forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deep_learning4e.py
584 lines (440 loc) · 18.2 KB
/
deep_learning4e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
"""Deep learning. (Chapters 20)"""
import random
import statistics
import numpy as np
from keras import Sequential, optimizers
from keras.layers import Embedding, SimpleRNN, Dense
from keras.preprocessing import sequence
from utils4e import (conv1D, gaussian_kernel, element_wise_product, vector_add, random_weights,
scalar_vector_product, map_vector, mean_squared_error_loss)
class Node:
"""
A single unit of a layer in a neural network
:param weights: weights between parent nodes and current node
:param value: value of current node
"""
def __init__(self, weights=None, value=None):
self.value = value
self.weights = weights or []
class Layer:
"""
A layer in a neural network based on a computational graph.
:param size: number of units in the current layer
"""
def __init__(self, size):
self.nodes = np.array([Node() for _ in range(size)])
def forward(self, inputs):
"""Define the operation to get the output of this layer"""
raise NotImplementedError
class Activation:
def function(self, x):
return NotImplementedError
def derivative(self, x):
return NotImplementedError
def __call__(self, x):
return self.function(x)
class Sigmoid(Activation):
def function(self, x):
return 1 / (1 + np.exp(-x))
def derivative(self, value):
return value * (1 - value)
class ReLU(Activation):
def function(self, x):
return max(0, x)
def derivative(self, value):
return 1 if value > 0 else 0
class ELU(Activation):
def __init__(self, alpha=0.01):
self.alpha = alpha
def function(self, x):
return x if x > 0 else self.alpha * (np.exp(x) - 1)
def derivative(self, value):
return 1 if value > 0 else self.alpha * np.exp(value)
class LeakyReLU(Activation):
def __init__(self, alpha=0.01):
self.alpha = alpha
def function(self, x):
return max(x, self.alpha * x)
def derivative(self, value):
return 1 if value > 0 else self.alpha
class Tanh(Activation):
def function(self, x):
return np.tanh(x)
def derivative(self, value):
return 1 - (value ** 2)
class SoftMax(Activation):
def function(self, x):
return np.exp(x) / np.sum(np.exp(x))
def derivative(self, x):
return np.ones_like(x)
class SoftPlus(Activation):
def function(self, x):
return np.log(1. + np.exp(x))
def derivative(self, x):
return 1. / (1. + np.exp(-x))
class Linear(Activation):
def function(self, x):
return x
def derivative(self, x):
return np.ones_like(x)
class InputLayer(Layer):
"""1D input layer. Layer size is the same as input vector size."""
def __init__(self, size=3):
super().__init__(size)
def forward(self, inputs):
"""Take each value of the inputs to each unit in the layer."""
assert len(self.nodes) == len(inputs)
for node, inp in zip(self.nodes, inputs):
node.value = inp
return inputs
class OutputLayer(Layer):
"""1D softmax output layer in 19.3.2."""
def __init__(self, size=3):
super().__init__(size)
def forward(self, inputs, activation=SoftMax):
assert len(self.nodes) == len(inputs)
res = activation().function(inputs)
for node, val in zip(self.nodes, res):
node.value = val
return res
class DenseLayer(Layer):
"""
1D dense layer in a neural network.
:param in_size: (int) input vector size
:param out_size: (int) output vector size
:param activation: (Activation object) activation function
"""
def __init__(self, in_size=3, out_size=3, activation=Sigmoid):
super().__init__(out_size)
self.out_size = out_size
self.inputs = None
self.activation = activation()
# initialize weights
for node in self.nodes:
node.weights = random_weights(-0.5, 0.5, in_size)
def forward(self, inputs):
self.inputs = inputs
res = []
# get the output value of each unit
for unit in self.nodes:
val = self.activation.function(np.dot(unit.weights, inputs))
unit.value = val
res.append(val)
return res
class ConvLayer1D(Layer):
"""
1D convolution layer of in neural network.
