-
Notifications
You must be signed in to change notification settings - Fork 1
/
BRCrypto.c
1001 lines (841 loc) · 46 KB
/
BRCrypto.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// BRCrypto.c
//
// Created by Aaron Voisine on 8/8/15.
// Copyright (c) 2015 breadwallet LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "BRCrypto.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
// endian swapping
#if __BIG_ENDIAN__ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#define be32(x) (x)
#define le32(x) ((((x) & 0xff) << 24) | (((x) & 0xff00) << 8) | (((x) & 0xff0000) >> 8) | (((x) & 0xff000000) >> 24))
#define be64(x) (x)
#define le64(x) ((union { uint32_t u32[2]; uint64_t u64; }) { le32((uint32_t)(x)), le32((uint32_t)((x) >> 32)) }.u64)
#elif __LITTLE_ENDIAN__ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define le32(x) (x)
#define be32(x) ((((x) & 0xff) << 24) | (((x) & 0xff00) << 8) | (((x) & 0xff0000) >> 8) | (((x) & 0xff000000) >> 24))
#define le64(x) (x)
#define be64(x) ((union { uint32_t u32[2]; uint64_t u64; }) { be32((uint32_t)((x) >> 32)), be32((uint32_t)(x)) }.u64)
#else // unknown endianess
#define be32(x) ((union { uint8_t u8[4]; uint32_t u32; }) { (x) >> 24, (x) >> 16, (x) >> 8, (x) }.u32)
#define le32(x) ((union { uint8_t u8[4]; uint32_t u32; }) { (x), (x) >> 8, (x) >> 16, (x) >> 24 }.u32)
#define be64(x) ((union { uint32_t u32[2]; uint64_t u64; }) { be32((uint32_t)((x) >> 32)), be32((uint32_t)(x)) }.u64)
#define le64(x) ((union { uint32_t u32[2]; uint64_t u64; }) { le32((uint32_t)(x)), le32((uint32_t)((x) >> 32)) }.u64)
#endif
// bitwise left rotation
#define rol32(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
// basic sha1 functions
#define f1(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define f2(x, y, z) ((x) ^ (y) ^ (z))
#define f3(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
// basic sha1 operation
#define sha1(x, y, z) (t = rol32(a, 5) + (x) + e + (y) + (z), e = d, d = c, c = rol32(b, 30), b = a, a = t)
static void _BRSHA1Compress(uint32_t *r, uint32_t *x)
{
int i = 0;
uint32_t a = r[0], b = r[1], c = r[2], d = r[3], e = r[4], t;
for (; i < 16; i++) sha1(f1(b, c, d), 0x5a827999, (x[i] = be32(x[i])));
for (; i < 20; i++) sha1(f1(b, c, d), 0x5a827999, (x[i] = rol32(x[i - 3] ^ x[i - 8] ^ x[i - 14] ^ x[i - 16], 1)));
for (; i < 40; i++) sha1(f2(b, c, d), 0x6ed9eba1, (x[i] = rol32(x[i - 3] ^ x[i - 8] ^ x[i - 14] ^ x[i - 16], 1)));
for (; i < 60; i++) sha1(f3(b, c, d), 0x8f1bbcdc, (x[i] = rol32(x[i - 3] ^ x[i - 8] ^ x[i - 14] ^ x[i - 16], 1)));
for (; i < 80; i++) sha1(f2(b, c, d), 0xca62c1d6, (x[i] = rol32(x[i - 3] ^ x[i - 8] ^ x[i - 14] ^ x[i - 16], 1)));
r[0] += a, r[1] += b, r[2] += c, r[3] += d, r[4] += e;
var_clean(&a, &b, &c, &d, &e, &t);
}
// sha-1 - not recommended for cryptographic use
void BRSHA1(void *md20, const void *data, size_t len)
{
size_t i;
uint32_t x[80], buf[] = { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 }; // initial buffer values
assert(md20 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i < len; i += 64) { // process data in 64 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 64 < len) ? 64 : len - i);
if (i + 64 > len) break;
_BRSHA1Compress(buf, x);
}
memset((uint8_t *)x + (len - i), 0, 64 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 0x80; // append padding
if (len - i >= 56) _BRSHA1Compress(buf, x), memset(x, 0, 64); // length goes to next block
x[14] = be32((uint32_t)(len >> 29)), x[15] = be32((uint32_t)(len << 3)); // append length in bits
_BRSHA1Compress(buf, x); // finalize
for (i = 0; i < 5; i++) buf[i] = be32(buf[i]); // endian swap
memcpy(md20, buf, 20); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
// bitwise right rotation
#define ror32(a, b) (((a) >> (b)) | ((a) << (32 - (b))))
// basic sha2 functions
#define ch(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
// basic sha256 functions
#define s0(x) (ror32((x), 2) ^ ror32((x), 13) ^ ror32((x), 22))
#define s1(x) (ror32((x), 6) ^ ror32((x), 11) ^ ror32((x), 25))
#define s2(x) (ror32((x), 7) ^ ror32((x), 18) ^ ((x) >> 3))
#define s3(x) (ror32((x), 17) ^ ror32((x), 19) ^ ((x) >> 10))
static void _BRSHA256Compress(uint32_t *r, const uint32_t *x)
{
static const uint32_t k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
int i;
uint32_t a = r[0], b = r[1], c = r[2], d = r[3], e = r[4], f = r[5], g = r[6], h = r[7], t1, t2, w[64];
for (i = 0; i < 16; i++) w[i] = be32(x[i]);
for (; i < 64; i++) w[i] = s3(w[i - 2]) + w[i - 7] + s2(w[i - 15]) + w[i - 16];
for (i = 0; i < 64; i++) {
t1 = h + s1(e) + ch(e, f, g) + k[i] + w[i];
t2 = s0(a) + maj(a, b, c);
h = g, g = f, f = e, e = d + t1, d = c, c = b, b = a, a = t1 + t2;
}
r[0] += a, r[1] += b, r[2] += c, r[3] += d, r[4] += e, r[5] += f, r[6] += g, r[7] += h;
