-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample_simulation_continuous_trace.m
255 lines (223 loc) · 9.69 KB
/
example_simulation_continuous_trace.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
close all;
clear;
%% generating a simulated fluorescence trace
% In this section a "recorded" fluorescence trace is simulated by the
% following steps: generating a random (continuous) spiking rate,
% generating the calcium resulting from it and the fluorescence.
% In experiments the history of the calcium is unknown prior to the first
% measurement (hence the spiking rate at the first time point is unknown
% nor its relation to the calcium at the first time point or prior to that)
% To simulate this, a longer trace than needed is simulated and concatenated
% and only the information about the fluorescence from its later part is used.
% set number of measurement points
T = 500;
% calcium decay between two measurement points (fits Gcamp6s at 10 Hz)
gamma = 0.95;
% generate 2*T time points of underlying rate
true_rate = generate_asynchronous_rate(2*T,0.1,1.6,1);
% generate calcium trace (using c = D^(-1)r)
calcium_trace = generate_calcium_trace(true_rate,gamma);
% cut rate and trace to the right length
true_rate = true_rate(length(true_rate)-T+1:end);
calcium_trace = calcium_trace(length(calcium_trace)-T+1:end);
% add noise to generate the fluorescence recording, and shift by the mean
% to replicate DeltaF/F effect
cal_span = max(calcium_trace)-min(calcium_trace);
noise_ratio = 0.1;
shift_noise_ratio = 0.1;
shift = -mean(calcium_trace) + shift_noise_ratio*cal_span*randn(1);
y = calcium_trace + randn(size(calcium_trace))*(cal_span)*noise_ratio + shift;
figure(1)
t = (1:1:T)/10; %simulating 10hz measurements
plot(t,true_rate,'LineWidth',2, 'Color',[0 0.6 0])
hold on
xlabel('time[sec]','FontSize',16)
ylabel('rate (hz)','FontSize',16)
legend('underlying rate')
title('Continuous Spiking Rate')
box('off')
figure(2)
t = (1:1:T)/10; %simulating 10hz measurements
plot(t,y,'LineWidth',0.5,'Color',[0.1 0.1 1])
hold on
plot(t,calcium_trace+shift,'LineWidth',2,'Color',[0.1 0.1 0.5])
xlabel('time[sec]','FontSize',16)
ylabel('calcium a.u.','FontSize',16)
legend('fluorescence','underlying calcium (shifted)')
title('Calcium and Fluorescence')
box('off')
% will be used later to reconstruct the calcium from the deconvoled rates
Dinv = zeros(T,T);
insert_vec = 1;
for k = 1:T
Dinv(k,1:k) = insert_vec;
insert_vec = [gamma^k, insert_vec];
end
% Deconvolve the recorded fluorescence trace
% Here the fluorescence trace is deconvolved into the spiking rate. The best
% penalty weight or smoothing parameter is different for each method
% (and for every experimental setup and pre-proccesing beyond DeltaF/F if exists).
