBBiomJkZDhgxRTExMQJfhr5iYGPXu3TugfQiYffsUNvJ6j0nxYWEa2iJe8Q9OU1hJSYVZSpa/TfAEEBCETqCBio2N1dChQwO+DH/FxMSoT58+DTN0nn2E84zYkhINO5jt0zwAUBc4pxMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAIAJnn76aQ0cOFDt2rVTSkqKbrrpJmVkZHi0KSws1IQJE9SxY0e1bdtWY8eOVU5OToB6XLcInQAAACb4/PPPNW7cOK1bt04rV65UcXGxhg8frhMnTrjbTJ06VWvWrNFrr72mVatW6eDBgxozZkwAe113uE8nAACACZYvX+7x+/z585WSkqKtW7fqoosuUl5enhYvXqyFCxeqX79+kqR58+apd+/e2rx5s9LT0wPR7TrjU+h0Op2y2WxW9cUnNper9OehPTUerrUd2iNJcrlcMpxOS/rhi/L9CJZlVNWm7KezlrUzYxm+sv30k/c3wW7cWEa7dh6TnLWop9PL51fWxp9aBKKmwcqMegaCGetYsGz3/j4XM56HldusGUJ1PQ1WdVVPwzAkSfn5+R75JyIiQhERETXOn5+fL0mKi4uTJH377bcqLi7WgAED3G3OO+88tW3bltBZXkZGhvsFCLTwg9nqLCly2XSv59l9MFtFFvXDF+X7EbU3Syk+LiNrb5bOHlW5sn7khoXp4xbxGnD4iGIrGQ7Pm3qcOHFCvXv31tGjR3X69Gkfe1mq7FyVrKwsnSo/FrQFwg9mq/OUB32aZ+fsJ1TUKtH9e9Zp38+vydqbpcYR3j+/zMxMn/9GmbquaSjwp56BYMY6Zsa+ozJl69dPP/3k1Xbv73Opaj9a3T6s/P6rLrZZM4TaehrsrK6nzWZTcnKy0tLSVFBQ4J4+efJkTZkypdp5XS6XHnzwQfXu3Vtdu3aVJGVnZys8PLzCCGoJCQnKzq5mJLF6wqfQmZKSEjRHOpWaqqK3l1Y4muV0OrX/p/1q266tHA7Hrw80bqwO5Y5mWdmPKlXSj9pUNLl9sozU1Gr7cTgnR+8tWaK0++9T44SEGvtRGafTqSZNmqhTp06e9fRBVFRUaZ+Tk5VUB2M+16aeHVsletTzZH6UdMC3ZSS3T1ZqdM3Pz+l0KjMzM6RqGszMqGcgmLGOmbLvqETZEZx27dqpffv2NS7T7+dSxX60yn1YJfsvK7dZM4Tqehqs6qqehmGoqKhI27dvr3CksyYTJkzQjh079MEHH1jWv1DjU+h0OBzBEzolqZKdoeF06pTDIXtqqux1tWF7sVOult3367nsdrtU/vmV64etSZPSnx06yJ6cXNveSSp97Wu7YdvPPD+73V43O1sT6umoxTIcPj6/kKppCPCnnoFgyjpm1r6jsjbyfv0y5blUsh/1ZR9WF9usGUJtPQ12Vtez7Nvd6Ohon/LPxIkTtXbtWv373//WOeec456emJiooqIi5eXleRztzMnJUWJiYmWLqle4eh0AAMAEhmFo4sSJWr16td577z0ll/uw1L17dzVq1EgbN250T8vIyND+/fvr/fmcElevAwAAmGLChAlavny5lixZoqZNm7rP04yOjlZUVJRiYmI0evRoTZs2TXFxcWrWrJkmTZqk9PR0QicAAAC8s2jRIknSkCFDPKa/8MILuvHGGyVJs2bNkt1u19ixY1VUVKSBAwdq7ty5dd7XQCB0AgAAmODYsWM1tomMjNTcuXMbTNA8G+d0AgAAwHKETgAAAFiO0AkAAADLcU4nzLdvn+dNnstGWdi7Vyo/ek7jxlIDv7k5GraikprvaO5NGwAIdoROmGvfPoWNvN5jUnxYmIa2iFf8g9MUVslwnCXL3yZ4+igmJkZDhgypMJQaQkfTsEhJ0i+5L7unRRVKqXukXR2kU5FVz2O1mJgY9e7dm/ULgKkInTDXmSOchdfNlNGygyQpQtIVZx4++zin7dAeRS6b7v0QonCLjY3V0KFDA90N+CGlSaK+7z9TBSWF7mmH9h/Q8jWL9Lff36qWbVt7tG8aFqmUJnUzYklMTIz69OlD6ARgKkInLGG07CDXOV2qbcMJxWjoyofIrNzSn6lNWys5xr+hawEg2PC+DwAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAEGC4U09+VKPqoYIjSqUeuwo/entPACswYhEABAkGN7Uky/1qGxYUanqoUXrclhRAKUInQCAeqGyEMnQokDw4Ot1AAAAWI7QCQAAAMsROgEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJbjPp1ANYpKDpjSBgCAho7QCVSibHi8X3Jf9pgeVSil7pF2dZBORVY+D4DgwdCiQPAgdAKVYEg9oH5gaFEgeBA6gSowpB4AAObhQiIAAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAluM+nUHEdmhPjZ8CbIf21ElfAAAAzEToDAaNG0uSIpdNd0/KDQvTxy3iNeDwEcWWlFQ5DypRRW2qramX9WRIPQAAaofQGQySklSy/G3p5En3pCPZ2XrvjTfU7YH71TSx3Mg4jRtLSUl13MkQUkk9pWpq6kM9GVIPAIDaIXQGi/KhJyqq9Gf79lIywy36rLIQSU0BAAgYLiQCAACA5QidAAAAsByhEwAAAJYjdAIAAJjgs88+0x//+Ed16dJFcXFxWr16tcfjd999t+Li4jz+jRw5MkC9rXtcSAQAAGCCkydPKi0tTaNHj9aYMWMqbTNo0CC98MIL7t8jIiLqqnsBR+gEAAAwweDBgzV48OBq20RERCix/K0QGwifQqfT6ZTNZrOqL6ZwOp0eP0OVy+Vy/6ztczFjGb7W03bmb/oyupLL5ZJRB6+XGfUwQ31ZR4NFQ65n2fbmC2+2N19r6jzTj6KSAzW2LWvjDPB2WNca8npqhbqqp2EYkqT8/HyP/BMREVHrI5SffvqpUlJSFBsbq0suuUQPPfSQmjdvbkp/g51PoTMjI8P9AgS7zMzMQHfBLydOnFDv3r11+PBhnTp1KmDLKONtPcMPZquzfBtdaffBbBXVsNwTJ07ou+++0wUXXKAmTZr40PNf5eTkSJKysrL8rocZQn0dDTYNsZ5Re7OU4uM8WXuz5O3a721NDxUfkyT9kvuy1/04tO8X7WoU+O2wrjXE9dRKVtfTZrMpOTlZaWlpKigocE+fPHmypkyZ4vPyBg0apCFDhig5OVl79+7VzJkzdd1112ndunVyOBxmdj0o+RQ6U1JSQuJIZ2Zmpjp16hTyL+BvfvObgC/D53qmpqro7aUeowEdzsnRe0uWKO3++9Q4IcGzfePG6tCuXY2L3bdvn7788ksNHDhQSbUcjSnqzM3hk5OTa70MM9SndTQYNOR61mZvnNw+WUZqarVtfK1pqqRtHTrquLPQqz40c0SqU5OEmhvWIw15PbVCXdXTMAwVFRVp+/btFY501saIESPc/z///PN1/vnnq2fPnvr000/Vv39/v/sb7HwKnQ6HI+hDZxmHw8GGbSKf6tm+vcevtjNHJm0dOshey5GA7Ha7+2dtX1czlmEm1lFzNch62n2/AYndbpe8rJMvNU2Nbu1zXxqiBrmeWsjqepZ9uxsdHW1J/mnfvr3i4+O1e/fuBhE6uWUSAABAAPz88886evRog7mwiKvXAQAATFBQUKA9e/a4f8/KytK2bdsUGxuruLg4zZkzR0OHDlViYqL27NmjRx55RB07dtSgQYMC2Ou6Q+gEAAAwwdatW3XNNde4f582bZokadSoUXrqqaf0ww8/aOnSpcrLy1OrVq00cOBATZ06tcHcq5PQCQAAYIKLL75Yx44dq/LxFStW1GFvgg/ndAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJywXExOjIUOGKCYmhn4AZmrcuG7mAQATcPU6LBcbG6uhQ4cGuhtB0w/ANElJKln+tsews9Vq3FgK4BCwABo2QicAhDJCJIAQwdfrAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACzHfToRnA4fLv1XJju79OfevdKpU55tW7Qo/QcAAIIWoRNByb7yX7K/8qr79/iwMA1tEa/4B6cprKTEo61r3G1yjb+9rrsIAAB8QOhEUHIN/4Nc/S5x/95U0pAz/y8p35ijnAAABD1CJ4ITX5kDAFCvcCERAAAALEfoBAAAgOUInQAAALAcoRMAAACWI3QCAADAcoROAAAAWI7QCQAAAMsROgEAAGA5QicAAAAs59WIRE6n0/3Tbg/unOpyuWS32+VyuWSz2QLdnZBHPc1HTc1FPc1HTc1HTc1VV/V0uVySSvNPWBiDOPrLZhiGUVOjkpISnThxoi76AwAAEFSaNGlC6DSBTxWMjIwM+k9oTqdTGRkZSklJkcPhCHR3Qh71NB81NRf1NB81NR81NVdd1dMwDBUWFlq2/IbGq9BZ9oLabLagD502m02GYYREX0MB9TQfNTUX9TQfNTUfNTVXXdeTDwrmCO4TNAEAAFAvEDoBAABgOUInAAAALEfoBAAAgOUInQAAACZ4+umnNXDgQLVr104pKSm66aablJGR4dGmsLBQEyZMUMeOHdW2bVuNHTtWOTk5Hm1++uknXX/99WrTpo1SUlI0ffp0lZSUeLT59NNP1b9/fyUmJuo3v/mNlixZUqE/Cxcu1AUXXKBWrVrpsssu05YtW8x/0j4gdAIAAJjg888/17hx47Ru3TqtXLlSxcXFGj58uMe9zqdOnao1a9botdde06pVq3Tw4EGNGTPG/bjT6dQNN9yg4uJirV27VvPnz9ebb76pWbNmudtkZWXphhtu0CWXXKJNmzbpzjvv1F/+8hetX7/e3WblypV66KGHNHnyZH388cdKS0vTiBEjdOjQobopRiUInQAAACZYvny5brzxRnXp0kXdunXT/PnztX//fm3dulWSlJeXp8WLF+vxxx9Xv3791KNHD82bN09fffWVNm/eLEn66KOPtGvXLi1YsEDdunXT4MGDNXXqVL3yyisqKiqSJC1atEhJSUn629/+ptTUVI0fP15Dhw7Viy++6O7L/PnzNXbsWN10003q3Lmznn76aTVu3FiLFy+u87qU8enm8E6nM+jvL3b2kJ3wH/U0HzU1F/U0HzU1HzU1V13Vs2zQxvz8fI/8ExERoYiIiBrnz8/PlyTFxcVJkr799lsVFxdrwIAB7jbnnXee2rZtq82bNys9PV2bN29W165dlZCQ4G4zaNAgPfDAA9q5c6cuuOACbd682WMZZW0efPBBSVJRUZG2bt2q++67z/243W5X//793eE2EHwKnRkZGfJi1MygkJmZGegu1CvU03zU1FzU03zU1HzU1FxW19Nmsyk5OVlpaWkqKChwT588ebKmTJlS7bwul0sPPvigevfura5du0qSsrOzFR4erpiYGI+2CQkJys7OliTl5OR4BE5JatmypXv+sjZl085uc/z4cZ06dUq5ublyOp2Vtil/jmld8il0pqSkhMSRzszMTHXq1IkRBExAPc1HTc0VavVs9Od7pKNH/VtI8+YqfuF5czpUiVCraSigpuaqq3oahqGioiJt3769wpHOmkyYMEE7duzQBx98YFn/Qo1PodPhcAR96CzjcDjYsE1EPc1HTc0VMvU8elS2c9r4tQjj51/q5LmGTE1DCDU1l9X1LPt2Nzo62qf8M3HiRK1du1b//ve/dc4557inJyYmqqioSHl5eR5HO3NycpSYmCip9Khn+avMyy7+ObtN+QuCDh06pGbNmikqKspdl8ralD+KWpd8Cp0AgPphzNcv60jRiSoeNeRyGbJ/uUZS5W+08eFN9Ppvx1vWPyAUGYahSZMmafXq1Xr//feVnJzs8Xj37t3VqFEjbdy4UUOHDpVUeuri/v37lZ6eLklKT0/XU089pUOHDrm/Ht+wYYOaNWum1NRUd5sPP/zQY9kbNmxQr169JEnh4eHq0aOHNm7cqKuvvlpS6df9mzZt0rhx46wrQA0InQDQAB0pOqEoL74irHL+01UF1tBUfQivGSEcUulX6suXL9eSJUvUtGlT9zmY0dHRioqKUkxMjEaPHq1p06YpLi5OzZo106RJk5Senu4OnQMHDlRqaqruvPNOPfroo8rJydHjjz+ucePGub/Wv/XWW/XKK6/o4Ycf1ujRo7Vp0ya98847euutt9x9ufvuu3X33XerZ8+e+s1vfqMXX3xRJ06c0E033VT3hTmD0AkAaPAI4TDDokWLJElDhgzxmP7CCy/oxhtvlCTNmjVLdrtdY8eOVVFRkQYOHKi5c+e62zocDi1dulQPPPCArrjiCjVu3FijRo3S1KlT3W2Sk5P11ltvaerUqVqwYIHatGmj5557ToMGDXK3GT58uA4fPqxZs2YpJydH3bp10/Lly/l6HQAAINQdO3asxjaRkZGaO3euR9AsLykpScuWLat2ORdffLE2bdpUbZvx48dr/PjgOQJP6AQAIAj4+xW/xNf8CG6ETgAAgoC/X/FLfM2P4EboBMrhggIAAMxH6ATK4YICAL569eWvZH/mj1U+bpfU1XDJbrNXvZC7ekh+HukEghmhEwAAP8UXFMnWLrnaNjXewjxEhpkGaquaj1wAAACAOTjSiXrFjPMxEXzsd95d5XjlXn1tKUnNm8v10nzzOwcA8AqhE/UK52PWUzWMV+7NyMvGz7+Y1x8EFT5sAqGB0AkACGl82ARCA+d0AgAAwHIN8kgnoz4AgP+4py0AXzTI0MmoD2gIqrv4xmtcfINq8LU2AF80yNAJNAg1XHzjDS6+AQCYhdBZSzWNPuEVjiIBAEzEexOCGaGzlrwZfaImHEUCAJiJ9yYEM0IngAZh9JiuOvz53/1aBhe+AEDtEToBNAiHmzTiAkIACCDu0wkAAAAPn3/+ucaPH6/LL79cv/xSesrF0qVL9cUXX9R6mYROAAAAuL333nsaOXKkoqKi9N1336moqEiSlJ+fr6effrrWyyV0AgAAmOCzzz7TH//4R3Xp0kVxcXFavXq1x+N333234uLiPP6NHDnSo82xY8d0++23KykpScnJybrnnntUUFDg0Wb79u268sor1apVK51//vl69tlnK/TlnXfeUa9evdSqVSv17dtX69at8/p5zJ07V08//bSeffZZNWrUyD39d7/7nb777juvl1MeoRMAAMAEJ0+eVFpamp588skq2wwaNEg7d+50/3vllVc8Hr/99tu1c+dOrVy5UkuXLtXnn3+uv/71r+7H8/PzNWLECLVr104bNmzQY489pjlz5ui1115zt/nyyy81btw4jR49Whs3btTVV1+t0aNH64cffvDqeWRmZqpv374VpkdHRysvL8+rZVSGC4kAAABMMHjwYA0ePLjaNhEREUpMTKz0sV27dmn9+vX66KOP1LNnT0nSnDlzdP3112vmzJlq3bq1li1bpqKiIs2bN0/h4eHq0qWLtm3bpvnz5+uWW26RJC1YsECDBg3SX/7yF0nStGnT9PHHH2vhwoX6+99rvotHQkKCdu/eraSkJI/p//nPf9S+ffsa568KRzoBAADqyKeffqqUlBSlp6fr/vvv19GzhivevHmzYmJi3IFTkgYMGCC73a4tW7a42/Tt21fh4eHuNoMGDVJGRoZyc3MlSV999ZUGDBjg8XcHDhyozZs3e9XHsWPH6sEHH9TXX38tm82mAwcO6O2339b06dN166231vKZ+3ik0+l0ymaz1fqP1QWn0+nxs3JG3XTGC9X3M/C8q2cw8fe1NWPdMKqtV13V1KxPlMHw2gfPp+PqX1tvBM/rEvzbii/LCez89U8wbPfVqav9qGGUrhv5+fke+SciIkIRtbgF26BBgzRkyBAlJydr7969mjlzpq677jqtW7dODodD2dnZatmypcc8YWFhiouLU3Z2tiQpJyenwhHIsnmys7MVGxurnJycCstp2bKlcnJyvOrnfffdJ5fLpWHDhunkyZO6+uqrFRERof/zf/6Pxo+v/b2KfQqdGRkZ7hcg2GVmZlb5mMsVHM/BZbi0a9euQHfDK9XVM5j4+9qasW64XIZXr6vVNe1quOTwcxnBso6a8VzM4O1rW51geV1CaVuxui/B8p4QLIJlu/eG1ftRm82m5ORkpaWleVzMM3nyZE2ZMsXn5Y0YMcL9//PPP1/nn3++evbsqU8//VT9+/c3pc9msNlsmjBhgv7yl79o9+7dOnHihFJTU9W0aVO/lutT6ExJSQmJI52ZmZnq1KmTHI7Kd+32L9fUca8qZ7fZlZqaGuhuVMubegYTf19bu93/9dtut1X7utZVTe02/4+pBcs6asZzMUNNr61XyzDjdSkqVtqjj9V+Ac2byz62k399qINtxevlBMF2X58Ey3ZfnbrajxqGoaKiIm3fvr3CkU4ztG/fXvHx8dq9e7f69++vxMREHTp0yKNNSUmJjh075j4PNCEhoUKbst9rapOQkOBT/8LDw9W5c2ef5qmOT6HT4XAEfegs43A4qlkRg+c5hEKQk2qqZzDx97U1Y92weVWrUKlpKPSx7nj32tYF2zltaj1v6djaobOteLOcwM5f/wTLel4Tq/ejZd/uRkdHW5J/fv75Zx09etQdFtPT05WXl6etW7eqR48ekqRNmzbJ5XLpwgsvdLf529/+puLiYvftjDZs2KCUlBTFxsZKknr16qWNGzfqrrvucv+tDRs2KD093at+FRYW6uWXX9Ynn3yiw4cPy+VyeTy+cePGWj1frl4HAAAwQUFBgfbs2eP+PSsrS9u2bVNsbKzi4uI0Z84cDR06VImJidqzZ48eeeQRdezYUYMGDZIkpaamatCgQbr33nv19NNPq7i4WJMmTdLw4cPVunVrSdLIkSP1P//zP7rnnnt07733aseOHVqwYIEef/xx99+94447NGTIEM2bN0+XX365Vq5cqa1bt+qZZ57x6nncc8892rBhg4YOHaoLL7zQtMBN6AQAADDB1q1bdc0117h/nzZtmiRp1KhReuqpp/TDDz9o6dKlysvLU6tWrTRw4EBNnTrV4+v6hQsXauLEiRo2bJhsNpuGDh2q2bNnux+PiYnRihUrNHHiRF166aWKj4/XxIkT3bdLkqTevXtr4cKFevzxxzVz5kx17NhRixcvVteuXb16HmvXrtXbb7+t3/3ud35WxBOhEwAAwAQXX3yxjh07VuXjK1asqHEZcXFxFW4YX15aWpo++OCDatsMGzZMw4YNq/HvVaZNmzZ+XzRUmeA4Ox8AAABBYebMmXr00Ue1b98+U5fLkU4AAAC49ezZU6dPn1bPnj3VuHFjhYV5xsWzz1v1BaETGvP1yzpSdKKKRw25XMaZW5JUfiJxfHgTvfHKVumsURV81ry5XC/Nr/38AADAFOPGjdOBAwc0ffp0JSQkcCERzHOk6ISi/Ljn2JHTJ6SjR/2+hYv9zrv9Dq4am1L7+QEAgL766iutXbtW3bp1M3W5hE4EDxOCKwAA8E9KSooKCwtNXy6hE0CVRo/pqsOf/92vZcSHN9Hrv639WL0AgLr1yCOP6KGHHtL06dPVtWvXCud0RkdH12q5hE4AVTrcpJFfp15IZ06/AACEjJEjR0qSrr32Wo/phmHIZrPpyJEjtVouoRMAAABu77//viXLJXQCAAA3M06rKXaVqJHdv4jBqTmBc9FFF1myXEInAABwM+O0msKTRYrm1JyQ9dlnn1X7eG1DKaETAAAAbmePH1/m7Ht1ck5nKDp9Wvbr/+jXIkbf0k2HYxv71w1nsaLk3ydSAABQP5QfcaikpETfffedZs2apYceeqjWyyV0Bpg/96WUpMORdlO+BgFQs1df/kr2Z