Skip to content

Completed Feature List

clarencecastillo edited this page Dec 30, 2013 · 28 revisions
  1. Organization of biological entities from chromosome, genome (consisting of one or more chromosomes), organism (consisting of one genome), population (consisting of one or more organisms). Reference: Foundational paper; Lim et al., 2010.
  2. Random mutation operators - point, insertion, deletion, inversion, duplication, and translocation. Reference: Foundational paper; Lim et al., 2010.
  3. Regional (known mutation) mutation operators - point, insertion, deletion, inversion, duplication, and translocation. Reference: Foundational paper; Lim et al., 2010.
  4. Separation of background mutation rate and additional (on top of background mutation rate) mutation rate. Reference: Foundational paper; Lim et al., 2010.
  5. 32-character random name generated for each organism. Reference: version 1.0.0.
  6. Organism status - alive, vitality, parents, age, gender, lifespan, fitness, blood, identity, deme, location, and death reasons. Reference: Foundational paper; Lim et al., 2010; and version 1.0.0.
  7. Population freeze and revival. Reference: Foundational paper; Lim et al., 2010.
  8. Crossover operator between 2 chromosomes. Reference: Foundational paper; Lim et al., 2010.
  9. 3-dimensional cubic/rectangular world of one or more ecological cells. Reference: Foundational paper; Ling, 2012.
  10. Rajaraga interpreter to decode/express genome. Reference: Foundational paper; Ling, 2012.
  11. Bury and excavate the 3-dimensional world. Reference: Foundational paper; Ling, 2012.
  12. Organism status - new identity generated for each organism and descendants. Reference: Example 01.
  13. Organism status - location of descendant recorded. Reference: Example 01.
  14. Organism status - deme of descendant recorded. Reference: Example 01.
  15. List of 29 parameters for a simulation - simulation_name, population_names, population_locations, deployment_code, chromosome_bases, background_mutation, additional_mutation, mutation_type, chromosome_size, genome_size, max_tape_length, clean_cell, interpret_chromosome, max_codon, population_size, eco_cell_capacity, world_x, world_y, world_z, goal, maximum_generations, fossilized_ratio, fossilized_frequency, print_frequency, ragaraja_version, ragaraja_instructions, eco_buried_frequency, database_file, and database_logging_frequency. Reference: Example 01.
  16. List of 15 functions for a simulation - organism_movement, organism_location, ecoregulate, update_ecology, update_local, report, fitness, mutation_scheme, prepopulation_control, mating, postpopulation_control, generation_events, population_report, database_report, and deployment_scheme. Reference: Example 01.
  17. Simulation parameters - simulation_name to store name of simulation. Reference: Example 01.
  18. Simulation parameters - population_names to store one or more population names. Reference: Example 01.
  19. Simulation parameters - population_locations to define the centroid location of population(s). Reference: Example 01.
  20. Simulation parameters - deployment_code to define how population(s) are deployed into the world. Reference: Example 01.
  21. Simulation parameters - chromosome_bases to define allowable characters for use as chromosomal bases. Reference: Example 01.
  22. Simulation parameters - background_mutation to define background mutation rate. Reference: Example 01.
  23. Simulation parameters - mutation_type to define default type of mutation. Reference: Example 01.
  24. Simulation parameters - chromosome_size to define initial size of a chromosome. Reference: Example 01.
  25. Simulation parameters - genome_size to define the initial number of chromosome(s) for each organism. Reference: Example 01.
  26. Simulation parameters - max_tape_length to define the number of cells to act as cytoplasm. Reference: Example 01.
  27. Simulation parameters - clean_cell to define whether a new cytoplasm is needed for each expression. Reference: Example 01.
  28. Simulation parameters - interpret_chromosome to define whether the genome is expressed (interpreted by Rajaraga). Reference: Example 01.
  29. Simulation parameters - max_codon to define the maximum number of codons to express. Reference: Example 01.
  30. Simulation parameters - population_size to define the initial number of organisms for each population. Reference: Example 01.
  31. Simulation parameters - eco_cell_capacity to define the initial capacity of each ecological cell. Reference: Example 01.
  32. Simulation parameters - world_x, world_y, world_z to define the size of world in x, y, and z coordinates. Reference: Example 01.
  33. Simulation parameters - maximum_generations to define the maximum number of generations to simulate. Reference: Example 01.
  34. Simulation parameters - fossilized_ratio to define the proportion of populations for each fossilization. Reference: Example 01.
  35. Simulation parameters - fossilized_frequency to define the interval of fossilization. Reference: Example 01.
  36. Simulation parameters - ragaraja_version to define the version of Ragaraja instructions to use. Reference: Example 01.
  37. Simulation parameters - ragaraja_instructions to define a specific list of Ragaraja instructions to use. Reference: Example 01.
  38. Simulation parameters - eco_buried_frequency to define the interval of ecological burial. Reference: Example 01.
  39. Simulation parameters - database_file to define the file name of logging database. Reference: Example 01.
  40. Simulation parameters - database_logging_frequency to define the interval of database logging. Reference: Example 01.
