-
Notifications
You must be signed in to change notification settings - Fork 0
/
CrossProduct.html
410 lines (407 loc) · 23.2 KB
/
CrossProduct.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
<!DOCTYPE html>
<!--********************************************-->
<!--* Generated from PreTeXt source *-->
<!--* on 2021-08-31T10:06:20-05:00 *-->
<!--* A recent stable commit (2020-08-09): *-->
<!--* 98f21740783f166a773df4dc83cab5293ab63a4a *-->
<!--* *-->
<!--* https://pretextbook.org *-->
<!--* *-->
<!--********************************************-->
<html lang="en-US">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Cross Product of Vectors in \(\R^3\)</title>
<meta name="Keywords" content="Authored in PreTeXt">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<script src="https://sagecell.sagemath.org/embedded_sagecell.js"></script><script>window.MathJax = {
tex: {
inlineMath: [['\\(','\\)']],
tags: "none",
useLabelIds: true,
tagSide: "right",
tagIndent: ".8em",
packages: {'[+]': ['base', 'extpfeil', 'ams', 'amscd', 'newcommand', 'knowl']}
},
options: {
ignoreHtmlClass: "tex2jax_ignore",
processHtmlClass: "has_am",
renderActions: {
findScript: [10, function (doc) {
document.querySelectorAll('script[type^="math/tex"]').forEach(function(node) {
var display = !!node.type.match(/; *mode=display/);
var math = new doc.options.MathItem(node.textContent, doc.inputJax[0], display);
var text = document.createTextNode('');
node.parentNode.replaceChild(text, node);
math.start = {node: text, delim: '', n: 0};
math.end = {node: text, delim: '', n: 0};
doc.math.push(math);
});
}, '']
},
},
chtml: {
scale: 0.88,
mtextInheritFont: true
},
loader: {
load: ['input/asciimath', '[tex]/extpfeil', '[tex]/amscd', '[tex]/newcommand', '[pretext]/mathjaxknowl3.js'],
paths: {pretext: "https://pretextbook.org/js/lib"},
},
};
</script><script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script><script xmlns:svg="http://www.w3.org/2000/svg" src="https://pretextbook.org/js/lib/jquery.min.js"></script><script xmlns:svg="http://www.w3.org/2000/svg" src="https://pretextbook.org/js/lib/jquery.sticky.js"></script><script xmlns:svg="http://www.w3.org/2000/svg" src="https://pretextbook.org/js/lib/jquery.espy.min.js"></script><script xmlns:svg="http://www.w3.org/2000/svg" src="https://pretextbook.org/js/0.13/pretext.js"></script><script xmlns:svg="http://www.w3.org/2000/svg" src="https://pretextbook.org/js/0.13/pretext_add_on.js"></script><script xmlns:svg="http://www.w3.org/2000/svg" src="https://pretextbook.org/js/lib/knowl.js"></script><!--knowl.js code controls Sage Cells within knowls--><script xmlns:svg="http://www.w3.org/2000/svg">sagecellEvalName='Evaluate (Sage)';
</script><link xmlns:svg="http://www.w3.org/2000/svg" href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/pretext.css" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/pretext_add_on.css" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/banner_default.css" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/toc_default.css" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/knowls_default.css" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/style_default.css" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/colors_brown_gold.css" rel="stylesheet" type="text/css">
