-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstl_d_lib.py
203 lines (166 loc) · 7.28 KB
/
stl_d_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
def clip(x, a, b):
return max(min(x, b), a)
def softmax(x, tau, d, dim=1): # assume x (n, t)
if x.shape[1]==0:
return torch.ones(x.shape[0], 1).to(x.device) * -float('inf') # TODO(debug)
else:
if d is not None and "hard" in d and d["hard"]:
return torch.max(x, dim=dim, keepdim=True)[0]
else:
return torch.logsumexp(x * tau, dim=dim, keepdim=True) / tau
def softmin(x, tau, d, dim=1):
if x.shape[1]==0:
return torch.ones(x.shape[0], 1).to(x.device) * -float('inf') # TODO(debug)
else:
return -softmax(-x, tau, d, dim)
def softmax_pairs(x, y, tau, d): # x (n, t), y (n, t)
xy = torch.stack([x, y], dim=1)
return softmax(xy, tau, d).squeeze(1)
def softmin_pairs(x, y, tau, d):
return -softmax_pairs(-x, -y, tau, d)
class STLFormula():
def __init__(self, ts=None, te=None, node=None, lhs=None, rhs=None, lists=None, operator=None):
self.ts = ts
self.te = te
self.node = node
self.lhs = lhs
self.rhs = rhs
self.lists = lists
self.operator = operator # {"symbol": "dbg", "word": "DEBUG"}
self.format = "symbol" # ["symbol", "word"]
def __call__(self, x, tau): # compute the robustness score (based on the upstream up_ts, up_te, and self.ts, self.te)
raise NotImplementedError
def __str__(self):
ops = self.operator[self.format]
if self.ts is not None:
ops = "%s[%d:%d]"%(ops, self.ts, self.te+1)
if self.node is not None:
return "%s (%s)"%(ops, self.node)
elif self.lhs is not None:
return "(%s) %s (%s)"%(self.lhs, ops, self.rhs)
elif self.lists is not None:
return "%s {%s}"%(ops, ",".join(["|%s|"%x for x in self.lists]))
else:
raise NotImplementedError
def children(self):
if self.node is not None:
return [self.node]
else:
return [self.lhs, self.rhs]
def update_format(self, format):
self.format = format
for child in self.children():
if hasattr(child, "update_format"):
child.update_format(format)
def build(self, s):
raise NotImplementedError
class AP:
n_aps = 0
def __init__(self, expression, comment=None):
self.expression = expression
self.comment = comment
self.apid = AP.n_aps
AP.n_aps += 1
def __call__(self, x, tau, d=None): # compute the robustness score
s = self.expression(x)
if d is not None and "idx" in d:
print(self.__str__(), "input", x[d["idx"]], "out", s[d["idx"]])
return s
def __str__(self):
return "AP%d"%(self.apid) if self.comment is None else self.comment
class And(STLFormula):
def __init__(self, lhs, rhs):
super(And, self).__init__(lhs=lhs, rhs=rhs, operator={"symbol": "&", "word": "AND"})
def __call__(self, x, tau, d=None):
s = softmin_pairs(self.lhs(x, tau, d), self.rhs(x, tau, d), tau, d)
if d is not None and "idx" in d:
print("And", "input", x[d["idx"], :], "output", s[d["idx"]])
return s
class ListAnd(STLFormula):
def __init__(self, lists):
super(ListAnd, self).__init__(lists=lists, operator={"symbol": "&", "word": "AND"})
def __call__(self, x, tau, d=None, full=False):
v = [ap(x, tau, d) for ap in self.lists]
v = torch.stack(v, dim=1)
if d is not None and "idx" in d:
print("And", "input", x[d["idx"], :], "output", s[d["idx"]])
s = softmin(v, tau, d)[:, 0]
if full:
return s, v