% Finding these paraeters was done in advance, using the corresponding
% find_best_param_simulations_continuous
%% using dynamically-binned algorithm
% here
lambda = 1000;
% deconvolving
[r_dynbin,r1_dynbin,beta0_dynbin] = dynbin(y,gamma,lambda);
% for c(1:T) the rate can be calculated for r(2:T)
% r(1) is inferred as c(1) and has no meaning as a spiking rate
t_results = 2:T;
% the solution is given up to a constant shift from zero rate in the
% underlying rate (if exists)
% note that for experimental recorded data the standard deviation needs to
% be matched first due to the arbitrary unit of the calcium
means_shift_dynbin = mean(true_rate(t_results))-mean(r_dynbin);
figure(3)
t = (1:1:T)/10; %simulating 10hz measurements
plot(t,true_rate,'LineWidth',2, 'Color',[0 0.6 0])
hold on
plot(t(t_results),r_dynbin+means_shift_dynbin,'LineWidth',2,'Color',[0.1 0.7 0.7])
legend('underlying rate','deconvolved rate')
xlabel('time[sec]','FontSize',16)
ylabel('rate (hz)','FontSize',16)
title('Dynamically-Binned Spiking Rate')
box('off')
% reconstructing the calcium from the deconvolved rate
c_dynbin = Dinv*[r1_dynbin; r_dynbin];
figure(4)
t = (1:1:T)/10;
plot(t,y,'LineWidth',0.5,'Color',[0.1 0.1 1])
hold on
plot(t,calcium_trace+shift,'LineWidth',2,'Color',[0.1 0.1 0.5])
plot(t,c_dynbin+beta0_dynbin,'LineWidth',2,'Color',[0.1 0.5 0.5])
xlabel('time[sec]','FontSize',16)
ylabel('calcium a.u.','FontSize',16)
legend('fluorescence','underlying calcium (shifted)','reconstructed calcium')
title('Dynamically-Binned Calcium')
box('off')
%% using continuously varying algorithm
% here
lambda = 1500;
% deconvolving
[r_convar,r1_convar,beta0_convar] = convar(y,gamma,lambda);
% for c(1:T) the rate can be calculated for r(2:T)
% r(1) is inferred as c(1) and has no meaning as a spiking rate
t_results = 2:T;
% the solution is given up to a constant shift from zero rate in the
% underlying rate (if exists)
% note that for experimental recorded data the standard deviation needs to
% be matched first due to the arbitrary unit of the calcium
means_shift_convar = mean(true_rate(t_results))-mean(r_convar);
figure(5)
t = (1:1:T)/10; %simulating 10hz measurements
plot(t,true_rate,'LineWidth',2, 'Color',[0 0.6 0])
hold on
plot(t(t_results),r_convar+means_shift_convar,'LineWidth',2,'Color',[0.1 0.1 0.7])
legend('underlying rate','deconvolved rate')
xlabel('time[sec]','FontSize',16)
ylabel('rate (hz)','FontSize',16)
title('Continuouly-Varying Spiking Rate')
box('off')
% reconstructing the calcium from the deconvolved rate
c_convar = Dinv*[r1_convar; r_convar];
figure(6)
t = (1:1:T)/10;
plot(t,y,'LineWidth',0.5,'Color',[0.1 0.1 1])
hold on
plot(t,calcium_trace+shift,'LineWidth',2,'Color',[0.1 0.1 0.5])
plot(t,c_convar+beta0_convar,'LineWidth',2,'Color',[0.1 0.1 0.7])
xlabel('time[sec]','FontSize',16)
ylabel('calcium a.u.','FontSize',16)
legend('fluorescence','underlying calcium (shifted)','reconstructed calcium')
title('Continuously-Varying Calcium')
box('off')
%% using Lucy-Richardson algorithm
% here
smt = 25;
% deconvolving
% Lury-Richardson has an additional parameter which is the number of points
% to include in the deconvolution kernel shape it uses. The londer the
% better but also slower. Here I found that above 50 points no improvment
% is achieved. For simulations, the trial length is typically the longest
% kernel you can use (and the best).