  41. Simulation functions - mutation_scheme to specify the mutation scheme for each organism. Reference: Example 01.
  42. Simulation functions - population_report to generate simulation text report. Reference: Example 01.
  43. Simulation functions - database_report to log organisms and ecological system into the logging database at specified intervals. Reference: Example 01.
  44. Logging all population details into database. Reference: Example 01.
  45. Logging entire ecological details into database. Reference: Example 01.
  46. Sequential simulation - organism by organism mutation and mating within a cell, cell by cell processing until all ecological cells are processed. Reference: Example 01.
  47. Deployment scheme - deployment code 1 to deploy all organisms into one eco cell specified in simulation parameter population_locations. Reference: Example 01.
  48. Deployment scheme - deployment code 3 to deploy all organisms evenly into the different eco cells specified in simulation parameter population_locations. Reference: Example 02.
  49. Simulation functions - mating function to define mating behavior of organisms in each generation. Reference: Example 03.
  50. Simulation functions - organism_movement to trigger organism movement from current ecological cell to an adjacent ecological cell. Reference: Example 04.
  51. Simulation functions - organism_location to trigger organism movement from current ecological cell to a distant ecological cell. Reference: Example 05.
  52. Simulation revival parameters - sim_folder to define location of simulation files to be revived. Reference: [Example 06] (https://github.com/mauriceling/dose/blob/master/examples/06_revive_simulation_01.py).
  53. Simulation revival parameters - eco_file to specify which *.eco file to be excavated for re-simulation. Reference: [Example 06] (https://github.com/mauriceling/dose/blob/master/examples/06_revive_simulation_01.py).
  54. Simulation revival parameters - pop_files to specify which *.gap files to be revived for re-simulation, wherein each *.gap file specified would be considered as one population. Reference: [Example 06] (https://github.com/mauriceling/dose/blob/master/examples/06_revive_simulation_01.py).
  55. Simulation revival parameters - extend_gen to define the number of generations in continued simulation. Reference: [Example 06] (https://github.com/mauriceling/dose/blob/master/examples/06_revive_simulation_01.py).
  56. Database extraction functions - connect_database to prepare the specified database in simulation parameter database_file for data extraction Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  57. Database extraction functions - db_list_simulations to list simulations inside a database by extracting starting times of the simulations Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  58. Database extraction functions - db_list_generations to list all logged generations within a simulation specified by its own starting time Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  59. Database extraction functions - db_list_population_name to list all logged population's name within a simulation specified by its own starting time Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  60. Database extraction functions - db_list_datafields to list all logged types of data within a simulation specified by its own starting time Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  61. Database extraction functions - db_get_ecosystem to get a specific field of the ecosystem or the entire ecosystem for one or more generations within a simulation specified by its own starting time Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  62. Database extraction functions - db_get_organisms_status to get a specific field of the organism's status dictionary or the entire dictionary for one or more generations within a simulation specified by its own starting time Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  63. Database extraction functions - db_get_organisms_chromosome_sequences to get chromosomal sequences of entire genome of organisms for one or more generations within a simulation specified by its own starting time Reference: [Example 07] (https://github.com/mauriceling/dose/blob/master/examples/07_logging_database_extraction.py).
  64. Simulation revival parameters - database_source to specify the file name of which database file to revive a simulation from. Reference: [Example 08] (https://github.com/mauriceling/dose/blob/master/examples/08_revive_simulation_03.py).
  65. Simulation revival parameters - simulation_time to identify which simulation within the specified database file is to be revived. Reference: [Example 08] (https://github.com/mauriceling/dose/blob/master/examples/08_revive_simulation_03.py).
  66. Simulation revival parameters - rev_start to specify at which generation(s) are the populations to be revived in the simulation. Reference: [Example 08] (https://github.com/mauriceling/dose/blob/master/examples/08_revive_simulation_03.py).
  67. Simulation parameters - additional_mutation to influence mutation per base above background mutation. Reference: [Example 11] (https://github.com/mauriceling/dose/blob/master/examples/11_no_migration_natural_selection.py).
  68. Simulation parameters - goal to be reached by the population through the fitness scheme. Reference: [Example 11] (https://github.com/mauriceling/dose/blob/master/examples/11_no_migration_natural_selection.py).
  69. Simulation functions - fitness to calculate the fitness of an organism. Reference: [Example 11] (https://github.com/mauriceling/dose/blob/master/examples/11_no_migration_natural_selection.py).
  70. Simulation functions - prepopulation_control to trigger population control events before mating event in each generation. Reference: [Example 11] (https://github.com/mauriceling/dose/blob/master/examples/11_no_migration_natural_selection.py).
  71. Simulation functions - postpopulation_control to trigger population control events after mating event in each generation. Reference: [Example 11] (https://github.com/mauriceling/dose/blob/master/examples/11_no_migration_natural_selection.py).