/z7oKjTp83pDABYJCYmpsK0Sy+9VOHh4Zo2bZo+/vjjWi2X0AkAXoovKJKtXbJfyzB2127MYgAItJYtWyozM7PW8xM6AQAA4LZ9+3aP3w3DUHZ2tp555hmlpaXVermETgAAALj169dPNptNhmF4TP/tb3+refPm1Xq5hE4AAAC4bd261eN3u92uFi1aKDIy0q/lEjoBAADglpSUZMlyCZ0AAAAN3IIFC7xue8cdd9Tqb4Rc6LTfebd09GjVj0vqarhkt9mrXshdPSQ/bzMEwDunncW6ys8h9d51lci/L3UQrGrap9eoeXNpbIp5HQIaqPnz53vVzmazNZzQqaNHa7y3paOmZZQ7MRaAdQwZft9L1hDbbL3lxT69OsbPv5jYGcA/n332mZ5//nl9++23OnjwoBYvXqyrr77a/bhhGHriiSf0z3/+U3l5eerdu7eeeuopnXvuue42x44d06RJk7R27VrZbDYNHTpUTzzxhJo2bepus337dk2cOFHffPON4uPjNX78eN17770efXnnnXc0a9Ys7du3Tx07dtSjjz6qyy+/vMq+f/vttyZWonLVHA4EAACAt06ePKm0tDQ9+eSTlT7+7LPPasGCBXr66af14YcfqnHjxhoxYoQKCwvdbW6//Xbt3LlTK1eu1NKlS/X555/rr3/9q/vx/Px8jRgxQu3atdOGDRv02GOPac6cOXrttdfcbb788kuNGzdOo0eP1saNG3X11Vdr9OjR+uGHH3x+ToZhVLiKvbYInQAAACYYPHiwHnroIQ0ZMqTCY4Zh6KWXXtKECRN01VVXKS0tTS+++KIOHjyo1atXS5J27dql9evX67nnntNvf/tb9enTR3PmzNHKlSt14MABSdKyZctUVFSkefPmqUuXLhoxYoTGjx/v8fX4ggULNGjQIP3lL39Ramqqpk2bpu7du2vhwoVeP5elS5eqb9++at26tVq3bq2LLrpIS5cu9as+Pn297nQ6PQZ8DwRScjAKpq8+/e2LGc/FqPY8Na/OO27eXMUvPO9XL9hWUL3g2FbMEQzPBeYz5HQ6K32kbHpVj5vWgzNH+PLz8z3yT0REhCJ8PG0oKytL2dnZGjBggHtaTEyMLrzwQm3evFkjRozQ5s2bFRMTo549e7rbDBgwQHa7XVu2bNGQIUO0efNm9e3bV+Hh4e42gwYN0rPPPqvc3FzFxsbqq6++0p///GePvz9w4EB3uK3JCy+8oFmzZmncuHHq3bu3JOk///mPHnjgAR09elR33323T8+9jE+hMyMjw7RDrLXV1XDVfM5myKgfOzqXy5DLz9fFZbgkeXE+bg3LcLn8q6m/85ctw3XksBxt21bZpqbneePAWB364hm/+vGeq1hRfi0B1gh8WAuqbcWEfUcwPBeYz+UytGvXrmrb+DMkozdsNpuSk5OVlpamgoIC9/TJkydrypQpPi0rOztbUulQkmdLSEhQTk6Ou035x8PCwhQXF+eePycnp8Itjcrmyc7OVmxsrHJyciosp2XLlu6/U5OXX35ZTz31lP74xz+6p1111VXq0qWLZs+eXTehMyUlJfBHOqs7OhRyAltLs9jtNr9fFzNeV7vNLrvdv5r6O3/ZMvx9PkeaNFKTKCJj/WTGdu/nel6PtpVgeS4wn91uU2pqaqWPOZ1OZWZmqlOnTnI4rDsUZRiGioqKtH379gpHOuuz7Oxs9erVq8L0Xr16ucNvbfgUOh0OR8BDJ4JRMK0T/vYl8IEAqBv1aVsJhucC89lqDJQOh8Py0ClJ0dHRfuefxMRESdKhQ4fUqlUr9/ScnBx169bN3ebQoUMe85WUlOjYsWPu+RMSEiq0Kfu9pjYJCQle9bVDhw7617/+pQceeMBj+r/+9S917NjRq2VUpj4dNgQAAAhKycnJSkxM1MaNG93T8vPztWXLFqWnp0uS0tPTlZeX5zEM5aZNm+RyuXThhRe623z++ecqLi52t9mwYYNSUlIUGxsrqfSI5Nl/p6xN2d+pStnV7VOnTtUTTzyhkSNH6sknn9STTz6pkSNHas6cOZo6dWqta0DoBAAAMEFBQYG2bdumbdu2SSq9eGjbtm366aefZLPZdOedd2ru3Ln697//re+//1533XWXWrVq5b6XZ2pqqgYNGqR7771XW7Zs0X/+8x9NmjRJw4cPV+vWrSVJI0eOVHh4uO655x7t2LFDK1eu1IIFCzzOs7zjjju0fv16zZs3Tz/++KNmz56trVu36vbbb6+2/xdffLEuu+wyHTlyRO+++66aN2+u1atXa/Xq1WrevLnWr19f6ZX53gq9m8MDAAAEoa1bt+qaa65x/z5t2jRJ0qhRozR//nzde++9OnnypO677z7l5eXpd7/7nZYvX67IyF/HXFu4cKEmTpyoYcOGuW8OP3v2bPfjMTExWrFihSZOnKhLL71U8fHxmjhxom655RZ3m969e2vhwoV6/PHHNXPmTHXs2FGLFy9W165dq+3/qlWrtGTJEj388MNyuVy65ppr9Pjjj+uiiy4ypT6ETgAAABNcfPHFOnbsWJWP22w2TZ06tdqvqOPi4vTKK69U+3fS0tL0wQcfVNtm2LBhGjZsWLVtyuvbt6/69u2rOXPm6J133tGSJUs0dOhQdejQQaNHj9aoUaPc543WBl+vAwAAwK1Jkya66aabtHr1am3evFnXXnutXnnlFXXr1k2jRo2q9XIJnQAAAKhUx44ddf/992vChAlq2rSp1q1bV+tl8fU6AAAAKvjss8/0xhtv6P3335fNZtMf/vAHjR49utbLI3QCAABAknTgwAEtWbJEb775pnbv3q1evXpp9uzZGjZsmJo0aeLXsgmdAAAA0MiRI7Vx40bFx8frhhtu0OjRo5WSkmLa8gmdAAAAUKNGjfS///u/uuKKKywZ6YnQCQAAAL355puWLp+r1wEAAGA5QicAAAAsR+gEAACA5QidAAAAsByhEwAAAJYjdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAmGD27NmKi4vz+NerVy/344WFhZowYYI6duyotm3bauzYscrJyfFYxk8//aTrr79ebdq0UUpKiqZPn66SkhKPNp9++qn69++vxMRE/eY3v9GSJUvq5Pn5i9AJAABgks6dO2vnzp3ufx988IH7salTp2rNmjV67bXXtGrVKh08eFBjxoxxP+50OnXDDTeouLhYa9eu1fz58/Xmm29q1qxZ7jZZWVm64YYbdMkll2jTpk2688479Ze//EXr16+v0+dZG2GB7gAAAEB9ERYWpsTExArT8/LytHjxYi1cuFD9+vWTJM2bN0+9e/fW5s2blZ6ero8++ki7du3SO++8o4SEBHXr1k1Tp07Vo48+qilTpig8PFyLFi1SUlKS/va3v0mSUlNT9Z///EcvvviiBg0aVKfP1Vc+Hel0Op0B/4dgZAS6A2fxty+GScsAgl192laC4bnAfEaNeaCuckd+fr7Hv9OnT1fZ6927d6tLly7q0aOHbr/9dv3000+SpG+//VbFxcUaMGCAu+15552ntm3bavPmzZKkzZs3q2vXrkpISHC3GTRokI4fP66dO3e625y9jLI2X331ld8Vt5pPRzozMjJkGIHdMLsaLjkC2gMz1Y+dnMtlyOXn6+IyXJLk9zJcLv9q6u/8Zcvwtx6oz8zY7v1cz+vRthIszwXmc7kM7dq1q9o2mZmZlvbBZrMpOTlZaWlpKigocE+fPHmypkyZUqH9hRdeqBdeeEGdOnVSdna25syZo6uuukqff/65srOzFR4erpiYGI95EhISlJ2dLUnKycnxCJyS1LJlS0nyaFM27ew2x48f16lTpxQVFeX/E7eIT6EzJSVFNpvNqr54xW6rT6ehBraWZrHbbX6/Lma8rnabXXa7fzX1d/6yZdSv9RTmMmO793M9r0fbSrA8F5jPbrcpNTW10secTqcyMzPVqVMnORzWfcQ3DENFRUXavn27R/6JiIiotP3gwYPd/09LS9Nvf/tbdevWTe+8844iIyMt62eo8Cl0OhyOgIdOBKNgWif87UvgAwFQN+rTthIMzwXms9UYKB0Oh+WhU5Kio6NrlX9iYmLUqVMn7d69W5deeqmKioqUl5fncbQzJyfHfQ5oQkKCtmzZ4rGMQ4cOSZJHm7JpZ7dp1qxZUB/llLh6HQAAwBIFBQXas2ePWrVqpe7du6tRo0bauHGj+/GMjAzt379f6enpkqT09HT98MMPHqFyw4YNatasmfuob3p6uscyytqcfWumYEXoBAAAMMH06dP12Wefad++ffryyy81ZswYORwOjRgxQjExMRo9erSmTZumTz75RFu3btWf//xnpaenu0PnwIEDlZqaqjvvvFPbtm3T+vXr9fjjj2vcuHHur/RvvfVWZWVl6eGHH9aPP/6oV155Re+8847uuuuuQD51r3DLJAAAABP8/PPPGjdunI4ePaoWLVqod+/e+vDDD9WiRQtJ0qxZs2S32zV27FgVFRVp4MCBmjt3rnt+h8OhpUuX6oEHHtAVV1yhxo0ba9SoUZo6daq7TXJyst566y1NnTpVCxYsUJs2bfTcc88F/e2SJEInAACAKRYtWlTt45GRkZo7d65H0CwvKSlJy5Ytq3Y5F198sTZt2lSrPgYSX68DAADAcoROAAAAWI7QCQAAAMsROgEAAGA5ry4kKrs5aqCHwJQkIzJSqmIkAG9FOcIVaW/kdz8MP/thREUFxXOJsjfybxl2l9+vi1E2UoOfyzDjuUgKeD2CZR0NivVLwfNcgmW793cZ9WlbCZbnUp/W0WDZ7mV3VZk7DMOQzWaTYRiWZpOz8w+D4/jPZnjxarlcLh0/frwu+gMAABBUmjVrJrudL4f95XXodM8Q5Ek/Pz9faWlp2r59u6KjowPdnZBHPc1HTc1FPc1HTc1HTc1VV/U8OyIROv3n1dfroVRom82mgoIC2Wy