var_clean(&a, &b, &c, &d, &e, &f, &g, &h, &t1, &t2);
mem_clean(w, sizeof(w));
}
void BRSHA224(void *md28, const void *data, size_t len) {
size_t i;
uint32_t x[16], buf[] = { 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511,
0x64f98fa7, 0xbefa4fa4 }; // initial buffer values
assert(md28 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i < len; i += 64) { // process data in 64 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 64 < len) ? 64 : len - i);
if (i + 64 > len) break;
_BRSHA256Compress(buf, x);
}
memset((uint8_t *)x + (len - i), 0, 64 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 0x80; // append padding
if (len - i >= 56) _BRSHA256Compress(buf, x), memset(x, 0, 64); // length goes to next block
x[14] = be32((uint32_t)(len >> 29)), x[15] = be32((uint32_t)(len << 3)); // append length in bits
_BRSHA256Compress(buf, x); // finalize
for (i = 0; i < 7; i++) buf[i] = be32(buf[i]); // endian swap
memcpy(md28, buf, 28); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
void BRSHA256(void *md32, const void *data, size_t len)
{
size_t i;
uint32_t x[16], buf[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19 }; // initial buffer values
assert(md32 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i < len; i += 64) { // process data in 64 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 64 < len) ? 64 : len - i);
if (i + 64 > len) break;
_BRSHA256Compress(buf, x);
}
memset((uint8_t *)x + (len - i), 0, 64 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 0x80; // append padding
if (len - i >= 56) _BRSHA256Compress(buf, x), memset(x, 0, 64); // length goes to next block
x[14] = be32((uint32_t)(len >> 29)), x[15] = be32((uint32_t)(len << 3)); // append length in bits
_BRSHA256Compress(buf, x); // finalize
for (i = 0; i < 8; i++) buf[i] = be32(buf[i]); // endian swap
memcpy(md32, buf, 32); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
// double-sha-256 = sha-256(sha-256(x))
void BRSHA256_2(void *md32, const void *data, size_t len)
{
uint8_t t[32];
assert(md32 != NULL);
assert(data != NULL || len == 0);
BRSHA256(t, data, len);
BRSHA256(md32, t, sizeof(t));
}
// bitwise right rotation
#define ror64(a, b) (((a) >> (b)) | ((a) << (64 - (b))))
// basic sha512 opeartions
#define S0(x) (ror64((x), 28) ^ ror64((x), 34) ^ ror64((x), 39))
#define S1(x) (ror64((x), 14) ^ ror64((x), 18) ^ ror64((x), 41))
#define S2(x) (ror64((x), 1) ^ ror64((x), 8) ^ ((x) >> 7))
#define S3(x) (ror64((x), 19) ^ ror64((x), 61) ^ ((x) >> 6))
static void _BRSHA512Compress(uint64_t *r, const uint64_t *x)
{
static const uint64_t k[] = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538,
0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe,
0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab,
0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed,
0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373,
0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c,
0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
};
int i;
uint64_t a = r[0], b = r[1], c = r[2], d = r[3], e = r[4], f = r[5], g = r[6], h = r[7], t1, t2, w[80];
for (i = 0; i < 16; i++) w[i] = be64(x[i]);
for (; i < 80; i++) w[i] = S3(w[i - 2]) + w[i - 7] + S2(w[i - 15]) + w[i - 16];
for (i = 0; i < 80; i++) {
t1 = h + S1(e) + ch(e, f, g) + k[i] + w[i];
t2 = S0(a) + maj(a, b, c);
h = g, g = f, f = e, e = d + t1, d = c, c = b, b = a, a = t1 + t2;
}
r[0] += a, r[1] += b, r[2] += c, r[3] += d, r[4] += e, r[5] += f, r[6] += g, r[7] += h;
var_clean(&a, &b, &c, &d, &e, &f, &g, &h, &t1, &t2);
mem_clean(w, sizeof(w));
}
void BRSHA384(void *md48, const void *data, size_t len)
{
size_t i;
uint64_t x[16], buf[] = { 0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939,
0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4 };
assert(md48 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i < len; i += 128) { // process data in 128 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 128 < len) ? 128 : len - i);
if (i + 128 > len) break;
_BRSHA512Compress(buf, x);
}
memset((uint8_t *)x + (len - i), 0, 128 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 0x80; // append padding
if (len - i >= 112) _BRSHA512Compress(buf, x), memset(x, 0, 128); // length goes to next block
x[14] = 0, x[15] = be64((uint64_t)len*8); // append length in bits
_BRSHA512Compress(buf, x); // finalize
for (i = 0; i < 6; i++) buf[i] = be64(buf[i]); // endian swap
memcpy(md48, buf, 48); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
void BRSHA512(void *md64, const void *data, size_t len)
{
size_t i;
uint64_t x[16], buf[] = { 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 };
assert(md64 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i < len; i += 128) { // process data in 128 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 128 < len) ? 128 : len - i);