<link xmlns:svg="http://www.w3.org/2000/svg" href="https://pretextbook.org/css/0.31/setcolors.css" rel="stylesheet" type="text/css">
<!-- 2019-10-12: Temporary - CSS file for experiments with styling --><link xmlns:svg="http://www.w3.org/2000/svg" href="developer.css" rel="stylesheet" type="text/css">
</head>
<body class="pretext-book has-toc has-sidebar-left">
<a class="assistive" href="#content">Skip to main content</a><div xmlns:svg="http://www.w3.org/2000/svg" id="latex-macros" class="hidden-content" style="display:none">\(\def\R{{\mathbb R}}
\def\C{{\mathbb C}}
\def\Q{{\mathbb Q}}
\def\Z{{\mathbb Z}}
\def\N{{\mathbb N}}
\def\vec#1{\mathbf #1}
\newcommand{\adj}{\mathop{\mathrm{adj}}}
\newcommand{\diag}{\mathop{\mathrm{diag}}}
\newcommand{\proj}{\mathop{\mathrm{proj}}}
\newcommand{\Span}{\mathop{\mathrm{span}}}
\newcommand{\sgn}{\mathop{\mathrm{sgn}}}
\newcommand{\tr}{\mathop{\mathrm{tr}}}
\newcommand{\rowint}[2]{R_{#1} \leftrightarrow R_{#2}}
\newcommand{\rowmul}[2]{R_{#1}\gets {#2}R_{#1}}
\newcommand{\rowadd}[3]{R_{#1}\gets R_{#1}+#2R_{#3}}
\newcommand{\rowsub}[3]{R_{#1}\gets R_{#1}-#2R_{#3}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\)</div>
<header id="masthead" class="smallbuttons"><div class="banner"><div class="container">
<a id="logo-link" href="http://www.umanitoba.ca" target="_blank"><img src="images/umlogo.png" alt="Logo image"></a><div class="title-container">
<h1 class="heading"><a href="mblinalg.html"><span class="title">Manitoba linear algebra</span></a></h1>
<p class="byline">Michael Doob</p>
</div>
</div></div>
<nav xmlns:svg="http://www.w3.org/2000/svg" id="primary-navbar" class="navbar"><div class="container">
<div class="navbar-top-buttons">
<button class="sidebar-left-toggle-button button active" aria-label="Show or hide table of contents sidebar">Contents</button><div class="tree-nav toolbar toolbar-divisor-3"><span class="threebuttons"><a id="previousbutton" class="previous-button toolbar-item button" href="section-28.html" title="Previous">Prev</a><a id="upbutton" class="up-button button toolbar-item" href="EuclideanSpace.html" title="Up">Up</a><a id="nextbutton" class="next-button button toolbar-item" href="section-30.html" title="Next">Next</a></span></div>
</div>
<div class="navbar-bottom-buttons toolbar toolbar-divisor-4">
<button class="sidebar-left-toggle-button button toolbar-item active">Contents</button><a class="previous-button toolbar-item button" href="section-28.html" title="Previous">Prev</a><a class="up-button button toolbar-item" href="EuclideanSpace.html" title="Up">Up</a><a class="next-button button toolbar-item" href="section-30.html" title="Next">Next</a>
</div>
</div></nav></header><div class="page">
<div xmlns:svg="http://www.w3.org/2000/svg" id="sidebar-left" class="sidebar" role="navigation"><div class="sidebar-content">
<nav id="toc"><ul>
<li class="link frontmatter"><a href="Frontmatter.html" data-scroll="Frontmatter"><span class="title">Title Page</span></a></li>
<li class="link"><a href="SysLinEq.html" data-scroll="SysLinEq"><span class="codenumber">1</span> <span class="title">Systems of Linear Equations</span></a></li>
<li class="link"><a href="MatrixTheoryIntro.html" data-scroll="MatrixTheoryIntro"><span class="codenumber">2</span> <span class="title">Matrix Theory</span></a></li>