2oA/IoYB6mo+amot6mo+amo+amquu6slrZa7QSZMAAAAIWYROAAAAWK7ehc6IiAhNnjxZEX5evYdS1NN81NRc1NN81NR81NRc1DM0eXUhEQAAAOCPenekEwAAAMGH0AkAAADLEToBAABgOUInAAAALEfohKm4Lg3B7uwR1oBgxb4U9VGDDp1s1Ob69NNPtXbtWhUXFwe6K/UK66l51q9frzfeeEOnT58OdFfqFdZRc7EvRX3VIEPn999/r5ycHNlsNnaWJnn99dc1evRo5eTk6NixY5J4I/LX119/rX379rGemuT111/XrbfeqtOnT+vIkSPu6dS29tiXmo99KeqzBhc6ly1bpquvvlrPPfecsrOz2VmaYP369Zo+fbqefPJJjR07VgkJCZIkp9Mpia8za2PFihW66qqrNHXqVO3du5f11E+ffPKJZsyYoSeffFLjxo1Tq1atJEklJSWMrVxL7EvNx74U9V2Dujn8Z599pr/+9a+Kj49XSUmJLrnkEt15551KTEyUYRi8+fiorGYzZ87U4cOH9eyzzyozM1MvvfSSDhw4oPDwcD388MPq0KFDoLsaUr744gs98MADSkpK0qlTpxQfH6+HH35Y7du3Zz31UVm9nnvuOX377bd69dVX9eOPP+rJJ59Udna2Tp8+rYceekh9+vRRWFhYoLsbMtiXmot9KRqKBnOk0zAM/b//9//UrVs3/eMf/9AVV1yhjz76SC+99BKf0v20Z88enXvuuTpx4oSGDBmi06dPKz4+XkePHlX//v319ddfS+JTurcOHDig9u3ba/bs2brhhhuUnZ2txx57zH3Ekzp6ryz8ZGdnKzExUQUFBbr22mvVtGlT9enTR+3atdPIkSP17rvvSmId9Qb7UuuwL0V912A+2ttsNg0dOlQXXHCBWrdurYkTJ8rpdOqDDz6QJN1xxx3ur9z4pO6dsholJibq/fffl2EYuuyyy/T8889LkoqKivTnP/9Z48aN0yeffKJmzZoFsrshY/jw4UpJSVH79u3Vvn17OZ1OLV26VI899pimT5/uPtpRtp66XC7Z7Q3m82OtxMXF6Z///KdSU1M1cOBA/f3vf3c/Nn36dE2ZMkX9+/dXixYtAtjL0MC+1HzsS9FQNKh3qpiYGPXo0cP9KXzKlCm66qqr9NFHH2nBggU6dOiQTpw4oSlTpigvLy/AvQ0d1157raKiovTGG2+oSZMmkkrPQQoPD9dtt90mp9Op/fv3B7iXwatsfTz76EW3bt3c/x8zZoz++Mc/6uDBg5o5c6b27dunwsJC3XbbbTp27BiBs5yyehqG4f7/6NGjlZycrNmzZys/P19S6Ru5JN1+++0KDw/Xrl27AtPhEBQbG6sePXq4f2dfao6hQ4eqcePG7EtRb9XrI52fffaZfvjhBzVq1EgXXHCBfvOb30gq/VRZUlKisLAwTZ48WZK0Zs0aFRYW6quvvtLRo0c1a9asQHY9aFVW0x49euiCCy7QF198oSZNmqi4uFiNGjWSJDVr1kyxsbFyOBwB7nnwOnjwoFq3bi273V7hyFDZUcwxY8bIZrNp6dKlmjZtmn7++WdlZWVxxKMSZfU8+2veFi1a6KqrrtILL7yg77//XidOnHC/qRuGobi4OEVFRQWy20Htu+++0+7du+VwONSlSxd16tTJ/VjZOsq+1DeV1bR79+7q2rWrvvjiC3311VfsS1H/GPXUP//5TyMpKcm47LLLjN69exsJCQnG3LlzjdzcXHeb4uJi9/8ffvhhIy4uzhgwYIBRVFRkGIZhlJSU1Hm/g1llNX3yyScNp9NpnDx50pg8ebLRoUMH4w9/+IOxY8cO47///a9x4403GsOHDzecTmegux+U3n77baNTp07G0qVL3dNcLpdHm7NrN3/+fCMuLs4YNGgQ62klKqtn2XZ+6tQp47nnnjM6depk9OrVy9iwYYPxf//v/zVuvPFG4+qrr2YdrcLrr79upKWlGRdddJFxwQUXGFdccYXx7bfferQ5ex1kX1qzymr63//+1zAMwygoKDAmTZpkdOzYkX0p6p16GTp//PFHo2vXrsayZcsMwzCMQ4cOGYsWLTLi4+ONBx54wDhy5Ii7rcvlMnJzc40rr7zSGDRokPsN6uxAiupreu+99xpFRUXGqVOnjJdfftkYOHCg0bJlS6Nv377G73//e/cbDztLTxs2bDA6d+5s9O/f3+jTp4/x1ltvuR8rHzzL1tOrrrrK6NevH+tpJaqrZ1mdTp8+baxbt84YMWKEkZycbFx00UXGsGHDWEer8P777xvJycnG8uXLjfz8fOOTTz4xhg8fbjz//POGYXiup+xLvVNTTQ3DME6ePMm+FPVSvQydO3bsMHr27Gns3LnTY/q///1vIz4+3pgxY4ZhGL/uMF977TXj3HPPdW/Q7CQrqqmmDz/8sGEYvx7R+O9//2vs2bPHvXOkpp4KCgqMe+65x7j33nuNTz75xLjvvvuMXr16eQSl8m8sK1asMPr06cN6Wglv6lm+XhkZGUZOTg7raBVycnKMG2+80XjiiSc8pt93333G73//+0rnYV9aPW9qWrY+lr0/sS9FfVIvz+l0uVzKysrSgQMHlJqaKqfTKZvNpiuvvFIvvvii7rjjDvXp00eDBw+WJN18880aM2aM7Ha7+1xPePKmpn379tUVV1whSerZs6fHvNTUU5MmTXTbbbfp0KFDuvjii9WiRQsZhqGnnnpKknT99ddXOMdz+PDh+sMf/uBxTjJKeVPPsLAwuVwu2Ww22Ww2dezY0X0RFutoRXa7XZ07d1afPn0k/XruZq9evfT9999Lqnh1OvvS6nlT07J6lv3s3r076ynqjXp52WvXrl01atQoTZ8+XTt27HCfeO10OnXdddfpmmuu0XvvvSen0+ke27bsDZ4NunLe1HTVqlVyOp0V7iHH1dWV6969uy677DJJUufOnTV+/Hj17dtXc+fO1dtvvy1JOnz4sNauXeuep+ziGNbTiryp55EjR7Ru3TpJnusl62hF8fHxuvnmm9W/f39Jv4ag5s2bS/IczWnHjh3u+diXVq02NWU9RX1Sb/cKN9xwg37++WfNnDlTjzzyiFJTU91XskZHRys/P18Oh8PjSkDuJ1c9b2sK35QdLerSpYtuv/122Ww2Pf300zp+/LiWLVumI0eO6PLLL69wBASV87WeqFpSUpIkzyOaubm5ys/Pd4fKESNGqLCwUKtXr3bPR22rVtuaAvVBvf3YdMkll2jUqFEqKCjQAw88oG+++UY2m00nT57UTz/9pNatWwe6iyGHmlrj7Dforl276o477tCFF16oiRMn6vTp0/r8888Z5cUH1NN85UNkRESEpNLTFn766Se98847AehVaKOmaIjq5ZHOsk+Q119/vZo1a6a33npLgwYNUo8ePXTq1CnZbDYtW7bMoy2qR03rzjnnnKNvvvlGPXv21Nq1axUWFsb5cX6gnuZKSEhQeHi4rr76ah04cEBffvmlGjVqRE39QE3RUITs2lwWbM4OOGUnZZ89NOCVV16piy++WDfccIOysrLUpEkTjRo1ijeeSlBT81VX08oUFxfr0UcflWEYWrNmDTUth3qaz9eaHjt2TF9//bUuuOACwlEVqClQOZsRgt8xnb3xHjp0SFFRUWrSpEmFo2vVHXFzOp2cf3gWamo+b2ta3o4dO3TeeefJ4XDwxnMW6mm+2tR027Zteuutt/Too48S4itBTYGqhWToLPPEE0/ovffek91uV4sWLfTEE0+oS5cufLXrB2pqvtrWlBBfOeppvtrWlHBUNWoKVBRSFxKdfSueJUuWaMGCBbrzzjt1yy23yG63a8iQIe7boYRwlq5T1NR8ZtWUgFSKepqvtjUtX1/C0a+oKVCzkDzSuWbNGv33v/9Vhw4dNGrUKPf0u+66S+vWrdNnn32mVq1aBbCHoYeamo+amot6mo+amo+aAlULqSOdkvTNN99o+vTpmjdvnvtriqKiIknSiy++qHPOOUfPP/98ILsYcqip+aipuain+aip+agpUL2gD53lD8R27NhRt912m+Li4tyjjISHh6ukpEROp1Nt2rRRYWFhILoaMqip+aipuain+aip+agp4JugDp1l4ySXOXHihGJiYnTLLbfogQce0N69ezV+/HhJpefBOBwOHTp0yH2TXVRETc1HTc1FPc1HTc1HTQHfBe05nWffdmLevHnaunWrvvvuO40ZM0aDBw9WSkqKFi1apGeeeUaxsbE677zzZLfbtXXrVn355ZecjF0Jamo+amou6mk+amo+agrUkhHkHn30UeO8884zXnjhBeMf//iHkZycbIwZM8Y4fvy4cfz4cWPhwoXGb3/7W+N3v/udsWHDBvd8xcXFget0kKOm5qOm5qKe5qOm5qOmgG+C+uPWN998o1WrVmnx4sVKT0/XN998o4KCAl111VVq2rSpJOmmm26Sy+XS22+/rZUrV2rAgAGSKo5ri1LU1HzU1FzU03zU1HzUFKiFQKfesxUWFnr8vmXLFmPgwIGGYRjGypUrjbZt2xqvvPKKYRiGcfz4ceOjjz4yDMMw8vPzjQULFhgDBgww/vSnP9Vtp4McNTUfNTUX9TQfNTUfNQX8FzQXEn300UdasGCBtmzZ4p5WVFSkgwcP6p///Kf++te/6pFHHtFtt90mSdqyZYsWLVqkH3/8Uc2aNdONN96oYcOG6eDBgzp48GCgnkZQoabmo6bmop7mo6bmo6aASQKdeg3DMBYvXmx07drVuP/++40tW7Z4PHbbbbcZcXFxxpw5c9zTCgsLjRtuuMEYO3as4XQ63dOPHz9uHDt2rK66HdSoqfmoqbmop/moqfmoKWCegJ/TuWLFCk2aNEnz5s3ToEGDFB0d7fH4+PHjlZOToyVLligpKUm5ubn68MMP9csvv2jTpk2y2+3uW1eUnUfT0FFT81FTc1FP81FT81FTwFwBvWXS4cOH9ac//UlDhw7V7bff7p5eUFCgnTt3KiwsTD169FBmZqaeeeYZffzxx+rYsaPat2+vp59+WmFhYSopKeH2E2ehpuajpuainuajpuajpoD5Ar41HD58WG3atHH//uqrr+qTTz7Re++9p4SEBKWmpurdd9/VvHnzdOTIEcXHx7vbskFXjpqaj5qai3qaj5qaj5oC5gr4hUT5+flat26dNm3apJtvvlmLFi1SfHy8VqxYoTlz5igrK0tPPvmkJCkmJsY9n2EYbNBVoKbmo6bmop7mo6bmo6aAuQK6VbRo0ULz58/X2LFjtWnTJjVt2lRPPPGE0tLS1Lx5c+Xm5io6OlpOp7O0s2dtxNznrHLU1HzU1FzU03zU1HzUFDBfwD+K9e/fX1u2bNGJEyeUnJxc4fGmTZuqVatWAehZ6KKm5qOm5qKe5qOm5qOmgLmCduz1w4cP689//rOOHj2qNWvWyOFwBLpLIY+amo+amot6mo+amo+aArUT8COd5R05ckT//Oc/9Z///EeHDx92b9BOp5MNu5aoqfmoqbmop/moqfmoKeCfgF9IVN4vv/yiL7/8Uh07dtTatWvVqFEjlZSUsEH7gZqaj5qai3qaj5qaj5oC/gnKr9fz8vIUHR0tm83GJ0iTUFPzUVNzUU/zUVPzUVOg9oIydJYxDIOrAE1GTc1HTc1FPc1HTc1HTQHfBXXoBAAAQP0QdOd0AgAAoP4hdAIAAMByhE4AAABYjtAJAAAAyxE6AQAAYDlCJwAAACxH6AQAAIDlCJ0AAACwHKETAAAAliN0AgAAwHL/H6ldrA20YGGEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# %load pr451_test.py\n", + "import pandas as pd\n", + "import mplfinance as mpf\n", + "import ast \n", + "\n", + "df = pd.read_csv('pr451data.csv',index_col=0,parse_dates=True)\n", + "\n", + "df = df.iloc[0:30]\n", + "print(df.head(3))\n", + "\n", + "\n", + "custom_colors = []\n", + "for i in range(len(df)):\n", + " if i % 3 == 0:\n", + " custom_colors.append(mpf.make_marketcolors(up='#29c9ff', down='#f3b5ff', edge='#29c9ff',\n", + " wick='#29c9ff', ohlc='#32a852', volume='#a89132'))\n", + " elif i%5 == 0:\n", + " custom_colors.append(\"#000000\")\n", + " else:\n", + " custom_colors.append(None)\n", + "\n", + "#STYLE = 'binance'\n", + "STYLE = 'yahoo'\n", + "\n", + "#mpf.plot(df, type='candle',style=STYLE,volume=True,block=False,figscale=3.0,savefig='pr451t2no.jpg')\n", + "mpf.plot(df, type='candle',style=STYLE,volume=True,block=False)\n", + "\n", + "mpf.plot(df, type='candle',style=STYLE,volume=True,block=False,marketcolor_overrides=custom_colors)\n", + "\n", + "mpf.plot(df, type='candle',style=STYLE,volume=True,block=False,marketcolor_overrides=custom_colors,mco_faceonly=True)\n", + "\n", + "#nans = [float('nan')]*len(df.columns)\n", + "#for row in [8,9,10,11]:\n", + "# df.loc[df.index[row]] = nans\n", + "#mpf.plot(df, type='candle',style=STYLE,volume=True,block=False,figscale=1.5)\n", + "#mpf.plot(df, type='candle',style=STYLE,override_marketcolors=custom_colors,volume=True,figscale=3.0,savefig='pr451t2ye.jpg')\n", + "#mpf.plot(df, type='candle',style=STYLE,override_marketcolors=custom_colors,volume=True,figscale=1.5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/scratch_pad/pr451data.csv b/examples/scratch_pad/pr451data.csv new file mode 100644 index 00000000..fe22c178 --- /dev/null +++ b/examples/scratch_pad/pr451data.csv @@ -0,0 +1,124 @@ +Date,Open,Close,High,Low,Date,Volume +2019-09-01,29,20,29,20,2019-09-01,10787 +2019-09-02,29,31,33,23,2019-09-02,17215 +2019-09-03,29,20,29,20,2019-09-03,16697 +2019-09-04,24,16,24,15,2019-09-04,12104 +2019-09-05,23,20,25,15,2019-09-05,12159 +2019-09-06,22,24,24,20,2019-09-06,13618 +2019-09-07,19,15,22,14,2019-09-07,13645 +2019-09-08,13,13,15,13,2019-09-08,13472 +2019-09-09,20,16,20,14,2019-09-09,17861 +2019-09-10,17,25,25,16,2019-09-10,18565 +2019-09-11,30,24,30,23,2019-09-11,10283 +2019-09-12,24,25,26,19,2019-09-12,10102 +2019-09-13,22,22,26,21,2019-09-13,17100 +2019-09-14,27,28,28,21,2019-09-14,13079 +2019-09-15,26,29,29,26,2019-09-15,10800 +2019-09-16,30,23,30,21,2019-09-16,17927 +2019-09-17,30,27,30,26,2019-09-17,16355 +2019-09-18,22,27,29,22,2019-09-18,12066 +2019-09-19,19,23,23,18,2019-09-19,19733 +2019-09-20,21,14,24,14,2019-09-20,14761 +2019-09-21,24,23,24,19,2019-09-21,19410 +2019-09-22,15,25,25,15,2019-09-22,17238 +2019-09-23,23,20,26,18,2019-09-23,10840 +2019-09-24,18,25,26,17,2019-09-24,17668 +2019-09-25,23,28,29,23,2019-09-25,19267 +2019-09-26,30,26,31,26,2019-09-26,18340 +2019-09-27,33,28,37,27,2019-09-27,18905 +2019-09-28,26,25,34,25,2019-09-28,16682 +2019-09-29,31,27,32,24,2019-09-29,12605 +2019-09-30,30,31,32,23,2019-09-30,12702 +2019-10-01,37,31,38,29,2019-10-01,17485 +2019-10-02,41,39,42,39,2019-10-02,12198 +2019-10-03,39,45,46,37,2019-10-03,14923 +2019-10-04,41,48,50,41,2019-10-04,10326 +2019-10-05,41,44,47,40,2019-10-05,17738 +2019-10-06,47,49,52,46,2019-10-06,13330 +2019-10-07,47,45,48,38,2019-10-07,19102 +2019-10-08,43,44,45,39,2019-10-08,16682 +2019-10-09,40,32,41,32,2019-10-09,12813 +2019-10-10,46,38,46,36,2019-10-10,12306 +2019-10-11,44,42,45,38,2019-10-11,17205 +2019-10-12,44,44,44,35,2019-10-12,14736 +2019-10-13,39,41,42,34,2019-10-13,19296 +2019-10-14,34,31,34,31,2019-10-14,12587 +2019-10-15,32,31,33,31,2019-10-15,14709 +2019-10-16,42,36,43,36,2019-10-16,18555 +2019-10-17,43,40,43,40,2019-10-17,18850 +2019-10-18,37,41,41,37,2019-10-18,14650 +2019-10-19,31,37,38,31,2019-10-19,10405 +2019-10-20,26,34,35,26,2019-10-20,12074 +2019-10-21,34,30,34,26,2019-10-21,17407 +2019-10-22,23,32,32,22,2019-10-22,18649 +2019-10-23,20,23,27,18,2019-10-23,16161 +2019-10-24,20,18,20,18,2019-10-24,14008 +2019-10-25,20,21,25,19,2019-10-25,16251 +2019-10-26,19,17,24,17,2019-10-26,14594 +2019-10-27,29,20,29,19,2019-10-27,10994 +2019-10-28,28,26,30,23,2019-10-28,16978 +2019-10-29,30,22,30,22,2019-10-29,11373 +2019-10-30,18,26,28,18,2019-10-30,11589 +2019-10-31,26,21,31,21,2019-10-31,14787 +2019-11-01,19,25,26,18,2019-11-01,15088 +2019-11-02,25,26,27,22,2019-11-02,10827 +2019-11-03,24,28,28,22,2019-11-03,12281 +2019-11-04,24,15,24,15,2019-11-04,19768 +2019-11-05,22,17,23,15,2019-11-05,11398 +2019-11-06,20,23,25,18,2019-11-06,15819 +2019-11-07,20,26,26,17,2019-11-07,14057 +2019-11-08,15,14,24,14,2019-11-08,15366 +2019-11-09,11,12,18,11,2019-11-09,10403 +2019-11-10,16,13,20,13,2019-11-10,15611 +2019-11-11,18,15,18,10,2019-11-11,14544 +2019-11-12,18,11,19,11,2019-11-12,12009 +2019-11-13,16,16,22,14,2019-11-13,18481 +2019-11-14,14,11,20,11,2019-11-14,11876 +2019-11-15,21,16,23,15,2019-11-15,16481 +2019-11-16,23,23,23,15,2019-11-16,18562 +2019-11-17,26,18,26,17,2019-11-17,16095 +2019-11-18,24,24,26,21,2019-11-18,14052 +2019-11-19,30,23,31,22,2019-11-19,12698 +2019-11-20,27,25,32,22,2019-11-20,10097 +2019-11-21,24,28,30,22,2019-11-21,12405 +2019-11-22,18,22,23,18,2019-11-22,11883 +2019-11-23,18,21,22,17,2019-11-23,15834 +2019-11-24,21,18,24,18,2019-11-24,17172 +2019-11-25,24,15,25,15,2019-11-25,11327 +2019-11-26,27,25,27,17,2019-11-26,11876 +2019-11-27,30,24,32,23,2019-11-27,17715 +2019-11-28,28,22,28,19,2019-11-28,14520 +2019-11-29,14,16,19,13,2019-11-29,18113 +2019-11-30,22,19,23,19,2019-11-30,16670 +2019-12-01,31,26,32,25,2019-12-01,15978 +2019-12-02,29,26,30,26,2019-12-02,15367 +2019-12-03,28,28,28,28,2019-12-03,18364 +2019-12-04,27,27,28,27,2019-12-04,17550 +2019-12-05,37,41,42,34,2019-12-05,16636 +2019-12-06,31,28,36,28,2019-12-06,15326 +2019-12-07,33,28,36,28,2019-12-07,15007 +2019-12-08,37,38,38,35,2019-12-08,16018 +2019-12-09,44,43,44,43,2019-12-09,17392 +2019-12-10,36,40,40,33,2019-12-10,17550 +2019-12-11,27,35,36,26,2019-12-11,13408 +2019-12-12,32,24,32,23,2019-12-12,19170 +2019-12-13,29,34,34,29,2019-12-13,12548 +2019-12-14,34,31,36,28,2019-12-14,19605 +2019-12-15,33,31,37,31,2019-12-15,14594 +2019-12-16,43,43,43,39,2019-12-16,16895 +2019-12-17,50,40,50,40,2019-12-17,18880 +2019-12-18,42,48,48,39,2019-12-18,18207 +2019-12-19,44,39,49,39,2019-12-19,17279 +2019-12-20,53,46,53,45,2019-12-20,11028 +2019-12-21,51,44,51,43,2019-12-21,19840 +2019-12-22,44,49,49,41,2019-12-22,10863 +2019-12-23,43,40,45,38,2019-12-23,13153 +2019-12-24,50,42,50,40,2019-12-24,16929 +2019-12-25,51,42,52,42,2019-12-25,17419 +2019-12-26,49,56,56,49,2019-12-26,13232 +2019-12-27,47,48,50,45,2019-12-27,19252 +2019-12-28,54,53,54,53,2019-12-28,11631 +2019-12-29,46,53,53,46,2019-12-29,14527 +2019-12-30,46,46,55,46,2019-12-30,10600 +2019-12-31,54,58,59,53,2019-12-31,17911 +2020-01-01,55,48,56,47,2020-01-01,17827 diff --git a/src/mplfinance/_arg_validators.py b/src/mplfinance/_arg_validators.py index ef91eb05..e38bbeac 100644 --- a/src/mplfinance/_arg_validators.py +++ b/src/mplfinance/_arg_validators.py @@ -2,7 +2,7 @@ import pandas as pd import numpy as np import datetime -from mplfinance._helpers import _list_of_dict +from mplfinance._helpers import _list_of_dict, _mpf_is_color_like import matplotlib as mpl import warnings @@ -359,6 +359,25 @@ def _yscale_validator(value): return True +def _is_marketcolor_object(obj): + if not isinstance(obj,dict): return False + market_colors_keys = ('candle','edge','wick','ohlc') + return all([k in obj for k in market_colors_keys]) + + +def _mco_validator(value): # marketcolor overrides validator + if isinstance(value,dict): # not yet supported, but maybe we will have other + if 'colors' not in value: # kwargs related to mktcolor overrides (ex: `mco_faceonly`) + raise ValueError('`marketcolor_overrides` as dict must contain `colors` key.') + colors = value['colors'] + else: + colors = value + if not isinstance(colors,(list,tuple,np.ndarray)): + return False + return all([(c is None or + _mpf_is_color_like(c) or + _is_marketcolor_object(c) ) for c in colors]) + def _check_for_external_axes(config): ''' Check that all `fig` and `ax` kwargs are either ALL None, diff --git a/src/mplfinance/_helpers.py b/src/mplfinance/_helpers.py index ece35913..e8a38359 100644 --- a/src/mplfinance/_helpers.py +++ b/src/mplfinance/_helpers.py @@ -1,9 +1,13 @@ """ Some helper functions for mplfinance. +NOTE: This is the lowest level in mplfinance: + This file should have NO dependencies on + any other mplfinance files. """ import datetime -import matplotlib.dates as mdates +import matplotlib.dates as mdates +import matplotlib.colors as mcolors import numpy as np def _adjust_color_brightness(color,amount=0.5): @@ -82,3 +86,36 @@ def roundTime(dt=None, roundTo=60): seconds = (dt.replace(tzinfo=None) - dt.min).seconds rounding = (seconds+roundTo/2) // roundTo * roundTo return dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond) + + +def _is_uint8_rgb_or_rgba(tup): + """ Deterine if rgb or rgba is in (0-255) format: + Matplotlib