if (i + 128 > len) break;
_BRSHA512Compress(buf, x);
}
memset((uint8_t *)x + (len - i), 0, 128 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 0x80; // append padding
if (len - i >= 112) _BRSHA512Compress(buf, x), memset(x, 0, 128); // length goes to next block
x[14] = 0, x[15] = be64((uint64_t)len*8); // append length in bits
_BRSHA512Compress(buf, x); // finalize
for (i = 0; i < 8; i++) buf[i] = be64(buf[i]); // endian swap
memcpy(md64, buf, 64); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
// basic ripemd functions
#define f(x, y, z) ((x) ^ (y) ^ (z))
#define g(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define h(x, y, z) (((x) | ~(y)) ^ (z))
#define i(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define j(x, y, z) ((x) ^ ((y) | ~(z)))
// basic ripemd operation
#define rmd(a, b, c, d, e, f, g, h, i, j) ((a) = rol32((f) + (b) + le32(c) + (d), (e)) + (g), (f) = (g), (g) = (h),\
(h) = rol32((i), 10), (i) = (j), (j) = (a))
static void _BRRMDCompress(uint32_t *r, const uint32_t *x)
{
// left line
static const int rl1[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, // round 1, id
rl2[] = { 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 }, // round 2, rho
rl3[] = { 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 }, // round 3, rho^2
rl4[] = { 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 }, // round 4, rho^3
rl5[] = { 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 }; // round 5, rho^4
// right line
static const int rr1[] = { 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 }, // round 1, pi
rr2[] = { 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 }, // round 2, rho pi
rr3[] = { 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 }, // round 3, rho^2 pi
rr4[] = { 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 }, // round 4, rho^3 pi
rr5[] = { 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 }; // round 5, rho^4 pi
// left line shifts
static const int sl1[] = { 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 }, // round 1
sl2[] = { 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 }, // round 2
sl3[] = { 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 }, // round 3
sl4[] = { 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 }, // round 4
sl5[] = { 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 }; // round 5
// right line shifts
static const int sr1[] = { 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 }, // round 1
sr2[] = { 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 }, // round 2
sr3[] = { 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 }, // round 3
sr4[] = { 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 }, // round 4
sr5[] = { 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 }; // round 5
int i;
uint32_t al = r[0], bl = r[1], cl = r[2], dl = r[3], el = r[4], ar = al, br = bl, cr = cl, dr = dl, er = el, t;
for (i = 0; i < 16; i++) rmd(t, f(bl, cl, dl), x[rl1[i]], 0x00000000, sl1[i], al, el, dl, cl, bl); // round 1 left
for (i = 0; i < 16; i++) rmd(t, j(br, cr, dr), x[rr1[i]], 0x50a28be6, sr1[i], ar, er, dr, cr, br); // round 1 right
for (i = 0; i < 16; i++) rmd(t, g(bl, cl, dl), x[rl2[i]], 0x5a827999, sl2[i], al, el, dl, cl, bl); // round 2 left
for (i = 0; i < 16; i++) rmd(t, i(br, cr, dr), x[rr2[i]], 0x5c4dd124, sr2[i], ar, er, dr, cr, br); // round 2 right
for (i = 0; i < 16; i++) rmd(t, h(bl, cl, dl), x[rl3[i]], 0x6ed9eba1, sl3[i], al, el, dl, cl, bl); // round 3 left
for (i = 0; i < 16; i++) rmd(t, h(br, cr, dr), x[rr3[i]], 0x6d703ef3, sr3[i], ar, er, dr, cr, br); // round 3 right
for (i = 0; i < 16; i++) rmd(t, i(bl, cl, dl), x[rl4[i]], 0x8f1bbcdc, sl4[i], al, el, dl, cl, bl); // round 4 left
for (i = 0; i < 16; i++) rmd(t, g(br, cr, dr), x[rr4[i]], 0x7a6d76e9, sr4[i], ar, er, dr, cr, br); // round 4 right
for (i = 0; i < 16; i++) rmd(t, j(bl, cl, dl), x[rl5[i]], 0xa953fd4e, sl5[i], al, el, dl, cl, bl); // round 5 left
for (i = 0; i < 16; i++) rmd(t, f(br, cr, dr), x[rr5[i]], 0x00000000, sr5[i], ar, er, dr, cr, br); // round 5 right
t = r[1] + cl + dr; // final result for r[0]
r[1] = r[2] + dl + er, r[2] = r[3] + el + ar, r[3] = r[4] + al + br, r[4] = r[0] + bl + cr, r[0] = t; // combine
var_clean(&al, &bl, &cl, &dl, &el, &ar, &br, &cr, &dr, &er, &t);
}
// ripemd-160: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
void BRRMD160(void *md20, const void *data, size_t len)
{
size_t i;
uint32_t x[16], buf[] = { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 }; // initial buffer values
assert(md20 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i <= len; i += 64) { // process data in 64 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 64 < len) ? 64 : len - i);
if (i + 64 > len) break;