<li class="link"><a href="Determinants.html" data-scroll="Determinants"><span class="codenumber">3</span> <span class="title">The Determinant</span></a></li>
<li class="link"><a href="EuclideanSpace.html" data-scroll="EuclideanSpace"><span class="codenumber">4</span> <span class="title">Vectors in Euclidean \(n\) space</span></a></li>
<li class="link"><a href="chapter-5.html" data-scroll="chapter-5"><span class="codenumber">5</span> <span class="title">Eigenvalues and eigenvectors</span></a></li>
<li class="link"><a href="LinearTransformations.html" data-scroll="LinearTransformations"><span class="codenumber">6</span> <span class="title">Linear transformations</span></a></li>
<li class="link"><a href="ExtraTopics.html" data-scroll="ExtraTopics"><span class="codenumber">7</span> <span class="title">Additional Topics</span></a></li>
</ul></nav><div class="extras"><nav><a class="pretext-link" href="https://pretextbook.org">Authored in PreTeXt</a><a href="https://www.mathjax.org"><img title="Powered by MathJax" src="https://www.mathjax.org/badge/badge.gif" alt="Powered by MathJax"></a></nav></div>
</div></div>
<main class="main"><div id="content" class="pretext-content"><section xmlns:svg="http://www.w3.org/2000/svg" class="section" id="CrossProduct"><h2 class="heading hide-type">
<span class="type">Section</span> <span class="codenumber">4.5</span> <span class="title">Cross Product of Vectors in \(\R^3\)</span>
</h2>
<section class="subsection" id="subsection-70"><h3 class="heading hide-type">
<span class="type">Subsection</span> <span class="codenumber">4.5.1</span> <span class="title">Definition of the cross product</span>
</h3>
<p id="p-884">The cross product is only defined for vectors in \(\R^3\text{.}\) Given two such vectors \(\vec x=(x_1,x_2,x_3)\) and \(\vec y=(y_1,y_2,y_3)\text{,}\) the cross product \(\vec x\times\vec y\) is a vector in \(\R^3\) defined by</p>
<div class="displaymath">
\begin{equation*}
\vec x\times\vec y
=
(x_2y_3-x_3y_2,\, x_3y_1-x_1y_3,\,x_1y_2-x_2y_1)
\end{equation*}
</div>
<p id="p-885">This is pretty complicated and, as yet, unmotivated. Here is a neat trick to make the computation a little easier. Take the two vectors and make an array by writing the three coordinates and then repeating the first two coordinates again:</p>
<div class="displaymath">
\begin{equation*}
\begin{matrix}
x_1\amp x_2\amp x_3\amp x_1\amp x_2\\
y_1\amp y_2\amp y_3\amp y_1\amp y_2
\end{matrix}
\end{equation*}
</div>
<p id="p-886">We then use three “sliding windows”: the first (for the first coordinate) uses columns two and three, the next (for the second coordinate) uses columns three and four, and the last (for the third coordinate) uses columns four and five.</p>
<ul class="disc">
<li id="li-312">
<p id="p-887">First coordinate: \(\color{red}{x_2y_3}-\color{green}{x_3y_2}\)</p>
<div class="displaymath">
\begin{equation*}
\begin{matrix}
\begin{matrix}
x_1\\y_1
\end{matrix}
\begin{bmatrix}
\color{red}{x_2} \amp \color{green}{x_3}\\
\color{green}{y_2} \amp \color{red}{y_3}
\end{bmatrix}
\begin{matrix}
x_1 \amp x_2\\
y_1 \amp y_2
\end{matrix}
\end{matrix}
\end{equation*}
</div>
</li>
<li id="li-313">
