-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
123 lines (105 loc) · 3.32 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import subprocess
from os import system
import os
from datetime import datetime
from collections import defaultdict
# Configuration
OMP_NUM_THREADS = 16
NUM_TRIALS = 3
NUM_ITERS = 650
ALPHA = 0.5
BETA = 0.3
RHO = 0.6
DEBUG = False
datasets = ["ts11", "dj38", "qa194", "uy734"]
colonies = [512, 1024, 2048]
binaries = ["./cpu", "./cpu_omp", "./gpu"]
# Load environment variables
env = dict(os.environ, OMP_NUM_THREADS=str(OMP_NUM_THREADS))
# Prepare files
files = [(f"./data/{file}.tsp", f"./sols/{file}.sol") for file in datasets]
debug = str(DEBUG).lower()
system("mkdir -p logs/")
save_file = datetime.now().strftime("logs/run_%d-%m-%Y_%H%M%S.txt")
# Construct commands
commands = []
for binary in binaries:
for file, soln in files:
for colony_size in colonies:
for i in range(NUM_TRIALS):
cmd = [
binary,
file,
soln,
colony_size,
NUM_ITERS,
ALPHA, BETA, RHO, debug
]
commands.append(list(map(lambda x : str(x), cmd)))
# Make sure commands look good
n_cmds = len(commands)
for command in commands:
print(command)
input("Press enter to run above commands")
# Build
#system("make clean && make")
# Run the commands and parse outputs
outputs = defaultdict(list)
log = open(save_file, "a")
for i, command in enumerate(commands):
str_cmd = ' '.join(command)
# Parse output
out = subprocess.check_output(command, env=env).decode('utf-8')
lines = out.split('\n')
time = float(lines[1][6:])
error = float(lines[2][7:])
run = (time, error)
# Store output
outputs[str_cmd].append(run)
# Backup / write to log
log.write(f"{str_cmd}\n{run[0]}\n{run[1]}\n\n")
log.flush()
print(f"Ran {i}/{n_cmds}")
log.close()
# Prepare outputs for pretty printing to align with excel sheet
print(outputs)
rows = NUM_TRIALS*len(datasets)
cols = len(colonies)
time_tables = []
error_tables = []
for binary in binaries:
time_table = [[0.0 for i in range(cols)] for j in range(rows)]
error_table = [[0.0 for i in range(cols)] for j in range(rows)]
for i, colony in enumerate(colonies):
for j, (dataset, soln) in enumerate(files):
key = [
binary,
dataset,
soln,
colony,
NUM_ITERS,
ALPHA, BETA, RHO, debug
]
key = list(map(lambda x: str(x), key))
key = ' '.join(key)
runs = outputs[key]
for k, run in enumerate(runs):
time_table[j*NUM_TRIALS + k][i] = run[0]
error_table[j*NUM_TRIALS + k][i] = run[1]
time_tables.append(time_table)
error_tables.append(error_table)
def pprint(matrix):
s = [[str(e) for e in row] for row in matrix]
lens = [max(map(len, col)) for col in zip(*s)]
fmt = '\t'.join('{{:{}}}'.format(x) for x in lens)
table = [fmt.format(*row) for row in s]
print('\n'.join(table))
# Print the tables
for i, table in enumerate(time_tables):
print(f"{binaries[i]} TIME TABLE")
pprint(table)
print("\n\n")
for i, table in enumerate(error_tables):
print(f"{binaries[i]} ERROR TABLE")
pprint(table)
print("\n\n")