_BRRMDCompress(buf, x);
}
memset((uint8_t *)x + (len - i), 0, 64 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 0x80; // append padding
if (len - i >= 56) _BRRMDCompress(buf, x), memset(x, 0, 64); // length goes to next block
x[14] = le32((uint32_t)(len << 3)), x[15] = le32((uint32_t)(len >> 29)); // append length in bits
_BRRMDCompress(buf, x); // finalize
for (i = 0; i < 5; i++) buf[i] = le32(buf[i]); // endian swap
memcpy(md20, buf, 20); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
// bitcoin hash-160 = ripemd-160(sha-256(x))
void BRHash160(void *md20, const void *data, size_t len)
{
uint8_t t[32];
assert(md20 != NULL);
assert(data != NULL || len == 0);
BRSHA256(t, data, len);
BRRMD160(md20, t, sizeof(t));
}
// bitwise left rotation
#define rol64(a, b) ((a) << (b) ^ ((a) >> (64 - (b))))
static void _BRSHA3Compress(uint64_t *r, const uint64_t *x, size_t blockSize)
{
static const uint64_t k[] = { // keccak round constants
0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b,
0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088,
0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
size_t i, j;
uint64_t a[5], b[5], r0, r1;
for (i = 0; i < blockSize/sizeof(uint64_t); i++) r[i] ^= le64(x[i]);
for (i = 0; i < 24; i++) { // permute r
// theta(r)
for (j = 0; j < 5; j++) a[j] = r[j] ^ r[j + 5] ^ r[j + 10] ^ r[j + 15] ^ r[j + 20];
b[0] = rol64(a[1], 1) ^ a[4], b[1] = rol64(a[2], 1) ^ a[0], b[2] = rol64(a[3], 1) ^ a[1];
b[3] = rol64(a[4], 1) ^ a[2], b[4] = rol64(a[0], 1) ^ a[3];
for (j = 0; j < 5; j++) r[j] ^= b[j], r[j + 5] ^= b[j], r[j + 10] ^= b[j], r[j + 15] ^= b[j], r[j + 20] ^= b[j];
// rho(r)
r[1] = rol64(r[1], 1), r[2] = rol64(r[2], 62), r[3] = rol64(r[3], 28), r[4] = rol64(r[4], 27);
r[5] = rol64(r[5], 36), r[6] = rol64(r[6], 44), r[7] = rol64(r[7], 6), r[8] = rol64(r[8], 55);
r[9] = rol64(r[9], 20), r[10] = rol64(r[10], 3), r[11] = rol64(r[11], 10), r[12] = rol64(r[12], 43);
r[13] = rol64(r[13], 25), r[14] = rol64(r[14], 39), r[15] = rol64(r[15], 41), r[16] = rol64(r[16], 45);
r[17] = rol64(r[17], 15), r[18] = rol64(r[18], 21), r[19] = rol64(r[19], 8), r[20] = rol64(r[20], 18);
r[21] = rol64(r[21], 2), r[22] = rol64(r[22], 61), r[23] = rol64(r[23], 56), r[24] = rol64(r[24], 14);
// pi(r)
r1 = r[1], r[1] = r[6], r[6] = r[9], r[9] = r[22], r[22] = r[14], r[14] = r[20], r[20] = r[2], r[2] = r[12],
r[12] = r[13], r[13] = r[19], r[19] = r[23], r[23] = r[15], r[15] = r[4], r[4] = r[24], r[24] = r[21];
r[21] = r[8], r[8] = r[16], r[16] = r[5], r[5] = r[3], r[3] = r[18], r[18] = r[17], r[17] = r[11], r[11] = r[7];
r[7] = r[10], r[10] = r1; // r[0] left as is
for (j = 0; j < 25; j += 5) { // chi(r)
r0 = r[0 + j], r1 = r[1 + j], r[0 + j] ^= ~r1 & r[2 + j], r[1 + j] ^= ~r[2 + j] & r[3 + j];
r[2 + j] ^= ~r[3 + j] & r[4 + j], r[3 + j] ^= ~r[4 + j] & r0, r[4 + j] ^= ~r0 & r1;
}
*r ^= k[i]; // iota(r, i)
}
mem_clean(a, sizeof(a));
mem_clean(b, sizeof(b));
var_clean(&r0, &r1);
}
// sha3-256: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
void BRSHA3_256(void *md32, const void *data, size_t len)
{
size_t i;
uint64_t x[17], buf[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
assert(md32 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i <= len; i += 136) { // process data in 136 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 136 < len) ? 136 : len - i);
if (i + 136 > len) break;
_BRSHA3Compress(buf, x, 136);
}
memset((uint8_t *)x + (len - i), 0, 136 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] |= 0x06; // append padding
((uint8_t *)x)[135] |= 0x80;
_BRSHA3Compress(buf, x, 136); // finalize
for (i = 0; i < 4; i++) buf[i] = le64(buf[i]); // endian swap
memcpy(md32, buf, 32); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
// keccak-256: https://keccak.team/files/Keccak-submission-3.pdf
void BRKeccak256(void *md32, const void *data, size_t len)
{
size_t i;
uint64_t x[17], buf[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
assert(md32 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i <= len; i += 136) { // process data in 136 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 136 < len) ? 136 : len - i);
if (i + 136 > len) break;
_BRSHA3Compress(buf, x, 136);
}
memset((uint8_t *)x + (len - i), 0, 136 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] |= 0x01; // append padding
((uint8_t *)x)[135] |= 0x80;
_BRSHA3Compress(buf, x, 136); // finalize
for (i = 0; i < 4; i++) buf[i] = le64(buf[i]); // endian swap
memcpy(md32, buf, 32); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
// basic md5 functions
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
// basic md5 operation
#define md5(f, a, b, c, d, x, k, s, t) ((a) += f((b), (c), (d)) + le32(x) + (k), (a) = rol32(a, s), (a) += (b),\
(t) = (d), (d) = (c), (c) = (b), (b) = (a), (a) = (t))