<p id="p-888">Second coordinate: \(\color{red}{x_3y_1}-\color{green}{x_1y_3}\)</p>
<div class="displaymath">
\begin{equation*}
\begin{matrix}
\begin{matrix}
x_1 \amp x_2\\
y_1 \amp y_2
\end{matrix}
\begin{bmatrix}
\color{red}{x_3} \amp \color{green}{x_1}\\
\color{green}{y_3} \amp \color{red}{y_1}
\end{bmatrix}
\begin{matrix}
x_2\\y_2
\end{matrix}
\end{matrix}
\end{equation*}
</div>
</li>
<li id="li-314">
<p id="p-889">Third coordinate: \(\color{red}{x_1y_2}-\color{green}{x_2y_1}\)</p>
<div class="displaymath">
\begin{equation*}
\begin{matrix}
\begin{matrix}
x_1\amp x_2\amp x_3\\
y_1\amp y_2\amp y_3
\end{matrix}
\begin{bmatrix}
\color{red}{x_1} \amp \color{green}{x_2}\\
\color{green}{y_1} \amp \color{red}{y_2}
\end{bmatrix}
\end{matrix}
\end{equation*}
</div>
</li>
</ul>
<p class="continuation">In each case the window is evaluated by</p>
<div class="displaymath">
\begin{equation*}
(\textrm{upper left})(\textrm{lower right})
-(\textrm{upper right})(\textrm{lower left})
\end{equation*}
</div>
<p class="continuation">which is actually the determinant as seen in <a class="xref" data-knowl="./knowl/DeterminantofSmallMatrices.html" title="Definition 3.1.1: Determinants of small matrices">Definition 3.1.1</a>.</p>
<p id="p-890">Here is an animation showing two vectors (the blue vectors) and their cross product (the red vector):</p>
<figure class="figure figure-like" id="figure-40"><div class="image-box" style="width: 50%; margin-left: 25%; margin-right: 25%;"><img src="images/250px-Crossproduct.gif" class="contained" alt=""></div>
<figcaption><span class="type">Figure</span><span class="space"> </span><span class="codenumber">4.5.1<span class="period">.</span></span><span class="space"> </span></figcaption></figure><p id="p-891">There are (at least) four interesting relationships between the two blue vectors and their cross product.</p>
<p id="p-892">Can you see some of them? Press to reveal:</p>
<article class="example example-like" id="example-43"><a data-knowl="" class="id-ref example-knowl original" data-refid="hk-example-43"><h6 class="heading">
<span class="type">Example</span><span class="space"> </span><span class="codenumber">4.5.2</span><span class="period">.</span><span class="space"> </span><span class="title">Interesting properties of the cross product.</span>
</h6></a></article><div class="hidden-content tex2jax_ignore" id="hk-example-43"><article class="example example-like"><ul id="p-893" class="disc">
<li id="li-315"><p id="p-894">\(\vec x\times\vec y\) is perpendicular to both \(\vec x\) and \(\vec y\text{.}\)</p></li>
<li id="li-316"><p id="p-895">\(\vec x\times\vec y\) has zero length when \(\vec x\) and \(\vec y\) are collinear.</p></li>
<li id="li-317"><p id="p-896">\(\vec x\times\vec y\) has maximum length when \(\vec x\) and \(\vec y\) are perpendicular.</p></li>
<li id="li-318"><p id="p-897">As \(\vec y\) goes through one cycle around \(\vec x\text{,}\) the length of \(\vec x\times\vec y\) goes up and down like the function \(\sin(x)\text{.}\)</p></li>
</ul></article></div>
<p id="p-898">These relationships are all valid, as we now show.</p>
<article class="theorem theorem-like" id="theorem-57"><h6 class="heading">