else:
return s
class Or(STLFormula):
def __init__(self, lhs, rhs):
super(Or, self).__init__(lhs=lhs, rhs=rhs, operator={"symbol": "|", "word": "OR"})
def __call__(self, x, tau, d=None):
v1 = self.lhs(x, tau, d)
v2 = self.rhs(x, tau, d)
s = softmax_pairs(v1, v2, tau, d)
if d is not None and "idx" in d:
print("Or", "input", x[d["idx"], :], "lhs",v1[d["idx"]], "rhs", v2[d["idx"]], "output", s[d["idx"]])
return s
class Not(STLFormula):
def __init__(self, node):
super(Not, self).__init__(node=node, operator={"symbol": "¬", "word": "NOT"})
def __call__(self, x, tau, d=None):
return -self.node(x, tau, d)
class Imply(STLFormula):
def __init__(self, lhs, rhs):
super(Imply, self).__init__(lhs=lhs, rhs=rhs, operator={"symbol": "->", "word": "IMPLY"})
self.eval = Or(Not(self.lhs), self.rhs)
def __call__(self, x, tau, d=None):
s = self.eval(x, tau, d)
if d is not None and "idx" in d:
print("Imply", "input", x[d["idx"], :], "output", s[d["idx"]])
return s
class Eventually(STLFormula):
def __init__(self, ts, te, node):
super(Eventually, self).__init__(ts=ts, te=te, node=node, operator={"symbol":"♢", "word":"EVENTUALLY"})
def __call__(self, x, tau, d=None):
s = self.node(x, tau, d)
T = s.shape[1]
scores = [softmax(s[:, clip(t+self.ts, 0, T): clip(t+self.te, 0, T)], tau, d) for t in range(T)]
scores = torch.cat(scores, dim=-1)
if d is not None and "idx" in d:
print("Eventually", self.ts, self.te, "input", x[d["idx"], :], "output", scores[d["idx"]])
return scores
class Always(STLFormula):
def __init__(self, ts, te, node):
super(Always, self).__init__(ts=ts, te=te, node=node, operator={"symbol": "◻", "word": "ALWAYS"})
def __call__(self, x, tau, d=None):
s = self.node(x, tau, d)
T = s.shape[1]
scores = [softmin(s[:, clip(t+self.ts, 0, T): clip(t+self.te, 0, T)], tau, d) for t in range(T)]
scores = torch.cat(scores, dim=-1)
if d is not None and "idx" in d:
print("Always", self.ts, self.te, "input", x[d["idx"], :], "s", s, "output", scores[d["idx"]])
return scores
class Once(STLFormula):
def __init__(self, ts, te, node):
super(Once, self).__init__(ts=ts, te=te, node=node, operator={"symbol":"O", "word":"ONCE"})
assert ts<0 and te>=ts and te<=0
def __call__(self, x, tau, d=None):
s = self.node(x, tau, d)
T = s.shape[1]
scores = [softmax(s[:, clip(t+self.ts, 0, T): clip(t+self.te, 0, T)], tau, d) for t in range(T)]
return torch.cat(scores, dim=-1)
class UntimedUntil(STLFormula):
def __init__(self, lhs, rhs):
super(UntimedUntil, self).__init__(lhs=lhs, rhs=rhs, operator={"symbol": "U", "word": "UNTIL"})
def __call__(self, x, tau, d=None):
ls = self.lhs(x, tau, d) # (n, t)
rs = self.rhs(x, tau, d) # (n, t)
inf_ls = -torch.logcumsumexp(-ls * tau, dim=1) / tau
min_rs_inf_ls = softmin_pairs(rs, inf_ls, tau, d)
scores = (torch.logcumsumexp(min_rs_inf_ls.flip(1) * tau, dim=1) / tau).flip(1)
return scores
class Until(STLFormula):
def __init__(self, ts, te, lhs, rhs):
super(Until, self).__init__(ts=ts, te=te, lhs=lhs, rhs=rhs, operator={"symbol": "U", "word": "UNTIL"})
if ts==0:
self.eval = UntimedUntil(lhs, rhs)
else:
self.eval = And(Eventually(ts, te, rhs), Always(0, ts, UntimedUntil(lhs, rhs)))
def __call__(self, x, tau, d=None):
return self.eval(x, tau, d)