kernel_length = 50;
r_lucric = lucric(y,gamma,smt,kernel_length);
% since the lucy-richardson algorithm shifts the fluorescence trace to
% include non negative numbers only (part of its assumptions), the rate is
% shifted here as well
means_shift_lucric = mean(true_rate)-mean(r_lucric);
figure(7)
t = (1:1:T)/10; %simulating 10hz measurements
plot(t,true_rate,'LineWidth',2, 'Color',[0 0.6 0])
hold on
plot(t,r_lucric+means_shift_lucric,'LineWidth',2,'Color',[0.7 0.1 0.1])
legend('underlying rate','deconvolved rate')
xlabel('time[sec]','FontSize',16)
ylabel('rate (hz)','FontSize',16)
title('Lucy-Richardson Spiking Rate')
box('off')
% reconstructing the calcium from the deconvolved rate
% In the reconstruction, the model uses r(1) = c(1) which is the first
% point of the fluorescence trace (as best estimate)
% shifted by the minimum of the trace since lucric shifts the trace
% (Lucy-Richardson assumes non negative trace)
c_lucric = Dinv*[y(1)-min(y); r_lucric(2:end)];
% and the inference can be found accordingly
beta0_lucric = mean(y-Dinv*[y(1)-min(y); r_lucric(2:end)]);
figure(8)
t = (1:1:T)/10;
plot(t,y,'LineWidth',0.5,'Color',[0.1 0.1 1])
hold on
plot(t,calcium_trace+shift,'LineWidth',2,'Color',[0.1 0.1 0.5])
plot(t,c_lucric+beta0_lucric,'LineWidth',2,'Color',[0.7 0.1 0.1])
xlabel('time[sec]','FontSize',16)
ylabel('calcium a.u.','FontSize',16)
legend('fluorescence','underlying calcium (shifted)','reconstructed calcium')
title('Lucy-Richardson Calcium')
box('off')
%% using first differences
% here
smt = 37;
% deconvolving
[r_firdif,r1_firdif,beta0_firdif] = firdif(y,gamma,smt);
% r(1) is the inferred c(1) and has no meaning as a spiking rate
t_results = 2:T;
% this method does not account for shifts
% and it doesn't guarantee non negative rate, it needs to be manually shifted
means_shift_firdif = mean(true_rate(t_results))-mean(r_firdif);
figure(9)
t = (1:1:T)/10; %simulating 10hz measurements
plot(t,true_rate,'LineWidth',2, 'Color',[0 0.6 0])
hold on
plot(t(t_results),r_firdif+means_shift_firdif,'LineWidth',2,'Color',[0.7 0.7 0.1])
legend('underlying rate','deconvolved rate')
xlabel('time[sec]','FontSize',16)
ylabel('rate (hz)','FontSize',16)
title('First Differences Spiking Rate')
box('off')
% reconstructing the calcium from the deconvolved rate
c_firdif = Dinv*[r1_firdif; r_firdif];
figure(10)
t = (1:1:T)/10;
plot(t,y,'LineWidth',0.5,'Color',[0.1 0.1 1])
hold on
plot(t,calcium_trace+shift,'LineWidth',2,'Color',[0.1 0.1 0.5])
plot(t,c_firdif+beta0_firdif,'LineWidth',2,'Color',[0.7 0.7 0.1])
xlabel('time[sec]','FontSize',16)
ylabel('calcium a.u.','FontSize',16)
legend('fluorescence','underlying calcium (shifted)','reconstructed calcium')
title('First Differences Calcium')
box('off')
%% comparing all methods
figure(1)
plot(t(t_results),r_dynbin+means_shift_dynbin,'LineWidth',2,'Color',[0.1 0.7 0.7])
plot(t(t_results),r_convar+means_shift_convar,'LineWidth',2,'Color',[0.1 0.1 0.7])
plot(t,r_lucric+means_shift_lucric,'LineWidth',2,'Color',[0.7 0.1 0.1])
plot(t(t_results),r_firdif+means_shift_firdif,'LineWidth',2,'Color',[0.7 0.7 0.1])
legend('underlying rate','dynamically-binned','continuously-varying','Lucy-Richardson','first differences')
figure(2)
plot(t,c_dynbin+beta0_dynbin,'LineWidth',2,'Color',[0.1 0.7 0.7])
plot(t,c_convar+beta0_convar,'LineWidth',2,'Color',[0.1 0.1 0.7])
plot(t,c_lucric+beta0_lucric,'LineWidth',2,'Color',[0.7 0.1 0.1])
plot(t,c_firdif+beta0_firdif,'LineWidth',2,'Color',[0.7 0.7 0.1])
legend('fluorescence','underlying calcium (shifted)','reconstructed calcium dynamically-binned','reconstructed calcium continuously-varying','reconstructed calcium Lucy-Richardson','reconstructed calcium first differences')