forked from 26hzhang/OptimizedImageEnhance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FusionEnhance.java
executable file
·83 lines (76 loc) · 2.35 KB
/
FusionEnhance.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
package com.isaac.models;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import com.isaac.utils.Filters;
import com.isaac.utils.FeatureWeight;
import com.isaac.utils.ImgDecompose;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.imgproc.CLAHE;
import org.opencv.imgproc.Imgproc;
public class FusionEnhance {
public static Mat enhance (Mat image, int level) {
// color balance
Mat img1 = Filters.SimplestColorBalance(image, 5);
img1.convertTo(img1, CvType.CV_8UC1);
// Perform sRGB to CIE Lab color space conversion
Mat LabIm1 = new Mat();
Imgproc.cvtColor(img1, LabIm1, Imgproc.COLOR_BGR2Lab);
Mat L1 = new Mat();
Core.extractChannel(LabIm1, L1, 0);
// apply CLAHE
Mat[] result = applyCLAHE(LabIm1, L1);
Mat img2 = result[0];
Mat L2 = result[1];
// calculate normalized weight
Mat w1 = calWeight(img1, L1);
Mat w2 = calWeight(img2, L2);
Mat sumW = new Mat();
Core.add(w1, w2, sumW);
Core.divide(w1, sumW, w1);
Core.divide(w2, sumW, w2);
// merge image1 and image2
return ImgDecompose.fuseTwoImage(w1, img1, w2, img2, level);
}
private static Mat[] applyCLAHE(Mat img, Mat L) {
Mat[] result = new Mat[2];
CLAHE clahe = Imgproc.createCLAHE();
clahe.setClipLimit(2.0);
Mat L2 = new Mat();
clahe.apply(L, L2);
Mat LabIm2 = new Mat();
List<Mat> lab = new ArrayList<>();
Core.split(img, lab);
Core.merge(new ArrayList<>(Arrays.asList(L2, lab.get(1), lab.get(2))), LabIm2);
Mat img2 = new Mat();
Imgproc.cvtColor(LabIm2, img2, Imgproc.COLOR_Lab2BGR);
result[0] = img2;
result[1] = L2;
return result;
}
private static Mat calWeight(Mat img, Mat L) {
Core.divide(L, new Scalar(255.0), L);
L.convertTo(L, CvType.CV_32F);
// calculate laplacian contrast weight
Mat WL = FeatureWeight.LaplacianContrast(L);
WL.convertTo(WL, L.type());
// calculate Local contrast weight
Mat WC = FeatureWeight.LocalContrast(L);
WC.convertTo(WC, L.type());
// calculate the saliency weight
Mat WS = FeatureWeight.Saliency(img);
WS.convertTo(WS, L.type());
// calculate the exposedness weight
Mat WE = FeatureWeight.Exposedness(L);
WE.convertTo(WE, L.type());
// sum
Mat weight = WL.clone();
Core.add(weight, WC, weight);
Core.add(weight, WS, weight);
Core.add(weight, WE, weight);
return weight;
}
}