:param kernel_size: convolution kernel size
"""
def __init__(self, size=3, kernel_size=3):
super().__init__(size)
# init convolution kernel as gaussian kernel
for node in self.nodes:
node.weights = gaussian_kernel(kernel_size)
def forward(self, features):
# each node in layer takes a channel in the features
assert len(self.nodes) == len(features)
res = []
# compute the convolution output of each channel, store it in node.val
for node, feature in zip(self.nodes, features):
out = conv1D(feature, node.weights)
res.append(out)
node.value = out
return res
class MaxPoolingLayer1D(Layer):
"""
1D max pooling layer in a neural network.
:param kernel_size: max pooling area size
"""
def __init__(self, size=3, kernel_size=3):
super().__init__(size)
self.kernel_size = kernel_size
self.inputs = None
def forward(self, features):
assert len(self.nodes) == len(features)
res = []
self.inputs = features
# do max pooling for each channel in features
for i in range(len(self.nodes)):
feature = features[i]
# get the max value in a kernel_size * kernel_size area
out = [max(feature[i:i + self.kernel_size])
for i in range(len(feature) - self.kernel_size + 1)]
res.append(out)
self.nodes[i].value = out
return res
class BatchNormalizationLayer(Layer):
"""Batch normalization layer."""
def __init__(self, size, eps=0.001):
super().__init__(size)
self.eps = eps
# self.weights = [beta, gamma]
self.weights = [0, 0]
self.inputs = None
def forward(self, inputs):
# mean value of inputs
mu = sum(inputs) / len(inputs)
# standard error of inputs
stderr = statistics.stdev(inputs)
self.inputs = inputs
res = []
# get normalized value of each input
for i in range(len(self.nodes)):
val = [(inputs[i] - mu) * self.weights[0] / np.sqrt(self.eps + stderr ** 2) + self.weights[1]]
res.append(val)
self.nodes[i].value = val
return res
def init_examples(examples, idx_i, idx_t, o_units):
"""Init examples from dataset.examples."""
inputs, targets = {}, {}
for i, e in enumerate(examples):
# input values of e
inputs[i] = [e[i] for i in idx_i]
if o_units > 1:
# one-hot representation of e's target
t = [0 for i in range(o_units)]
t[e[idx_t]] = 1
targets[i] = t
else:
# target value of e
targets[i] = [e[idx_t]]
return inputs, targets
def stochastic_gradient_descent(dataset, net, loss, epochs=1000, l_rate=0.01, batch_size=1, verbose=False):
"""
Gradient descent algorithm to update the learnable parameters of a network.
:return: the updated network
"""
examples = dataset.examples # init data
for e in range(epochs):
total_loss = 0
random.shuffle(examples)
weights = [[node.weights for node in layer.nodes] for layer in net]
for batch in get_batch(examples, batch_size):
inputs, targets = init_examples(batch, dataset.inputs, dataset.target, len(net[-1].nodes))
# compute gradients of weights
gs, batch_loss = BackPropagation(inputs, targets, weights, net, loss)
# update weights with gradient descent
weights = [x + y for x, y in zip(weights, [np.array(tg) * -l_rate for tg in gs])]
total_loss += batch_loss
# update the weights of network each batch
for i in range(len(net)):
if weights[i].size != 0:
for j in range(len(weights[i])):
net[i].nodes[j].weights = weights[i][j]
if verbose:
print("epoch:{}, total_loss:{}".format(e + 1, total_loss))
return net
def adam(dataset, net, loss, epochs=1000, rho=(0.9, 0.999), delta=1 / 10 ** 8,
l_rate=0.001, batch_size=1, verbose=False):
"""
[Figure 19.6]
Adam optimizer to update the learnable parameters of a network.
Required parameters are similar to gradient descent.