<span class="type">Theorem</span><span class="space"> </span><span class="codenumber">4.5.3</span><span class="period">.</span><span class="space"> </span><span class="title">\(x\perp\vec x\times\vec y\) and \(y\perp\vec x\times\vec y\).</span>
</h6>
<p id="p-899">\(\vec x\times\vec y\) is perpendicular to both \(\vec x\) and \(\vec y\text{.}\)</p></article><article class="hiddenproof" id="proof-70"><a data-knowl="" class="id-ref proof-knowl original" data-refid="hk-proof-70"><h6 class="heading"><span class="type">Proof<span class="period">.</span></span></h6></a></article><div class="hidden-content tex2jax_ignore" id="hk-proof-70"><article class="hiddenproof"><p id="p-900">The desired result is shown if \(\vec x\cdot(\vec x\times\vec y)=0\) and \(\vec y\cdot(\vec x\times\vec y)=0\text{.}\) By direct computation</p>
<div class="displaymath">
\begin{equation*}
\begin{array}{rl}
(x_1,x_2,x_3) \cdot \amp(x_2y_3-x_3y_2, x_3y_1-x_1y_3,x_1y_2-x_2y_1)\\
\amp=x_1 (x_2y_3-x_3y_2) +x_2 (x_3y_1-x_1y_3) + x_3 (x_1y_2-x_2y_1)\\
\amp= x_1x_2y_3-x_1x_3y_2 +x_2 x_3y_1-x_2x_1y_3+ x_3x_1y_2-x_3x_2y_1\\
\amp=0
\end{array}
\end{equation*}
</div>
<p class="continuation">and</p>
<div class="displaymath">
\begin{equation*}
\begin{array}{rl}
(y_1,y_2,y_3) \amp\cdot (x_2y_3-x_3y_2, x_3y_1-x_1y_3,x_1y_2-x_2y_1)\\
\amp=y_1 (x_2y_3-x_3y_2) +y_2 (x_3y_1-x_1y_3) + y_3 (x_1y_2-x_2y_1)\\
\amp= y_1x_2y_3-y_1x_3y_2 +y_2 x_3y_1-y_2x_1y_3+ y_3x_1y_2-y_3x_2y_1\\
\amp=0
\end{array}
\end{equation*}
</div></article></div>
<article class="theorem theorem-like" id="theorem-58"><h6 class="heading">
<span class="type">Theorem</span><span class="space"> </span><span class="codenumber">4.5.4</span><span class="period">.</span><span class="space"> </span><span class="title">\(\vec x \times r\vec x=\vec0\).</span>
</h6>
<p id="p-901">If \(\vec x\) and \(\vec y\) are collinear, then \(\vec x\times\vec y=\vec 0\text{.}\)</p></article><article class="hiddenproof" id="proof-71"><a data-knowl="" class="id-ref proof-knowl original" data-refid="hk-proof-71"><h6 class="heading"><span class="type">Proof<span class="period">.</span></span></h6></a></article><div class="hidden-content tex2jax_ignore" id="hk-proof-71"><article class="hiddenproof"><p id="p-902">The collinearity of \(\vec x\) and \(\vec y\) means that \(\vec x=r\vec y\) for some real number \(r\text{,}\) and so \(x_1=ry_1\text{,}\) \(x_2=ry_2\text{,}\) and \(x_3=ry_3\text{.}\) This means</p>
<div class="displaymath">
\begin{equation*}
\begin{array}{rl}
\vec x\times\vec y \amp= (ry_1,ry_2,ry_3)\times(y_1,y_2,y_3)\\
\amp= (ry_2y_3-ry_3y_2, ry_3y_1-ry_1y_3,ry_1y_2-ry_2y_1)\\
\amp=(0,0,0)=\vec 0
\end{array}
\end{equation*}
</div></article></div>
<p id="p-903">Now we carry out some computations:</p>
<div class="displaymath">
\begin{align*}
\|\vec x\times\vec y\|^2
\amp=\|(x_2y_3-x_3y_2, x_3y_1-x_1y_3, x_1y_2-x_2y_1)\|^2\\
\amp= x_2^2y_3^2 - 2x_2x_3y_2y_3 + x_3^2y_2^2\\
\amp\quad+x_3^2y_1^2 - 2x_1x_3y_1y_3 + x_1^2y_3^2\\
\amp\quad+x_1^2y_2^2 - 2x_1x_2y_1y_2 + x_1^2y_2^2\\
\|\vec x\|^2 \|\vec y\|^2
\amp=x_1^2y_1^2 + x_1^2y_2^2 + x_1^2y_3^2\\
\amp=+ x_2^2y_1^2 +x_2^2y_2^2 + x_2^2y_3^2\\
\amp\quad+x_3^2y_1^2 +x_3^2y_2^2 + x_3^2y_3^2\\
(\vec x\cdot\vec y)^2
\amp=(x_1y_1+x_2y_2+x_3y_3)^2\\
\amp= x_1^2y_1^2+x_2^2y_2^2+x_3^2y_3^2
+2 x_1x_2y_1y_2 +2x_1x_3y_1y_3 +2 x_2x_3y_2y_3
\end{align*}