expects rgb (and rgba) tuples to contain + three (or four) floats between 0.0 and 1.0 + + Some people express rgb as tuples of three integers + between 0 and 255. + (In rgba, alpha is still a float from 0.0 to 1.0) + """ + if isinstance(tup,str): return False + if not np.iterable(tup): return False + L = len(tup) + if L < 3 or L > 4: return False + if L == 4 and (tup[3] < 0 or tup[3] > 1): return False + return not any([not isinstance(v,(int,np.unsignedinteger)) or v<0 or v>255 for v in tup[0:3]]) + +def _mpf_is_color_like(c): + """Determine if an object is a color. + + Identical to `matplotlib.colors.is_color_like()` + BUT ALSO considers int (0-255) rgb and rgba colors. + """ + if mcolors.is_color_like(c): return True + return _is_uint8_rgb_or_rgba(c) + +def _mpf_to_rgba(c, alpha=None): + cnew = c + if _is_uint8_rgb_or_rgba(c) and any(e>1 for e in c[:3]): + cnew = tuple([e/255. for e in c[:3]]) + if len(c) == 4: cnew += c[3:] + return mcolors.to_rgba(cnew, alpha) diff --git a/src/mplfinance/_styles.py b/src/mplfinance/_styles.py index fde40ae8..a8cb08dc 100644 --- a/src/mplfinance/_styles.py +++ b/src/mplfinance/_styles.py @@ -1,11 +1,11 @@ import matplotlib.pyplot as plt -import matplotlib.colors as mcolors import copy import pprint import os.path as path from mplfinance._arg_validators import _process_kwargs, _validate_vkwargs_dict from mplfinance._styledata import _styles +from mplfinance._helpers import _mpf_is_color_like def _get_mpfstyle(style): @@ -70,7 +70,7 @@ def _valid_make_mpf_style_kwargs(): 'Validator' : lambda value: isinstance(value,dict) }, 'mavcolors' : { 'Default' : None, - 'Validator' : lambda value: isinstance(value,list) }, # TODO: all([mcolors.is_color_like(v) for v in value.values()]) + 'Validator' : lambda value: isinstance(value,list) }, # TODO: all([_mpf_is_color_like(v) for v in value.values()]) 'facecolor' : { 'Default' : None, 'Validator' : lambda value: isinstance(value,str) }, @@ -153,10 +153,10 @@ def make_mpf_style( **kwargs ): def _valid_mpf_color_spec(value): 'value must be a color, "inherit"-like, or dict of colors' - return ( mcolors.is_color_like(value) or + return ( _mpf_is_color_like(value) or ( isinstance(value,str) and value == 'inherit'[0:len(value)]) or ( isinstance(value,dict) and - all([mcolors.is_color_like(v) for v in value.values()]) + all([_mpf_is_color_like(v) for v in value.values()]) ) ) @@ -190,13 +190,13 @@ def _valid_mpf_style(value): def _valid_make_marketcolors_kwargs(): vkwargs = { 'up' : { 'Default' : None, - 'Validator' : lambda value: mcolors.is_color_like(value) }, + 'Validator' : lambda value: _mpf_is_color_like(value) }, 'down' : { 'Default' : None, - 'Validator' : lambda value: mcolors.is_color_like(value) }, + 'Validator' : lambda value: _mpf_is_color_like(value) }, 'hollow' : { 'Default' : None, - 'Validator' : lambda value: mcolors.is_color_like(value) }, + 'Validator' : lambda value: _mpf_is_color_like(value) }, 'alpha' : { 'Default' : None, 'Validator' : lambda value: ( isinstance(value,float) and @@ -208,17 +208,17 @@ def _valid_make_marketcolors_kwargs(): 'wick' : { 'Default' : None, 'Validator' : lambda value: isinstance(value,dict) or isinstance(value,str) - or mcolors.is_color_like(value) }, + or _mpf_is_color_like(value) }, 'ohlc' : { 'Default' : None, 'Validator' : lambda value: isinstance(value,dict) or isinstance(value,str) - or mcolors.is_color_like(value) }, + or _mpf_is_color_like(value) }, 'volume' : { 'Default' : None, 'Validator' : lambda value: isinstance(value,dict) or isinstance(value,str) - or mcolors.is_color_like(value) }, + or _mpf_is_color_like(value) }, 'vcdopcod' : { 'Default' : False, 'Validator' : lambda value: isinstance(value,bool) }, @@ -282,7 +282,7 @@ def _check_and_set_mktcolor(candle,**kwarg): else: colors = dict(up=value, down=value) for updown in ['up','down']: - if not mcolors.is_color_like(colors[updown]): + if not _mpf_is_color_like(colors[updown]): err = f'NOT is_color_like() for {key}[\'{updown}\'] = {colors[updown]}' raise ValueError(err) return colors diff --git a/src/mplfinance/_utils.py b/src/mplfinance/_utils.py index 04172eed..8c5803cd 100644 --- a/src/mplfinance/_utils.py +++ b/src/mplfinance/_utils.py @@ -17,6 +17,7 @@ from mplfinance._arg_validators import _alines_validator, _bypass_kwarg_validation from mplfinance._arg_validators import _xlim_validator, _is_datelike from mplfinance._styles import _get_mpfstyle +from mplfinance._helpers import _mpf_to_rgba from six.moves import zip @@ -177,8 +178,13 @@ def coalesce_volume_dates(in_volumes, in_dates, indexes): def _updown_colors(upcolor,downcolor,opens,closes,use_prev_close=False): + # ----------------------------------------------------- + # Note that `nan` values result in `opn < cls` == False + # In other words, nans don't get plotted by collections + # but this function will choose DOWN COLOR for nans. + # ----------------------------------------------------- if upcolor == downcolor: - return