-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmy_image_folder.py
70 lines (51 loc) · 1.79 KB
/
my_image_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch.utils.data as data
from PIL import Image
import os
import os.path
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(dirt):
images = []
if not os.path.isdir(dirt):
return None
for root, _, fnames in sorted(os.walk(dirt)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, fname)
images.append(item)
return images
def default_loader(path):
return Image.open(path).convert('RGB')
def default_transform(target):
wind = target.split('_')[2]
return float(wind)
class ImageFolder(data.Dataset):
def __init__(self, root, transform=None, target_transform=default_transform,
loader=default_loader):
imgs = make_dataset(root)
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
path, target = self.imgs[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __getitemName__(self, index):
_, fname = self.imgs[index]
return fname.split('.')[0]
def __len__(self):
return len(self.imgs)