</div>
<p class="continuation">Upon careful examination we conclude</p>
<div class="displaymath">
\begin{equation*}
\|\vec x\times\vec y\|^2 + (\vec x\cdot\vec y)^2
= \|\vec x\|^2 \|\vec y\|^2
\end{equation*}
</div>
<article class="theorem theorem-like" id="CrossProductLength"><h6 class="heading">
<span class="type">Theorem</span><span class="space"> </span><span class="codenumber">4.5.5</span><span class="period">.</span><span class="space"> </span><span class="title">\(\|\vec x\times\vec y\|=\|\vec x\|\,\|\vec y\|\sin\theta\).</span>
</h6>
<p id="p-904">For any vectors \(\vec x\) and \(\vec y\) in \(\R^3\text{,}\) \(\|\vec x\times\vec y\|=\|\vec x\|\,\|\vec y\|\sin\theta\text{.}\)</p></article><article class="hiddenproof" id="proof-72"><a data-knowl="" class="id-ref proof-knowl original" data-refid="hk-proof-72"><h6 class="heading"><span class="type">Proof<span class="period">.</span></span></h6></a></article><div class="hidden-content tex2jax_ignore" id="hk-proof-72"><article class="hiddenproof"><div class="displaymath" id="p-905">
\begin{equation*}
\begin{array}{rl}
\|\vec x\times\vec y\|^2
\amp= \|\vec x\|^2\|\vec y\|^2 -(\vec x\cdot\vec y)^2 \\
\amp= \|\vec x\|^2 \|\vec y\|^2 -\|\vec x\|^2\|\vec y\|^2\cos^2(\theta) \\
\amp= \|\vec x\|^2\|\vec y\|^2(1-\cos^2(\theta))\\
\amp= \|\vec x\|^2\|\vec y\|^2\sin^2(\theta)
\end{array}
\end{equation*}
</div>
<p class="continuation">Taking the square root of both sides, we get</p>
<div class="displaymath">
\begin{equation*}
\|\vec x\times\vec y\| =\pm \|\vec x\|\, \|\vec y\| |\sin(\theta)|
\end{equation*}
</div>
<p class="continuation">Now \(\|\vec x\times\vec y\|\geq 0\text{,}\) that is, the left side of the equation is nonnegative. Also \(\|\vec x\|\, \|\vec y\|\geq 0\text{.}\) In addition, \(\sin(\theta)\geq 0\) for \(0\leq \theta \leq \pi\text{.}\) This means that to make the right side of the equation nonnegative, the \(\pm\) is actually \(+\text{.}\) Hence</p>
<div class="displaymath">
\begin{equation*}
\|\vec x\times\vec y\| =\|\vec x\|\, \|\vec y\| \sin(\theta)
\end{equation*}
</div></article></div>
<article class="theorem theorem-like" id="theorem-60"><h6 class="heading">
<span class="type">Theorem</span><span class="space"> </span><span class="codenumber">4.5.6</span><span class="period">.</span><span class="space"> </span><span class="title">Additional cross product properties.</span>
</h6>
<p id="p-906">Let \(\vec u\) and \(\vec v\) be vectors in \(\R^n\text{,}\) and let \(r\) be a real number. Then</p>
<ul class="disc">
<li id="li-319"><p id="p-derived-li-319">\(\displaystyle \vec u\times\vec v=-(\vec v\times\vec u)\)</p></li>
<li id="li-320"><p id="p-derived-li-320">\(\displaystyle (r\vec u)\times\vec v=r(\vec u\times\vec v)\)</p></li>
<li id="li-321"><p id="p-derived-li-321">\(\displaystyle \vec u \times (\vec v+\vec w)
=(\vec u \times \vec v)+(\vec u\times\vec w)\)</p></li>
</ul></article><article class="hiddenproof" id="proof-73"><a data-knowl="" class="id-ref proof-knowl original" data-refid="hk-proof-73"><h6 class="heading"><span class="type">Proof<span class="period">.</span></span></h6></a></article><div class="hidden-content tex2jax_ignore" id="hk-proof-73"><article class="hiddenproof"><p id="p-907">All of the parts may be verified by direct computation. But more easily:</p>