static void _BRMD5Compress(uint32_t *r, const uint32_t *x)
{
static const uint32_t k[] = {
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
};
static const int s[] = { 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21 };
int i = 0;
uint32_t a = r[0], b = r[1], c = r[2], d = r[3], t;
for (; i < 16; i++) md5(F, a, b, c, d, x[i], k[i], s[i % 4], t);
for (; i < 32; i++) md5(G, a, b, c, d, x[(5*i + 1) % 16], k[i], s[4 + (i % 4)], t);
for (; i < 48; i++) md5(H, a, b, c, d, x[(3*i + 5) % 16], k[i], s[8 + (i % 4)], t);
for (; i < 64; i++) md5(I, a, b, c, d, x[(7*i) % 16], k[i], s[12 + (i % 4)], t);
r[0] += a, r[1] += b, r[2] += c, r[3] += d;
var_clean(&a, &b, &c, &d, &t);
}
// md5 - for non-cyptographic use only
void BRMD5(void *md16, const void *data, size_t len)
{
size_t i;
uint32_t x[16], buf[] = { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476 }; // initial buffer values
assert(md16 != NULL);
assert(data != NULL || len == 0);
for (i = 0; i <= len; i += 64) { // process data in 64 byte blocks
memcpy(x, (const uint8_t *)data + i, (i + 64 < len) ? 64 : len - i);
if (i + 64 > len) break;
_BRMD5Compress(buf, x);
}
memset((uint8_t *)x + (len - i), 0, 64 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 0x80; // append padding
if (len - i >= 56) _BRMD5Compress(buf, x), memset(x, 0, 64); // length goes to next block
x[14] = le32((uint32_t)(len << 3)), x[15] = le32((uint32_t)(len >> 29)); // append length in bits
_BRMD5Compress(buf, x); // finalize
for (i = 0; i < 4; i++) buf[i] = le32(buf[i]); // endian swap
memcpy(md16, buf, 16); // write to md
mem_clean(x, sizeof(x));
mem_clean(buf, sizeof(buf));
}
#define C1 0xcc9e2d51
#define C2 0x1b873593
// basic mumurHash3 operation
#define fmix32(h) ((h) ^= (h) >> 16, (h) *= 0x85ebca6b, (h) ^= (h) >> 13, (h) *= 0xc2b2ae35, (h) ^= (h) >> 16)
// murmurHash3 (x86_32): https://code.google.com/p/smhasher/ - for non-cryptographic use only
uint32_t BRMurmur3_32(const void *data, size_t len, uint32_t seed)
{
uint32_t h = seed, k = 0;
size_t i, count = len/4;
assert(data != NULL || len == 0);
for (i = 0; i < count; i++) {
k = le32(((const uint32_t *)data)[i])*C1;
k = rol32(k, 15)*C2;
h ^= k;
h = rol32(h, 13)*5 + 0xe6546b64;
}
k = 0;
switch (len & 3) {
case 3: k ^= ((const uint8_t *)data)[i*4 + 2] << 16; // fall through
case 2: k ^= ((const uint8_t *)data)[i*4 + 1] << 8; // fall through
case 1: k ^= ((const uint8_t *)data)[i*4], k *= C1, h ^= rol32(k, 15)*C2;
}
h ^= len;
fmix32(h);
return h;
}
// HMAC(key, data) = hash((key xor opad) || hash((key xor ipad) || data))
// opad = 0x5c5c5c...5c5c
// ipad = 0x363636...3636
void BRHMAC(void *mac, void (*hash)(void *, const void *, size_t), size_t hashLen, const void *key, size_t keyLen,
const void *data, size_t dataLen)
{
size_t i, blockLen = (hashLen > 32) ? 128 : 64;
uint8_t k[hashLen];
uint64_t kipad[(blockLen + dataLen)/sizeof(uint64_t) + 1], kopad[(blockLen + hashLen)/sizeof(uint64_t) + 1];
assert(mac != NULL);
assert(hash != NULL);
assert(hashLen > 0 && (hashLen % 4) == 0);
assert(key != NULL || keyLen == 0);
assert(data != NULL || dataLen == 0);
if (keyLen > blockLen) hash(k, key, keyLen), key = k, keyLen = sizeof(k);
memset(kipad, 0, blockLen);
memcpy(kipad, key, keyLen);
for (i = 0; i < blockLen/sizeof(uint64_t); i++) kipad[i] ^= 0x3636363636363636;
memset(kopad, 0, blockLen);
memcpy(kopad, key, keyLen);
for (i = 0; i < blockLen/sizeof(uint64_t); i++) kopad[i] ^= 0x5c5c5c5c5c5c5c5c;
memcpy(&kipad[blockLen/sizeof(uint64_t)], data, dataLen);
hash(&kopad[blockLen/sizeof(uint64_t)], kipad, blockLen + dataLen);
hash(mac, kopad, blockLen + hashLen);
mem_clean(k, sizeof(k));
mem_clean(kipad, blockLen);
mem_clean(kopad, blockLen);
}
// hmac-drbg with no prediction resistance or additional input
// K and V must point to buffers of size hashLen, and ps (personalization string) may be NULL
// to generate additional drbg output, use K and V from the previous call, and set seed, nonce and ps to NULL
void BRHMACDRBG(void *out, size_t outLen, void *K, void *V, void (*hash)(void *, const void *, size_t), size_t hashLen,
const void *seed, size_t seedLen, const void *nonce, size_t nonceLen, const void *ps, size_t psLen)
{
size_t i, bufLen = hashLen + 1 + seedLen + nonceLen + psLen;
uint8_t buf[bufLen];
assert(out != NULL || outLen == 0);
assert(K != NULL);
assert(V != NULL);
assert(hash != NULL);
assert(hashLen > 0 && (hashLen % 4) == 0);
assert(seed != NULL || seedLen == 0);
assert(nonce != NULL || nonceLen == 0);
assert(ps != NULL || psLen == 0);
if (seed || nonce || ps) { // K = [0x00, 0x00, ... 0x00], V = [0x01, 0x01, ... 0x01]
for (i = 0; i < hashLen; i++) ((uint8_t *)K)[i] = 0x00, ((uint8_t *)V)[i] = 0x01;
}
memcpy(buf, V, hashLen);
buf[hashLen] = 0x00;
memcpy(&buf[hashLen + 1], seed, seedLen);
