-
Notifications
You must be signed in to change notification settings - Fork 24
/
train_singlegpu_demo_adapter_mobile.sh
35 lines (30 loc) · 1.19 KB
/
train_singlegpu_demo_adapter_mobile.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/bin/bash
# Set CUDA device
export CUDA_VISIBLE_DEVICES="1"
# Define variables
arch="vit_t" # Change this value as needed
finetune_type="adapter"
dataset_name="MRI-Prostate" # Assuming you set this if it's dynamic
targets='combine_all' # make it as binary segmentation 'multi_all' for multi cls segmentation
# Construct train and validation image list paths
img_folder="./datasets" # Assuming this is the folder where images are stored
train_img_list="${img_folder}/${dataset_name}/train_5shot.csv"
val_img_list="${img_folder}/${dataset_name}/val_5shot.csv"
# Construct the checkpoint directory argument
dir_checkpoint="2D-SAM_${arch}_encoderdecoder_${finetune_type}_${dataset_name}_noprompt"
# Run the Python script
python SingleGPU_train_finetune_noprompt.py \
-if_warmup True \
-finetune_type "$finetune_type" \
-arch "$arch" \
-if_update_encoder True \
-if_encoder_adapter True \
-if_mask_decoder_adapter True \
-img_folder "$img_folder" \
-mask_folder "$img_folder" \
-sam_ckpt "mobile_sam.pt" \
-targets "$targets" \
-dataset_name "$dataset_name" \
-dir_checkpoint "$dir_checkpoint" \
-train_img_list "$train_img_list" \
-val_img_list "$val_img_list"