<ul class="disc">
<li id="li-322"><p id="p-derived-li-322">\(\displaystyle \det
\begin{bmatrix}
\vec i \amp \vec j\amp \vec j\\
u_1 \amp u_2 \amp u_3\\
v_1 \amp v_2 \amp v_3
\end{bmatrix}
=-
\det
\begin{bmatrix}
\vec i \amp \vec j\amp \vec j\\
v_1 \amp v_2 \amp v_3\\
u_1 \amp u_2 \amp u_3
\end{bmatrix}\)</p></li>
<li id="li-323"><p id="p-derived-li-323">\(\displaystyle \det
\begin{bmatrix}
\vec i \amp \vec j\amp \vec j\\
ru_1 \amp ru_2 \amp ru_3\\
v_1 \amp v_2 \amp v_3
\end{bmatrix}
=r
\det
\begin{bmatrix}
\vec i \amp \vec j\amp \vec j\\
u_1 \amp u_2 \amp u_3\\
v_1 \amp v_2 \amp v_3
\end{bmatrix}\)</p></li>
<li id="li-324"><p id="p-derived-li-324">\(\displaystyle \det
\begin{bmatrix}
\vec i \amp \vec j\amp \vec j\\
u_1 \amp u_2 \amp u_3\\
(v_1+w_1) \amp (v_2+w_2) \amp (v_3+w_3)
\end{bmatrix}
=
\begin{bmatrix}
\vec i \amp \vec j\amp \vec j\\
u_1 \amp u_2 \amp u_3\\
v_1 \amp v_2 \amp v_3
\end{bmatrix}
+
\begin{bmatrix}
\vec i \amp \vec j\amp \vec j\\
u_1 \amp u_2 \amp u_3\\
w_1 \amp w_2 \amp w_3
\end{bmatrix}\)</p></li>
</ul></article></div>
<section class="paragraphs" id="paragraphs-12"><h5 class="heading"><span class="title">Justification of the definition of the cross product.</span></h5>
<p id="p-908">Now suppose we have two vectors \(\vec x=(x_1,x_2,x_3)\) and \(\vec y=(y_1,y_2,y_3)\text{.}\) We are looking for a third vector which (like the cross product) is perpendicular to both \(\vec x\) and \(\vec y\text{.}\) Let's call such a vector \((a,b,c)\text{.}\) The perpendicularity assumptions mean \((a,b,c)\cdot(x_1,x_2,x_3)=0\) and \((a,b,c)\cdot(y_1,y_2,y_3)=0\text{.}\) This means \(\begin{align*}
ax_1+bx_2+cx_3\amp =0\tag{1}\\
ay_1+by_2+cy_3\amp =0.\tag{2}
\end{align*}\)</p>
<p id="p-909">Multiply equation \((1)\) by \(y_1\text{,}\) equation \((2)\) by \(x_1\) and subtract. This gives</p>
<div class="displaymath">
\begin{equation*}
b(x_2y_1-x_1y_2)+c(x_3y_1-x_1y_3)=0
\end{equation*}
</div>
<p id="p-910">and so</p>
<div class="displaymath">
\begin{equation*}
b=\frac{x_3y_1-x_1y_3}{x_1y_2-x_2y_1}c
\end{equation*}
</div>
<p id="p-911">Now multiply equation \((1)\) by \(y_2\text{,}\) equation \((2)\) by \(x_2\) and subtract.</p>
<p id="p-912">This gives</p>
<div class="displaymath">
\begin{equation*}
a(x_1y_2-x_2y_1)+c(x_3y_2-x_2y_3)=0
\end{equation*}
</div>
<p id="p-913">and so</p>
<div class="displaymath">
\begin{equation*}
a=\frac{x_2y_3-x_3y_2}{x_1y_2-x_2y_1}c
\end{equation*}
</div>
<p id="p-914">This implies that our vector</p>
<div class="displaymath">
\begin{equation*}
(a,b,c)=\left(\frac{x_2y_3-x_3y_2}{x_1y_2-x_2y_1}c,
\frac{x_3y_1-x_1y_3}{x_1y_2-x_2y_1}c,c\right)
\end{equation*}
</div>
<p class="continuation">is perpendicular to both \(\vec x\) and \(\vec y\) for any choice of \(c\text{.}\) If we set \(c=x_1y_2-x_2y_1\) then we get</p>
<div class="displaymath">
\begin{equation*}
(a,b,c)=(x_2y_3-x_3y_2,x_3y_1-x_1y_3,x_1y_2-x_2y_1)
\end{equation*}
</div>
<p class="continuation">which is precisely \(\vec x\times\vec y\text{.}\) Hence the definition of the cross product, which at first seems bizarre, is actually natural if we wish the product to be perpendicular to both of the factors.</p></section></section></section></div></main>
</div>
</body>
</html>