:return the updated network
"""
examples = dataset.examples
# init s,r and t
s = [[[0] * len(node.weights) for node in layer.nodes] for layer in net]
r = [[[0] * len(node.weights) for node in layer.nodes] for layer in net]
t = 0
# repeat util converge
for e in range(epochs):
# total loss of each epoch
total_loss = 0
random.shuffle(examples)
weights = [[node.weights for node in layer.nodes] for layer in net]
for batch in get_batch(examples, batch_size):
t += 1
inputs, targets = init_examples(batch, dataset.inputs, dataset.target, len(net[-1].nodes))
# compute gradients of weights
gs, batch_loss = BackPropagation(inputs, targets, weights, net, loss)
# update s,r,s_hat and r_gat
s = vector_add(scalar_vector_product(rho[0], s),
scalar_vector_product((1 - rho[0]), gs))
r = vector_add(scalar_vector_product(rho[1], r),
scalar_vector_product((1 - rho[1]), element_wise_product(gs, gs)))
s_hat = scalar_vector_product(1 / (1 - rho[0] ** t), s)
r_hat = scalar_vector_product(1 / (1 - rho[1] ** t), r)
# rescale r_hat
r_hat = map_vector(lambda x: 1 / (np.sqrt(x) + delta), r_hat)
# delta weights
delta_theta = scalar_vector_product(-l_rate, element_wise_product(s_hat, r_hat))
weights = vector_add(weights, delta_theta)
total_loss += batch_loss
# update the weights of network each batch
for i in range(len(net)):
if weights[i]:
for j in range(len(weights[i])):
net[i].nodes[j].weights = weights[i][j]
if verbose:
print("epoch:{}, total_loss:{}".format(e + 1, total_loss))
return net
def BackPropagation(inputs, targets, theta, net, loss):
"""
The back-propagation algorithm for multilayer networks in only one epoch, to calculate gradients of theta.
:param inputs: a batch of inputs in an array. Each input is an iterable object
:param targets: a batch of targets in an array. Each target is an iterable object
:param theta: parameters to be updated
:param net: a list of predefined layer objects representing their linear sequence
:param loss: a predefined loss function taking array of inputs and targets
:return: gradients of theta, loss of the input batch
"""
assert len(inputs) == len(targets)
o_units = len(net[-1].nodes)
n_layers = len(net)
batch_size = len(inputs)
gradients = [[[] for _ in layer.nodes] for layer in net]
total_gradients = [[[0] * len(node.weights) for node in layer.nodes] for layer in net]
batch_loss = 0
# iterate over each example in batch
for e in range(batch_size):
i_val = inputs[e]
t_val = targets[e]
# forward pass and compute batch loss
for i in range(1, n_layers):
layer_out = net[i].forward(i_val)
i_val = layer_out
batch_loss += loss(t_val, layer_out)
# initialize delta
delta = [[] for _ in range(n_layers)]
previous = np.array([layer_out[i] - t_val[i] for i in range(o_units)])
h_layers = n_layers - 1
# backward pass
for i in range(h_layers, 0, -1):
layer = net[i]
derivative = np.array([layer.activation.derivative(node.value) for node in layer.nodes])
delta[i] = previous * derivative
# pass to layer i-1 in the next iteration
previous = np.matmul([delta[i]], theta[i])[0]
# compute gradient of layer i
gradients[i] = [scalar_vector_product(d, net[i].inputs) for d in delta[i]]
# add gradient of current example to batch gradient
total_gradients = vector_add(total_gradients, gradients)
return total_gradients, batch_loss
def get_batch(examples, batch_size=1):
"""Split examples into multiple batches"""
for i in range(0, len(examples), batch_size):
yield examples[i: i + batch_size]
class NeuralNetworkLearner:
"""
Simple dense multilayer neural network.
:param hidden_layer_sizes: size of hidden layers in the form of a list
"""
def __init__(self, dataset, hidden_layer_sizes, l_rate=0.01, epochs=1000, batch_size=10,
optimizer=stochastic_gradient_descent, loss=mean_squared_error_loss, verbose=False, plot=False):
self.dataset = dataset
self.l_rate = l_rate
self.epochs = epochs
self.batch_size = batch_size
self.optimizer = optimizer
self.loss = loss
self.verbose = verbose
self.plot = plot
input_size = len(dataset.inputs)
output_size = len(dataset.values[dataset.target])
# initialize the network
raw_net = [InputLayer(input_size)]
# add hidden layers
hidden_input_size = input_size
for h_size in hidden_layer_sizes:
raw_net.append(DenseLayer(hidden_input_size, h_size))
hidden_input_size = h_size
raw_net.append(DenseLayer(hidden_input_size, output_size))
self.raw_net = raw_net
def fit(self, X, y):
self.learned_net = self.optimizer(self.dataset, self.raw_net, loss=self.loss, epochs=self.epochs,
l_rate=self.l_rate, batch_size=self.batch_size, verbose=self.verbose)
return self
def predict(self, example):
n_layers = len(self.learned_net)
layer_input = example
layer_out = example
# get the output of each layer by forward passing
for i in range(1, n_layers):
layer_out = self.learned_net[i].forward(np.array(layer_input).reshape((-1, 1)))
layer_input = layer_out
return layer_out.index(max(layer_out))
class PerceptronLearner:
"""
Simple perceptron neural network.