memcpy(&buf[hashLen + 1 + seedLen], nonce, nonceLen);
memcpy(&buf[hashLen + 1 + seedLen + nonceLen], ps, psLen);
BRHMAC(K, hash, hashLen, K, hashLen, buf, bufLen); // K = HMAC(K, V || 0x00 || entropy || nonce || ps)
BRHMAC(V, hash, hashLen, K, hashLen, V, hashLen); // V = HMAC(K, V)
if (seed || nonce || ps) {
memcpy(buf, V, hashLen);
buf[hashLen] = 0x01;
BRHMAC(K, hash, hashLen, K, hashLen, buf, bufLen); // K = HMAC(K, V || 0x01 || entropy || nonce || ps)
BRHMAC(V, hash, hashLen, K, hashLen, V, hashLen); // V = HMAC(K, V)
}
mem_clean(buf, bufLen);
for (i = 0; i*hashLen < outLen; i++) {
BRHMAC(V, hash, hashLen, K, hashLen, V, hashLen); // V = HMAC(K, V)
memcpy((uint8_t *)out + i*hashLen, V, (i*hashLen + hashLen <= outLen) ? hashLen : outLen % hashLen);
}
}
static void _BRPoly1305Compress(uint32_t h[5], const void *key32, const void *data, size_t len, int final)
{
uint32_t x[4], b, t0, t1, t2, t3, t4, r0, r1, r2, r3, r4;
uint64_t d0, d1, d2, d3, d4;
// r &= 0xffffffc0ffffffc0ffffffc0fffffff
memcpy(x, key32, 16);
t0 = le32(x[0]), t1 = le32(x[1]), t2 = le32(x[2]), t3 = le32(x[3]);
r0 = t0 & 0x03ffffff, r1 = ((t0 >> 26) | (t1 << 6)) & 0x03ffff03, r2 = ((t1 >> 20) | (t2 << 12)) & 0x03ffc0ff;
r3 = ((t2 >> 14) | (t3 << 18)) & 0x03f03fff, r4 = (t3 >> 8) & 0x000fffff;
for (size_t i = 0; i < len; i += 16) { // process data in 16 byte blocks
if (i + 16 > len) {
memcpy(x, (const uint8_t *)data + i, len - i);
memset((uint8_t *)x + (len - i), 0, 16 - (len - i)); // clear remainder of x
((uint8_t *)x)[len - i] = 1; // append padding
}
else memcpy(x, (const uint8_t *)data + i, 16);
// h += x
t0 = le32(x[0]), t1 = le32(x[1]), t2 = le32(x[2]), t3 = le32(x[3]);
h[0] += t0 & 0x03ffffff, h[1] += ((t0 >> 26) | (t1 << 6)) & 0x03ffffff;
h[2] += ((t1 >> 20) | (t2 << 12)) & 0x03ffffff, h[3] += ((t2 >> 14) | (t3 << 18)) & 0x03ffffff;
h[4] += (t3 >> 8) | ((i + 16 <= len) ? (1 << 24) : 0);
// h *= r
d0 = (uint64_t)h[0]*r0 + (uint64_t)h[1]*r4*5 + (uint64_t)h[2]*r3*5 + (uint64_t)h[3]*r2*5 + (uint64_t)h[4]*r1*5;
d1 = (uint64_t)h[0]*r1 + (uint64_t)h[1]*r0 + (uint64_t)h[2]*r4*5 + (uint64_t)h[3]*r3*5 + (uint64_t)h[4]*r2*5;
d2 = (uint64_t)h[0]*r2 + (uint64_t)h[1]*r1 + (uint64_t)h[2]*r0 + (uint64_t)h[3]*r4*5 + (uint64_t)h[4]*r3*5;
d3 = (uint64_t)h[0]*r3 + (uint64_t)h[1]*r2 + (uint64_t)h[2]*r1 + (uint64_t)h[3]*r0 + (uint64_t)h[4]*r4*5;
d4 = (uint64_t)h[0]*r4 + (uint64_t)h[1]*r3 + (uint64_t)h[2]*r2 + (uint64_t)h[3]*r1 + (uint64_t)h[4]*r0;
// (partial) h %= p
d1 += (uint32_t)(d0 >> 26), h[1] = d1 & 0x03ffffff, d2 += (uint32_t)(d1 >> 26), h[2] = d2 & 0x03ffffff;
d3 += (uint32_t)(d2 >> 26), h[3] = d3 & 0x03ffffff, d4 += (uint32_t)(d3 >> 26), h[4] = d4 & 0x03ffffff;
h[0] = (d0 & 0x03ffffff) + (uint32_t)(d4 >> 26)*5, h[1] += h[0] >> 26, h[0] &= 0x03ffffff;
}
if (final) {
// fully carry h
h[2] += h[1] >> 26, h[1] &= 0x03ffffff, h[3] += h[2] >> 26, h[2] &= 0x03ffffff, h[4] += h[3] >> 26;
h[3] &= 0x03ffffff, h[0] += (h[4] >> 26)*5, h[4] &= 0x03ffffff, h[1] += h[0] >> 26, h[0] &= 0x03ffffff;
// compute h + -p
t0 = h[0] + 5, t1 = h[1] + (t0 >> 26), t0 &= 0x03ffffff, t2 = h[2] + (t1 >> 26), t1 &= 0x03ffffff;
t3 = h[3] + (t2 >> 26), t2 &= 0x03ffffff, t4 = h[4] + (t3 >> 26) - (1 << 26), t3 &= 0x03ffffff;
// select h if h < p, or h + -p if h >= p
b = (t4 >> 31) - 1, h[0] = (h[0] & ~b) | (t0 & b), h[1] = (h[1] & ~b) | (t1 & b);
h[2] = (h[2] & ~b) | (t2 & b), h[3] = (h[3] & ~b) | (t3 & b), h[4] = (h[4] & ~b) | (t4 & b);
// h = h % (2^128)
h[0] = (h[0] | (h[1] << 26)) & 0x0ffffffff, h[1] = ((h[1] >> 6) | (h[2] << 20)) & 0x0ffffffff;
h[2] = ((h[2] >> 12) | (h[3] << 14)) & 0x0ffffffff, h[3] = ((h[3] >> 18) | (h[4] << 8)) & 0x0ffffffff;
// mac = (h + pad) % (2^128)
memcpy(x, (const uint8_t *)key32 + 16, 16);
d0 = (uint64_t)h[0] + le32(x[0]), d1 = (uint64_t)h[1] + le32(x[1]) + (d0 >> 32);
d2 = (uint64_t)h[2] + le32(x[2]) + (d1 >> 32), d3 = (uint64_t)h[3] + le32(x[3]) + (d2 >> 32);
h[0] = le32((uint32_t)d0), h[1] = le32((uint32_t)d1), h[2] = le32((uint32_t)d2), h[3] = le32((uint32_t)d3);
}
var_clean(&d0, &d1, &d2, &d3, &d4);
mem_clean(x, sizeof(x));
var_clean(&b, &t0, &t1, &t2, &t3, &t4, &r0, &r1, &r2, &r3, &r4);
}
// poly1305 authenticator: https://tools.ietf.org/html/rfc7539
// NOTE: must use constant time mem comparison when verifying mac to defend against timing attacks
void BRPoly1305(void *mac16, const void *key32, const void *data, size_t len)
{
uint32_t h[5] = { 0, 0, 0, 0, 0 };
assert(mac16 != NULL);
assert(data != NULL || len == 0);
assert(key32 != NULL);
_BRPoly1305Compress(h, key32, data, len, 1);
memcpy(mac16, h, 16);
mem_clean(h, sizeof(h));
}
// basic chacha quarter round operation
#define qr(a, b, c, d) ((a) += (b), (d) = rol32((d) ^ (a), 16), (c) += (d), (b) = rol32((b) ^ (c), 12),\
(a) += (b), (d) = rol32((d) ^ (a), 8), (c) += (d), (b) = rol32((b) ^ (c), 7))