upcolor + return [upcolor]*len(opens) cmap = {True : upcolor, False : downcolor} if not use_prev_close: return [ cmap[opn < cls] for opn,cls in zip(opens,closes) ] @@ -187,7 +193,22 @@ def _updown_colors(upcolor,downcolor,opens,closes,use_prev_close=False): _list = [ cmap[pre < cls] for cls,pre in zip(closes[1:], closes) ] return [first] + _list - +def _make_updown_color_list(key,marketcolors,opens,closes,overrides=None): + length = len(opens) + ups = [marketcolors[key][ 'up' ]]*length + downs = [marketcolors[key]['down']]*length + if overrides is not None: + for ix,mco in enumerate(overrides): + if mco is None: continue + if mcolors.is_color_like(mco): + ups[ix] = mco + downs[ix] = mco + else: # assume it is correctly a marketcolors object (dict) + ups[ix] = mco[key][ 'up' ] + downs[ix] = mco[key]['down'] + return [ups[ix] if opens[ix] < closes[ix] else downs[ix] for ix in range(length)] + + def _updownhollow_colors(upcolor,downcolor,hollowcolor,opens,closes): if upcolor == downcolor: return upcolor @@ -498,13 +519,11 @@ def _construct_ohlc_collections(dates, opens, highs, lows, closes, marketcolors= # we'll translate these to the date, close location closeSegments = [((dt, close), (dt+ticksize, close)) for dt, close in zip(dates, closes)] - if mktcolors['up'] == mktcolors['down']: + if mktcolors['up'] == mktcolors['down'] and config['marketcolor_overrides'] is None: colors = mktcolors['up'] else: - colorup = mcolors.to_rgba(mktcolors['up']) - colordown = mcolors.to_rgba(mktcolors['down']) - colord = {True: colorup, False: colordown} - colors = [colord[open < close] for open, close in zip(opens, closes)] + overrides = config['marketcolor_overrides'] + colors = _make_updown_color_list('ohlc',marketcolors,opens,closes,overrides) lw = config['_width_config']['ohlc_linewidth'] @@ -582,17 +601,14 @@ def _construct_candlestick_collections(dates, opens, highs, lows, closes, market alpha = marketcolors['alpha'] - uc = mcolors.to_rgba(marketcolors['candle'][ 'up' ], alpha) - dc = mcolors.to_rgba(marketcolors['candle']['down'], alpha) - colors = _updown_colors(uc, dc, opens, closes) + overrides = config['marketcolor_overrides'] + faceonly = config['mco_faceonly'] - uc = mcolors.to_rgba(marketcolors['edge'][ 'up' ], 1.0) - dc = mcolors.to_rgba(marketcolors['edge']['down'], 1.0) - edgecolor = _updown_colors(uc, dc, opens, closes) - - uc = mcolors.to_rgba(marketcolors['wick'][ 'up' ], 1.0) - dc = mcolors.to_rgba(marketcolors['wick']['down'], 1.0) - wickcolor = _updown_colors(uc, dc, opens, closes) + colors = _make_updown_color_list('candle',marketcolors,opens,closes,overrides) + colors = [ _mpf_to_rgba(c,alpha) for c in colors ] # include alpha + if faceonly: overrides = None + edgecolor = _make_updown_color_list('edge',marketcolors,opens,closes,overrides) + wickcolor = _make_updown_color_list('wick',marketcolors,opens,closes,overrides) lw = config['_width_config']['candle_linewidth'] diff --git a/src/mplfinance/_version.py b/src/mplfinance/_version.py index 9c4ea7df..8a17c325 100644 --- a/src/mplfinance/_version.py +++ b/src/mplfinance/_version.py @@ -1,5 +1,5 @@ -version_info = (0, 12, 8, 'beta', 3) +version_info = (0, 12, 8, 'beta', 4) _specifier_ = {'alpha': 'a','beta': 'b','candidate': 'rc','final': ''} diff --git a/src/mplfinance/plotting.py b/src/mplfinance/plotting.py index 21f69455..8d8cbc6f 100644 --- a/src/mplfinance/plotting.py +++ b/src/mplfinance/plotting.py @@ -39,7 +39,7 @@ from mplfinance._arg_validators import _alines_validator, _tlines_validator from mplfinance._arg_validators import _scale_padding_validator, _yscale_validator from mplfinance._arg_validators import _valid_panel_id, _check_for_external_axes -from mplfinance._arg_validators import _xlim_validator +from mplfinance._arg_validators import _xlim_validator, _mco_validator from mplfinance._panels import _build_panels from mplfinance._panels import _set_ticks_on_bottom_panel_only @@ -123,8 +123,11 @@ def _valid_plot_kwargs(): 'study' : { 'Default' : None, 'Validator' : lambda value: _kwarg_not_implemented(value) }, - 'marketcolors' : { 'Default' : None, # use 'style' for default, instead. - 'Validator' : lambda value: isinstance(value,dict) }, + 'marketcolor_overrides' : { 'Default' : None, + 'Validator' : _mco_validator }, + + 'mco_faceonly' : { 'Default' : False, # If True: Override only the face of the candle + 'Validator' : lambda value: isinstance(value,bool) }, 'no_xgaps' : { 'Default' : True, # None means follow default logic below: 'Validator' : lambda value: _warn_no_xgaps_deprecated(value) }, @@ -303,6 +306,10 @@ def plot( data, **kwargs ): err = "`addplot` is not supported for `type='" + config['type'] +"'`" raise ValueError(err) + if config['marketcolor_overrides'] is not None: + if len(config['marketcolor_overrides']) != len(dates): + raise ValueError('`marketcolor_overrides` must be same length as dataframe.') + external_axes_mode = _check_for_external_axes(config) if external_axes_mode: