-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_best_param_fluorescence_data.m
226 lines (195 loc) · 9.02 KB
/
find_best_param_fluorescence_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
% Note : this script takes a while to run:
% dynamically-binned cell - roughly 10 minutes
% continuously-varying, Lucy-Richardson, first differences - roughly a few
% minutes
% In this example the best parameters are found for deconvolving real
% fluorescence recordings from Clancy et al., using:
% dynamically-binned algorithm (best_lambda_dynbin - best penalty)
% continuously-varying algorithm (best_lambda_convar - best penalty)
% Lucy-Richardson (best_smoothing_lucric - smoothing level)
% first differences (best_smoothing firdif - smoothing level)
% The calcium decay, gamma, is taken from the single cell value.
% In the accompaning manuscript this assumption is shown to
% be a very good estimate for the wide field decay. Nearby values of gamma
% don't chage the result qualitatively (and barely quantitatively)
% additional clarification about the simulations can be found in the single
% trace example (that uses the best parameters found here)
close all;
clear
% load data
load('Clancy_etal_fluorescence_example.mat')
% a more convenient (and faster) scaling to work with
cal_data = cal_data*100;
% calcium decay rate (based on 40Hz mesearmunts in Gcamp6f mice)
gamma_40hz = 0.97;
% To find the best parameters, the "odd" trace is deconvolved and the
% calcium reconstructed from it is compared to the "even" trace
% hence we divide the data
odd_traces = cal_data(1:2:end-1,:);
even_traces = cal_data(2:2:end,:);
% the calcium decay is needed to be fitted for 20hz of the eve/odd traces
ratio = 0.5;
gamma = 1-(1-gamma_40hz)/ratio;
% number of points in each odd/even calcium trace
T = size(odd_traces,1);
% number of calcium traces
rep = size(cal_data,2);
% serach over a range of lambda/smoothing values to find the best one
all_lambda = [80 40 20 10 7 5 3 2 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01];
all_smooth = [121 101 89 77 65 55 47 41 37 33 29 25 21 17 13 9 5 3 1];
% will be used later to reconstruct the calcium from the deconvoled rates
Dinv = zeros(T,T);
insert_vec = 1;
for k = 1:T
Dinv(k,1:k) = insert_vec;
insert_vec = [gamma^k, insert_vec];
end
%% dynamically-binned
% saving the results
penalty_size_dynbin = zeros(length(all_lambda),rep);
fluctuation_level_dynbin = zeros(length(all_lambda),rep);
calcium_dif_dynbin = zeros(length(all_lambda),rep);
for k = 1:length(all_lambda)
lambda = all_lambda(k);
% deconvolve
[r, r1, beta0] = dynbin(odd_traces,gamma,lambda);
% calculating the changes in spiking rate in each deconvolve trace
r_diff = diff(r(2:end,:));
% calculating the penalty and fluctuation level in each trace
% the fluctuation level are used for comparison with the other methods
penalty_size_dynbin(k,:) = mean(abs(r_diff));
fluctuation_level_dynbin(k,:) = mean(r_diff.^2);
% reconstruct the calcium
c_odd = Dinv*[r1; r];
calcium_dif_dynbin(k,:) = mean(abs(c_odd+beta0-even_traces));
end
[min_error_dynbin,best_lambda_dynbin_indx] = min(mean(calcium_dif_dynbin,2));
best_lambda_dynbin = all_lambda(best_lambda_dynbin_indx);
figure(1)
loglog(mean(penalty_size_dynbin,2),mean(calcium_dif_dynbin,2),'LineWidth',2)
title('Dynamically-Binned Average Error')
set(gca, 'FontSize', 16)
xlabel('penalty','FontSize',16)
ylabel('error','FontSize',20)
box('off')
figure(2)
plot(all_lambda,mean(calcium_dif_dynbin,2),'LineWidth',2)
title('Dynamically-Binned Average Error')
set(gca, 'FontSize', 16)
xlabel('\lambda','FontSize',16)
ylabel('error','FontSize',20)
box('off')
%% continuously-varying
% saving the results
% here the penalty (l2) is the same as the fluctuations (l2)
penalty_size_convar = zeros(length(all_lambda),rep);
calcium_dif_convar = zeros(length(all_lambda),rep);
for k = 1:length(all_lambda)
lambda = all_lambda(k);
[r, r1,beta0] = convar(odd_traces,gamma,lambda);
% calculating the changes in spiking rate in each deconvolve trace
r_diff = diff(r(2:end,:));
% calculating the penalty in each trace
penalty_size_convar(k,:) = mean(r_diff.^2);
% reconstruct the calcium
c_odd = Dinv*[r1; r];
calcium_dif_convar(k,:) = mean(abs(c_odd+beta0-even_traces));
end
[min_error_convar,best_lambda_convar_indx] = min(mean(calcium_dif_convar,2));
best_lambda_convar = all_lambda(best_lambda_convar_indx);
figure(3)
loglog(mean(penalty_size_convar,2),mean(calcium_dif_convar,2),'LineWidth',2)
title('Continuously-Varying Average Error')
set(gca, 'FontSize', 16)
xlabel('penalty','FontSize',16)
ylabel('error','FontSize',20)
box('off')
figure(4)
plot(all_lambda,mean(calcium_dif_convar,2),'LineWidth',2)
title('Continuously-Varying Average Error')
set(gca, 'FontSize', 16)
xlabel('\lambda','FontSize',16)
ylabel('error','FontSize',20)
box('off')
%% Lucy-Richardson
% Results show that smoothing here barely (if at all) improves the results
% saving the results
fluctuation_level_lucric = zeros(length(all_smooth),rep);
calcium_dif_lucric = zeros(length(all_smooth),rep);
for k = 1:length(all_smooth)
smt = all_smooth(k);
r_odd_lucric = lucric(odd_traces,gamma,smt,50);
% calculating the changes in spiking rate in each deconvolve trace
r_diff = diff(r_odd_lucric(2:end,:));
% calculating the fluctuation level in each trace (which is the mean squared changes)
fluctuation_level_lucric(k,:) = mean(r_diff.^2);
% reconstruct the calcium, taking the model and shift into account
c_odd_lucric = Dinv*[odd_traces(1,:)-min(odd_traces); r_odd_lucric(2:end,:)];
calcium_dif_lucric(k,:) = mean(abs(c_odd_lucric-even_traces));
end
[min_error_lucric,best_smoothing_lucric_indx] = min(mean(calcium_dif_lucric,2));
best_smt_lucric = all_smooth(best_smoothing_lucric_indx);
figure(5)
loglog(mean(fluctuation_level_lucric,2),mean(calcium_dif_lucric,2),'LineWidth',2)
title('Lucy-Richardson Average Error')
set(gca, 'FontSize', 16)
xlabel('fluctuations','FontSize',16)
ylabel('error','FontSize',20)
box('off')
figure(6)
plot(all_smooth,mean(calcium_dif_lucric,2),'LineWidth',2)
title('Lucy-Richardson Average Error')
set(gca, 'FontSize', 16)
xlabel('smoothing points','FontSize',16)
ylabel('error','FontSize',20)
box('off')
%% first-differences
% saving the results
fluctuation_level_firdif = zeros(length(all_smooth),rep);
calcium_dif_firdif = zeros(length(all_smooth),rep);
for k = 1:length(all_smooth)
smt = all_smooth(k);
[r_odd_firdif,r1_odd_firdif,beta0_odd_firdif] = firdif(odd_traces,gamma,smt);
% calculating the changes in spiking rate in each deconvolve trace
r_diff = diff(r_odd_firdif(2:end,:));
% calculating the fluctuation level in each trace (which is the mean squared changes)
fluctuation_level_firdif(k,:) = mean(r_diff.^2);
% reconstruct the calcium
c_odd_firdif = Dinv*[r1_odd_firdif; r_odd_firdif];
calcium_dif_firdif(k,:) = mean(abs(c_odd_firdif+beta0_odd_firdif-even_traces));
end
[min_error_firdif,best_smoothing_firdif_indx] = min(mean(calcium_dif_firdif,2));
best_smt_firdif = all_smooth(best_smoothing_firdif_indx);
figure(7)
loglog(mean(fluctuation_level_firdif,2),mean(calcium_dif_firdif,2),'LineWidth',2)
title('First Differences Average Error')
set(gca, 'FontSize', 16)
xlabel('fluctuations','FontSize',16)
ylabel('error','FontSize',20)
box('off')
figure(8)
plot(all_smooth,mean(calcium_dif_firdif,2),'LineWidth',2)
title('First Differences Average Error')
set(gca, 'FontSize', 16)
xlabel('smoothing points','FontSize',16)
ylabel('error','FontSize',20)
box('off')
%% plot all for comparison
% (figure 3E)
figure(9)
loglog(mean(fluctuation_level_dynbin,2),mean(calcium_dif_dynbin,2),'LineWidth',2,'Color',[0.1 0.7 0.7])
hold on
loglog(mean(penalty_size_convar,2),mean(calcium_dif_convar,2),'LineWidth',2,'Color',[0.1 0.1 0.7])
loglog(mean(fluctuation_level_lucric,2),mean(calcium_dif_lucric,2),'LineWidth',2,'Color',[0.7 0.1 0.1])
loglog(mean(fluctuation_level_firdif,2),mean(calcium_dif_firdif,2),'LineWidth',2,'Color',[0.7 0.7 0.1])
% plotting the minimum error point in each method
plot(mean(fluctuation_level_dynbin(best_lambda_dynbin_indx,:)),mean(calcium_dif_dynbin(best_lambda_dynbin_indx,:)),'o','MarkerSize',6,'MarkerFaceColor',[0.1 0.7 0.7 ],'MarkerEdgeColor',[0.1 0.7 0.7 ])
plot(mean(penalty_size_convar(best_lambda_convar_indx,:)),mean(calcium_dif_convar(best_lambda_convar_indx,:)),'o','MarkerSize',6,'MarkerFaceColor',[0.1 0.1 0.7],'MarkerEdgeColor',[0.1 0.1 0.7 ])
plot(mean(fluctuation_level_lucric(best_smoothing_lucric_indx,:)),mean(calcium_dif_lucric(best_smoothing_lucric_indx,:)),'o','MarkerSize',6,'MarkerFaceColor',[0.7 0.1 0.1],'MarkerEdgeColor',[0.7 0.1 0.1 ])
plot(mean(fluctuation_level_firdif(best_smoothing_firdif_indx,:)),mean(calcium_dif_firdif(best_smoothing_firdif_indx,:)),'o','MarkerSize',6,'MarkerFaceColor',[0.7 0.7 0.1],'MarkerEdgeColor',[0.7 0.7 0.1 ])
legend('Dynamically-Binning', 'Continuously-Varying','Lucy-Richardson', 'First-Differences')
title('Average error')
set(gca, 'FontSize', 16)
xlabel('fluctuations','FontSize',16)
ylabel('error','FontSize',20)
box('off')