// chacha20 stream cypher: https://cr.yp.to/chacha.html
void BRChacha20(void *out, const void *key32, const void *iv8, const void *data, size_t len, uint64_t counter)
{
static const char sigma[16] = "expand 32-byte k";
uint32_t b[16], s[16], x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
size_t i, j;
assert(out != NULL || len == 0);
assert(data != NULL || len == 0);
assert(key32 != NULL);
assert(iv8 != NULL);
memcpy(s, sigma, 16);
memcpy(&s[4], key32, 32);
s[12] = le32((uint32_t)counter);
s[13] = le32(counter >> 32);
memcpy(&s[14], iv8, 8);
for (i = 0; i < 16; i++) s[i] = le32(s[i]);
for (i = 0; i < len; i++) {
if (i % 64 == 0) {
x0 = s[0], x1 = s[1], x2 = s[2], x3 = s[3], x4 = s[4], x5 = s[5], x6 = s[6], x7 = s[7];
x8 = s[8], x9 = s[9], x10 = s[10], x11 = s[11], x12 = s[12], x13 = s[13], x14 = s[14], x15 = s[15];
for (j = 0; j < 10; j++) {
qr(x0, x4, x8, x12), qr(x1, x5, x9, x13), qr(x2, x6, x10, x14), qr(x3, x7, x11, x15);
qr(x0, x5, x10, x15), qr(x1, x6, x11, x12), qr(x2, x7, x8, x13), qr(x3, x4, x9, x14);
}
b[0] = le32(s[0] + x0), b[1] = le32(s[1] + x1), b[2] = le32(s[2] + x2), b[3] = le32(s[3] + x3);
b[4] = le32(s[4] + x4), b[5] = le32(s[5] + x5), b[6] = le32(s[6] + x6), b[7] = le32(s[7] + x7);
b[8] = le32(s[8] + x8), b[9] = le32(s[9] + x9), b[10] = le32(s[10] + x10), b[11] = le32(s[11] + x11);
b[12] = le32(s[12] + x12), b[13] = le32(s[13] + x13), b[14] = le32(s[14] + x14), b[15] = le32(s[15] + x15);
s[12]++;
if (s[12] == 0) s[13]++;
}
((uint8_t *)out)[i] = ((const uint8_t *)data)[i] ^ ((uint8_t *)b)[i % 64];
}
var_clean(&x0, &x1, &x2, &x3, &x4, &x5, &x6, &x7, &x8, &x9, &x10, &x11, &x12, &x13, &x14, &x15);
mem_clean(s, sizeof(s));
mem_clean(b, sizeof(b));
}
// chacha20-poly1305 authenticated encryption with associated data (AEAD): https://tools.ietf.org/html/rfc7539
size_t BRChacha20Poly1305AEADEncrypt(void *out, size_t outLen, const void *key32, const void *nonce12,
const void *data, size_t dataLen, const void *ad, size_t adLen)
{
const void *iv = (const uint8_t *)nonce12 + 4;
uint64_t counter = 0, macKey[4] = { 0, 0, 0, 0 }, pad[2] = { 0, 0 };
uint32_t h[5] = { 0, 0, 0, 0, 0 };
if (! out) return dataLen + 16;
if (outLen < dataLen + 16 || dataLen/64 >= UINT32_MAX) return 0;
assert(key32 != NULL);
assert(nonce12 != NULL);
assert(data != NULL || dataLen == 0);
assert(ad != NULL || adLen == 0);
memcpy(&((uint32_t *)&counter)[1], nonce12, sizeof(uint32_t));
BRChacha20(macKey, key32, iv, macKey, sizeof(macKey), le64(counter));
_BRPoly1305Compress(h, macKey, ad, (adLen/16)*16, 0);
memcpy(pad, (const uint8_t *)ad + (adLen/16)*16, adLen % 16);
if (adLen % 16) _BRPoly1305Compress(h, macKey, pad, 16, 0);
BRChacha20(out, key32, iv, data, dataLen, le64(counter) + 1);
_BRPoly1305Compress(h, macKey, out, (dataLen/16)*16, 0);
pad[0] = pad[1] = 0;
memcpy(pad, (const uint8_t *)out + (dataLen/16)*16, dataLen % 16);
if (dataLen % 16) _BRPoly1305Compress(h, macKey, pad, 16, 0);
pad[0] = le64(adLen);
pad[1] = le64(dataLen);
_BRPoly1305Compress(h, macKey, pad, 16, 1);
mem_clean(macKey, sizeof(macKey));
memcpy((uint8_t *)out + dataLen, h, 16);
return dataLen + 16;
}
size_t BRChacha20Poly1305AEADDecrypt(void *out, size_t outLen, const void *key32, const void *nonce12,
const void *data, size_t dataLen, const void *ad, size_t adLen)
{
const void *iv = (const uint8_t *)nonce12 + 4;
uint64_t counter = 0, macKey[4] = { 0, 0, 0, 0 }, pad[2] = { 0, 0 };
uint32_t h[5] = { 0, 0, 0, 0, 0 }, mac[4];
if (! out) return (dataLen < 16) ? 0 : dataLen - 16;
if (dataLen < 16 || (dataLen - 16)/64 >= UINT32_MAX || outLen + 16 < dataLen) return 0;
assert(key32 != NULL);
assert(nonce12 != NULL);
assert(data != NULL || dataLen == 0);
assert(ad != NULL || adLen == 0);
outLen = dataLen - 16;
memcpy(&((uint32_t *)&counter)[1], nonce12, sizeof(uint32_t));
BRChacha20(macKey, key32, iv, macKey, sizeof(macKey), le64(counter));
_BRPoly1305Compress(h, macKey, ad, (adLen/16)*16, 0);
memcpy(pad, (const uint8_t *)ad + (adLen/16)*16, adLen % 16);
if (adLen % 16) _BRPoly1305Compress(h, macKey, pad, 16, 0);
_BRPoly1305Compress(h, macKey, data, (outLen/16)*16, 0);
pad[0] = pad[1] = 0;
memcpy(pad, (const uint8_t *)data + (outLen/16)*16, outLen % 16);
if (outLen % 16) _BRPoly1305Compress(h, macKey, pad, 16, 0);
pad[0] = le64(adLen);
pad[1] = le64(outLen);
_BRPoly1305Compress(h, macKey, pad, 16, 1);
mem_clean(macKey, sizeof(macKey));
memcpy(mac, (const uint8_t *)data + outLen, 16);
if ((mac[0] ^ h[0]) | (mac[1] ^ h[1]) | (mac[2] ^ h[2]) | (mac[3] ^ h[3]) != 0) outLen = 0; // constant time compare
BRChacha20(out, key32, iv, data, outLen, le64(counter) + 1);
return outLen;
}
// dk = T1 || T2 || ... || Tdklen/hlen
// Ti = U1 xor U2 xor ... xor Urounds
// U1 = hmac_hash(pw, salt || be32(i))
// U2 = hmac_hash(pw, U1)
// ...
