-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathplotAccuray.py
190 lines (166 loc) · 6.19 KB
/
plotAccuray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# plot the binary classification metrics
import matplotlib
matplotlib.use('Agg')
matplotlib.rcParams['pdf.fonttype'] = 42
import matplotlib.pyplot as plt
import numpy as np
from annotateOffs import *
from collections import defaultdict
import random
scoreNames = ['doench', 'ssc', 'crisprScan', 'wangOrig', 'chariRank', 'fusi', "drsc", 'finalGc6', 'finalGg']
# doench = regression
# ssc = regression
# crisprScan = regression
# wang = SVM
# chari = SVM
dataDescs = {
'varshney2015': "Varshney Zebrafish",
'ren2015': "Ren Drosophila",
'xu2015TrainHl60': "Wang/Xu KO Training",
'gagnon2014': "Gagnon Zebrafish",
'chari2015Train':"Chari Training",
'chari2015Valid_293T':"Chari Validation",
'doench2014-Hs': 'Doench Training',
'museumIC50': "Concordet IC50",
'xu2015AAVS1': "Xu Validation AAVS1",
'xu2015FOX-AR': "Xu Validation FOX/AR",
'schoenig': u'Sch\u00F6nig LacZ',
'farboud2015' : "Farboud C.elegans",
'eschstruth' : "Eschstruth Zebrafish ",
'morenoMateos2015' : "CrisprScan Training",
'alenaAll' : "Shkumatava Dataset",
'housden2015' : "Housden Dros. Training",
}
dataSubs = {
'varshney2015': ("Zebrafish", "Injection", "Sequencing"),
'ren2015': ("Drosophila", "Injection", "Sequencing"),
'xu2015TrainHl60': ("KBM7/HL60", "Lentivir.", "KO"),
'gagnon2014': ("Zebrafish", "Injection", "Sequencing"),
'chari2015Train': ("293T", "Lentivir.", "Lib-on-Lib KO"),
'chari2015Valid_293T':("293T", "Transfection", "Sequencing"),
'doench2014-Hs': ("MOLM13/NB4/TF1", "Lentivir.", 'KO'),
#'museumIC50': ("?", "?", "?"),
'xu2015AAVS1': ("LNCap-abl", "Lentivir.", "West.Blot"),
'xu2015FOX-AR': ("LNCap-abl", "Lentivir.", "T7"),
'schoenig': ("K562", "betaGal-assay", "betaGal"),
'farboud2015' : ("Zebrafish", "Injection", "Sequencing"),
'eschstruth' : ("Zebrafish", "Injection", "T7"),
'morenoMateos2015' : ("Zebrafish", "Injection", "Sequencing"),
'alenaAll' : ("Zebrafish", "Injection", "Sanger Seq."),
'housden2015' : ("Dros. S2R+", "Transfection", "Lucif.")
}
topDatasets = [
'xu2015TrainHl60',
'doench2014-Hs',
'chari2015Train',
'farboud2015',
'ren2015',
'housden2015',
'morenoMateos2015'
]
middleDatasets = [
#'xu2015AAVS1',
#'xu2015FOX-AR',
#'chari2015Valid_293T',
"varshney2015",
"gagnon2014"
]
#buttomDatasets = [
#'ren2015',
#'farboud2015',
#'gagnon2014',
#'varshney2015',
#]
scoreDescs = {
"wangOrig" : "Wang",
"doench" : "Doench",
"ssc" : "Xu (Wang)",
"chariRank" : "Chari Rank",
"crisprScan" : "CrisprScan",
"fusi" : "Fusi (Doench)",
"chariRaw" : "Chari",
"finalGc6" : "Ren: 3'GC>4",
"drsc" : "Housden",
#"finalGc2" : "Farboud-like, last 2 bp GC",
"finalGg" : "Farboud: -GG",
}
def parseData(fname):
""" return dict of scoreType -> dict dataName of (recallList, precisionList, f1List)
(one element per dataset) and the names of the datasets"""
scoreDict = defaultdict(dict)
dataMax = {}
dataCountInfo = {}
for row in iterTsvRows(fname):
if row.classifierName.startswith("DecTree"):
continue
acc = int(float(row.bestXAcc)*100)
scoreDict[row.classifierName][row.dataset] = acc
dataMax[row.dataset] = max(dataMax.get(row.dataset, 0), acc)
dataCountInfo[row.dataset] = (int(float(row.size)), int(float(row.bestXPredCount)))
scoreDict = dict(scoreDict)
#print scoreDict
# sort dataNames by f1 value
dataMaxes = dataMax.items()
dataMaxes.sort(key=operator.itemgetter(-1), reverse=True)
dataNames = [x for x,y in dataMaxes]
return scoreDict, dataNames, dataCountInfo
def plot(scores, dataNames, dataCountInfo, outfname):
" "
plt.figure(figsize=(5,3))
plt.rcParams['ytick.major.pad']='8'
plots = []
colors = list(reversed(["blue", "red", "orange", "magenta", "orange", "grey", "orange", "black", "black"]))
markers = list(reversed(["^", "^", "^", "o", "o", "s", "s", "x", "+"]))
for scoreName in scoreNames:
dataDict = scores[scoreName]
precList = []
for dataName in dataNames:
precList.append(dataDict[dataName])
#recVals, precVals, f1Vals = dataTuple
yPosList = range(0, len(precList))
yPosList = [y-random.random()*0.1 for y in yPosList]
col = colors.pop()
marker = markers.pop()
alpha = 0.7
plot = plt.scatter(precList, yPosList, alpha=alpha, s=30, color=col, marker=marker)
plots.append(plot)
lgd = plt.legend(plots,
[scoreDescs[x] for x in scoreNames],
labelspacing=0,
bbox_to_anchor = ((1.43, 1.02)),
#bbox_transform = plt.gcf().transFigure ,
scatterpoints=1,
loc='upper right',
#ncol=len(scoreNames),
fontsize=8)
artists = [lgd]
#plt.setp(axArr[1].get_yticklabels(), visible=False)
gca = plt.gca()
gca.set_ylim(-1,len(dataNames))
gca.set_yticks(range(0, len(dataNames)))
gca.set_yticklabels([dataDescs[x] for x in dataNames])
gca.set_xlim(-5,105)
gca.set_xlabel("Accuracy, in %")
ls = ":"
lw = 0.4
[tick.label.set_fontsize(10) for tick in gca.yaxis.get_major_ticks()]
plt.tight_layout()
for y in range(0, len(dataNames)):
dataName = dataNames[y]
dataSubStr = " - ".join(dataSubs[dataName])
annot = plt.annotate(dataSubStr, xy=(0,0), ha="right", size="8", xytext=(-8, y-0.4))
artists.append(annot)
size, posCount = dataCountInfo[dataName]
annot = plt.annotate("%d guides, %d positives" % (size, posCount), xy=(0,0), ha="right", size="8", xytext=(-8, y-0.68))
artists.append(annot)
plt.savefig(outfname, bbox_extra_artists=artists, bbox_inches='tight')
print "wrote %s" % outfname
outfname = outfname.replace("pdf", "png")
plt.savefig(outfname, bbox_extra_artists=artists, bbox_inches='tight')
print "wrote %s" % outfname
plt.close()
def main():
scores, dataNames, dataCountInfo = parseData("out/binClassMetrics.tsv")
plotDataNames = ["schoenig", "eschstruth", "alenaAll"]
plot(scores, plotDataNames, dataCountInfo, "out/accuracy.pdf")
main()