-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathplotGcReadFraction.py
187 lines (160 loc) · 5.7 KB
/
plotGcReadFraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import random, string
# plot on-target read fraction versus Gc content
# HAS A PARAMETER THAT CAN PLOT RELATIVE FREQUENCIES!!
from annotateOffs import *
import matplotlib
matplotlib.use('Agg')
matplotlib.rcParams['pdf.fonttype'] = 42
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.backends.backend_pdf as pltBack
#ignoreStudies = ["Frock", "Cho"]
#ignoreStudies = ["Cho"]
ignoreStudies = []
plotRel = False
def plot(maxMMs, guideGcs, otCounts):
" maxMMs is a dict guide name -> maximum mismatch "
xVals = []
yVals = []
zVals = []
studyX = defaultdict(list)
studyY = defaultdict(list)
studyZ = defaultdict(list)
studyLabels = defaultdict(list)
for name, maxMM in maxMMs.iteritems():
study = name.split("_")[0]
xVals.append(guideGcs[name])
studyX[study].append( guideGcs[name] )
studyY[study].append( maxMM )
studyZ[study].append( otCounts[name] )
guideName = string.split(name, "_", 1)[1]
studyLabels[study].append(guideName )
outfname = "gcReadFraction" + '.pdf'
pdf = pltBack.PdfPages(outfname)
fig = plt.figure(figsize=(5,5),
dpi=300, facecolor='w')
fig = plt.figure()
colors = ["red", "blue", "black", "black", "green", "grey", "orange", "violet"]
markers = ["o", "s", "<", "+", "+", "^", ".", ">"]
studyNames = []
figs = []
i = 0
studies = sorted(studyX.keys())
print studies
for study in studies:
xVals = studyX[study]
yVals = studyY[study]
zVals = studyZ[study]
#plt.scatter(xVals, yVals, \
#alpha=.8, \
#marker="o", \
#s=zVals, \
#color="grey")
studyFig = plt.scatter(xVals, yVals, \
alpha=.5, \
marker=markers[i], \
s=30, \
color=colors[i])
figs.append(studyFig)
studyNames.append(study)
i+=1
labels = studyLabels[study]
for x, y, label in zip(xVals, yVals, labels):
# arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')
# bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5))
plt.annotate(
label, fontsize=8, rotation=30, ha="right", rotation_mode="anchor",
xy = (x, y), xytext = (0,0), alpha=0.9,
textcoords = 'offset points', va = 'bottom')
plt.legend(figs,
studyNames,
scatterpoints=1,
loc='lower left',
ncol=2,
fontsize=10)
plt.ylim(0,1.08)
plt.xlabel("GC content")
if plotRel:
plt.ylabel("relative efficacy (fraction of reads relative to all indel-causing reads)")
else:
plt.ylabel("On-target modification frequency")
fig.savefig(pdf, format = 'pdf')
print "Wrote %s" % outfname
outfname = outfname.replace(".pdf", ".png")
fig.savefig(outfname)
pdf.close()
print "Wrote %s" % outfname
def annotateOts():
" write annotations of the offtargets to a tab-setp file and also return as dict "
targetSeqs = {}
inFname = "offtargets.tsv"
inRows = []
otCounts = defaultdict(int)
for row in iterTsvRows(inFname):
study = row.name.split("_")[0]
if study in ignoreStudies:
continue
if row.type=="on-target":
targetSeqs[row.name] = row.seq
else:
otCounts[row.name] += 1
inRows.append(row)
# first sum up the frequencies for each guide
sums = defaultdict(float)
for row in inRows:
if row.score=="NA": # Frock cannot quantify the target
continue
sums[row.name] += float(row.score)
headers = ["name", "guideSeq", "otSeq", "guideGc", "otGc", "assayScore", "mmCount", "diffLogo", "mmCountOneGap", "oneGapSeq", "diffLogoOneGap"]
rows = [headers]
maxMMs = defaultdict(int)
guideGcConts = {}
i = 0
for row in inRows:
#if row.type=="on-target":
#continue
guideSeq = targetSeqs[row.name][:-3].upper()
otSeq = row.seq[:-3].upper()
mmCount, diffLogo = countMmsAndLogo(guideSeq, otSeq)
otGcCont = gcCont(otSeq)
guideGc = gcCont(guideSeq[:20])
gappedMm, guideGapSeqs, otGapSeqs, gapLogos = findGappedSeqs(guideSeq, otSeq)
if gappedMm > mmCount:
gappedMm = 0
guideGapSeqs = []
gapLogos = []
otRow = [row.name, guideSeq, otSeq, str(guideGc), str(otGcCont), row.score, str(mmCount), diffLogo, str(gappedMm), ",".join(guideGapSeqs), ",".join(gapLogos)]
rows.append(otRow)
#dataName = row.name+str(i)
dataName = row.name
#maxMMs[row.name+str(i)] = max(maxMMs[row.name], mmCount)
#maxMMs[dataName] = mmCount + random.random()
#maxMMs[dataName] = mmCount
if row.score=="NA": # Frock cannot quantify the target
continue
freq = float(row.score)
if plotRel:
if "Tsai" not in dataName:
freq = freq/sums[dataName]
#print "correction: ", dataName, freq, sums[dataName]
#else:
#freq = 1.0 - freq
if row.type=="off-target":
continue
assert(dataName not in maxMMs)
maxMMs[dataName] = freq
#guideGcConts[row.name] = guideGc
#guideGcConts[dataName] = otGcCont+random.random()*3
guideGcConts[dataName] = guideGc
i+=1
ofh = open("annotOfftargets.tsv", "w")
for row in rows:
ofh.write("\t".join(row))
ofh.write("\n")
ofh.close()
print "wrote %s" % ofh.name
return maxMMs, guideGcConts, otCounts
def main():
maxMMs, guideGcConts, otCounts = annotateOts()
plot(maxMMs, guideGcConts, otCounts)
main()