"""
def __init__(self, dataset, l_rate=0.01, epochs=1000, batch_size=10, optimizer=stochastic_gradient_descent,
loss=mean_squared_error_loss, verbose=False, plot=False):
self.dataset = dataset
self.l_rate = l_rate
self.epochs = epochs
self.batch_size = batch_size
self.optimizer = optimizer
self.loss = loss
self.verbose = verbose
self.plot = plot
input_size = len(dataset.inputs)
output_size = len(dataset.values[dataset.target])
# initialize the network, add dense layer
self.raw_net = [InputLayer(input_size), DenseLayer(input_size, output_size)]
def fit(self, X, y):
self.learned_net = self.optimizer(self.dataset, self.raw_net, loss=self.loss, epochs=self.epochs,
l_rate=self.l_rate, batch_size=self.batch_size, verbose=self.verbose)
return self
def predict(self, example):
layer_out = self.learned_net[1].forward(np.array(example).reshape((-1, 1)))
return layer_out.index(max(layer_out))
def keras_dataset_loader(dataset, max_length=500):
"""
Helper function to load keras datasets.
:param dataset: keras data set type
:param max_length: max length of each input sequence
"""
# init dataset
(X_train, y_train), (X_val, y_val) = dataset
if max_length > 0:
X_train = sequence.pad_sequences(X_train, maxlen=max_length)
X_val = sequence.pad_sequences(X_val, maxlen=max_length)
return (X_train[10:], y_train[10:]), (X_val, y_val), (X_train[:10], y_train[:10])
def SimpleRNNLearner(train_data, val_data, epochs=2, verbose=False):
"""
RNN example for text sentimental analysis.
:param train_data: a tuple of (training data, targets)
Training data: ndarray taking training examples, while each example is coded by embedding
Targets: ndarray taking targets of each example. Each target is mapped to an integer
:param val_data: a tuple of (validation data, targets)
:param epochs: number of epochs
:param verbose: verbosity mode
:return: a keras model
"""
total_inputs = 5000
input_length = 500
# init data
X_train, y_train = train_data
X_val, y_val = val_data
# init a the sequential network (embedding layer, rnn layer, dense layer)
model = Sequential()
model.add(Embedding(total_inputs, 32, input_length=input_length))
model.add(SimpleRNN(units=128))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# train the model
model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=epochs, batch_size=128, verbose=verbose)
return model
def AutoencoderLearner(inputs, encoding_size, epochs=200, verbose=False):
"""
Simple example of linear auto encoder learning producing the input itself.
:param inputs: a batch of input data in np.ndarray type
:param encoding_size: int, the size of encoding layer
:param epochs: number of epochs
:param verbose: verbosity mode
:return: a keras model
"""
# init data
input_size = len(inputs[0])
# init model
model = Sequential()
model.add(Dense(encoding_size, input_dim=input_size, activation='relu', kernel_initializer='random_uniform',
bias_initializer='ones'))
model.add(Dense(input_size, activation='relu', kernel_initializer='random_uniform', bias_initializer='ones'))
# update model with sgd
sgd = optimizers.SGD(lr=0.01)
model.compile(loss='mean_squared_error', optimizer=sgd, metrics=['accuracy'])
# train the model
model.fit(inputs, inputs, epochs=epochs, batch_size=10, verbose=verbose)
return model