Geometry-biased Transformers for Novel View Synthesis
For detailed instructions refer to SETUP.md
Follow instructions from the official CO3D repository to download the dataset in this format.
Train GBT
model on 10 categories (category agnostic)
python scripts/train.py --config-path configs/cat_agnostic_gbt.yaml
Train GBT-nb
(no geometric bias) model on 10 categories (category agnostic)
python scripts/train.py --config-path configs/cat_agnostic_gbt_nb.yaml
Note: Modify yaml config files with appropriate num_pixel_queries
that can fit on the GPU.
Download pre-trained checkpoints from this link. Extract contents inside the repository base directory. Alternatively, run the following commands from terminal.
pip install gdown
gdown 1eHeNba_qlsM-7iEiIlZw9XH9-VXqem7T
unzip runs.zip
rm runs.zip
Verify that the extracted checkpoints are of the following structure.
gbt/runs/co3dv2/cat_agnostic/
|-- gbt
| `-- latest.pt
`-- gbt_nb
`-- latest.pt
Run GBT
model trained on 10 categories (category agnostic)
python scripts/infer.py --config-path configs/cat_agnostic_gbt.yaml --dataset-path /path/to/co3d/dataset --category donut
Run GBT-nb
(no geometric bias) model trained on 10 categories (category agnostic)
python scripts/infer.py --config-path configs/cat_agnostic_gbt_nb.yaml --dataset-path /path/to/co3d/dataset --category donut
The inference script computes average psnr
and lpips
metrics for objects of the specified category, and also saves individual rotating gifs for qualitative analysis.
runs/co3dv2/cat_agnostic/gbt/infer/num_views=3/donut/
|-- 198_21296_42378.gif
|-- 290_30761_58510.gif
|-- ...
`-- metrics.txt