// Urounds = hmac_hash(pw, Urounds-1)
void BRPBKDF2(void *dk, size_t dkLen, void (*hash)(void *, const void *, size_t), size_t hashLen,
const void *pw, size_t pwLen, const void *salt, size_t saltLen, unsigned rounds)
{
uint8_t s[saltLen + sizeof(uint32_t)];
uint32_t i, j, U[hashLen/sizeof(uint32_t)], T[hashLen/sizeof(uint32_t)];
assert(dk != NULL || dkLen == 0);
assert(hash != NULL);
assert(hashLen > 0 && (hashLen % 4) == 0);
assert(pw != NULL || pwLen == 0);
assert(salt != NULL || saltLen == 0);
assert(rounds > 0);
memcpy(s, salt, saltLen);
for (i = 0; i < (dkLen + hashLen - 1)/hashLen; i++) {
j = be32(i + 1);
memcpy(s + saltLen, &j, sizeof(j));
BRHMAC(U, hash, hashLen, pw, pwLen, s, sizeof(s)); // U1 = hmac_hash(pw, salt || be32(i))
memcpy(T, U, sizeof(U));
for (unsigned r = 1; r < rounds; r++) {
BRHMAC(U, hash, hashLen, pw, pwLen, U, sizeof(U)); // Urounds = hmac_hash(pw, Urounds-1)
for (j = 0; j < hashLen/sizeof(uint32_t); j++) T[j] ^= U[j]; // Ti = U1 ^ U2 ^ ... ^ Urounds
}
// dk = T1 || T2 || ... || Tdklen/hlen
memcpy((uint8_t *)dk + i*hashLen, T, (i*hashLen + hashLen <= dkLen) ? hashLen : dkLen % hashLen);
}
mem_clean(s, sizeof(s));
mem_clean(U, sizeof(U));
mem_clean(T, sizeof(T));
}
// salsa20/8 stream cypher: http://cr.yp.to/snuffle.html
static void _salsa20_8(uint32_t b[16])
{
uint32_t x0 = b[0], x1 = b[1], x2 = b[2], x3 = b[3], x4 = b[4], x5 = b[5], x6 = b[6], x7 = b[7],
x8 = b[8], x9 = b[9], xa = b[10], xb = b[11], xc = b[12], xd = b[13], xe = b[14], xf = b[15];
for (unsigned i = 0; i < 8; i += 2) {
// operate on columns
x4 ^= rol32(x0 + xc, 7), x8 ^= rol32(x4 + x0, 9), xc ^= rol32(x8 + x4, 13), x0 ^= rol32(xc + x8, 18);
x9 ^= rol32(x5 + x1, 7), xd ^= rol32(x9 + x5, 9), x1 ^= rol32(xd + x9, 13), x5 ^= rol32(x1 + xd, 18);
xe ^= rol32(xa + x6, 7), x2 ^= rol32(xe + xa, 9), x6 ^= rol32(x2 + xe, 13), xa ^= rol32(x6 + x2, 18);
x3 ^= rol32(xf + xb, 7), x7 ^= rol32(x3 + xf, 9), xb ^= rol32(x7 + x3, 13), xf ^= rol32(xb + x7, 18);
// operate on rows
x1 ^= rol32(x0 + x3, 7), x2 ^= rol32(x1 + x0, 9), x3 ^= rol32(x2 + x1, 13), x0 ^= rol32(x3 + x2, 18);
x6 ^= rol32(x5 + x4, 7), x7 ^= rol32(x6 + x5, 9), x4 ^= rol32(x7 + x6, 13), x5 ^= rol32(x4 + x7, 18);
xb ^= rol32(xa + x9, 7), x8 ^= rol32(xb + xa, 9), x9 ^= rol32(x8 + xb, 13), xa ^= rol32(x9 + x8, 18);
xc ^= rol32(xf + xe, 7), xd ^= rol32(xc + xf, 9), xe ^= rol32(xd + xc, 13), xf ^= rol32(xe + xd, 18);
}
b[0] += x0, b[1] += x1, b[2] += x2, b[3] += x3, b[4] += x4, b[5] += x5, b[6] += x6, b[7] += x7;
b[8] += x8, b[9] += x9, b[10] += xa, b[11] += xb, b[12] += xc, b[13] += xd, b[14] += xe, b[15] += xf;
}
static void _blockmix_salsa8(uint64_t *dest, const uint64_t *src, uint64_t *b, unsigned r)
{
memcpy(b, &src[(2*r - 1)*8], 64);
for (unsigned i = 0; i < 2*r; i += 2) {
for (unsigned j = 0; j < 8; j++) b[j] ^= src[i*8 + j];
_salsa20_8((uint32_t *)b);
memcpy(&dest[i*4], b, 64);
for (unsigned j = 0; j < 8; j++) b[j] ^= src[i*8 + 8 + j];
_salsa20_8((uint32_t *)b);
memcpy(&dest[i*4 + r*8], b, 64);
}
}
// scrypt key derivation: http://www.tarsnap.com/scrypt.html
void BRScrypt(void *dk, size_t dkLen, const void *pw, size_t pwLen, const void *salt, size_t saltLen,
unsigned n, unsigned r, unsigned p)
{
uint64_t x[16*r], y[16*r], z[8], *v = malloc(128*r*n), m;
uint32_t b[32*r*p];
assert(v != NULL);
assert(dk != NULL || dkLen == 0);
assert(pw != NULL || pwLen == 0);
assert(salt != NULL || saltLen == 0);
assert(n > 0);
assert(r > 0);
assert(p > 0);
BRPBKDF2(b, sizeof(b), BRSHA256, 256/8, pw, pwLen, salt, saltLen, 1);
for (int i = 0; i < p; i++) {
for (unsigned j = 0; j < 32*r; j++) ((uint32_t *)x)[j] = le32(b[i*32*r + j]);
for (unsigned j = 0; j < n; j += 2) {
memcpy(&v[j*(16*r)], x, 128*r);
_blockmix_salsa8(y, x, z, r);
memcpy(&v[(j + 1)*(16*r)], y, 128*r);
_blockmix_salsa8(x, y, z, r);
}
for (unsigned j = 0; j < n; j += 2) {
m = le64(x[(2*r - 1)*8]) & (n - 1);
for (unsigned k = 0; k < 16*r; k++) x[k] ^= v[m*(16*r) + k];
_blockmix_salsa8(y, x, z, r);
m = le64(y[(2*r - 1)*8]) & (n - 1);
for (unsigned k = 0; k < 16*r; k++) y[k] ^= v[m*(16*r) + k];
_blockmix_salsa8(x, y, z, r);
}
for (unsigned j = 0; j < 32*r; j++) b[i*32*r + j] = le32(((uint32_t *)x)[j]);
}
BRPBKDF2(dk, dkLen, BRSHA256, 256/8, pw, pwLen, b, sizeof(b), 1);
mem_clean(b, sizeof(b));
mem_clean(x, sizeof(x));
mem_clean(y, sizeof(y));
mem_clean(z, sizeof(z));
mem_clean(v, 128*r*n);
free(v);