Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

build(deps): update python dependencies (minor) #19

Open
wants to merge 1 commit into
base: master
Choose a base branch
from

Conversation

renovate[bot]
Copy link
Contributor

@renovate renovate bot commented Aug 17, 2024

This PR contains the following updates:

Package Change Age Adoption Passing Confidence Type Update
black (changelog) 24.8.0 -> 24.10.0 age adoption passing confidence dev minor
keras 3.4.1 -> 3.8.0 age adoption passing confidence dependencies minor
matplotlib 3.9.1 -> 3.10.0 age adoption passing confidence dependencies minor
mypy (changelog) 1.11.1 -> 1.14.1 age adoption passing confidence dev minor
numpy (changelog) 2.0.1 -> 2.2.1 age adoption passing confidence dependencies minor
plotly (source, changelog) 5.23.0 -> 5.24.1 age adoption passing confidence dependencies minor
pytest (changelog) 8.3.2 -> 8.3.4 age adoption passing confidence dev patch
python >=3.10,<3.13 -> >=3.13,<3.14 age adoption passing confidence dependencies minor
ruff (source, changelog) ^0.5.0 -> ^0.9.0 age adoption passing confidence dev minor
scikit-learn (changelog) 1.5.1 -> 1.6.1 age adoption passing confidence dependencies minor
tqdm (changelog) 4.66.5 -> 4.67.1 age adoption passing confidence dependencies minor

Release Notes

psf/black (black)

v24.10.0

Compare Source

Highlights
  • Black is now officially tested with Python 3.13 and provides Python 3.13
    mypyc-compiled wheels. (#​4436) (#​4449)
  • Black will issue an error when used with Python 3.12.5, due to an upstream memory
    safety issue in Python 3.12.5 that can cause Black's AST safety checks to fail. Please
    use Python 3.12.6 or Python 3.12.4 instead. (#​4447)
  • Black no longer supports running with Python 3.8 (#​4452)
Stable style
  • Fix crashes involving comments in parenthesised return types or X | Y style unions.
    (#​4453)
  • Fix skipping Jupyter cells with unknown %% magic (#​4462)
Preview style
  • Fix type annotation spacing between * and more complex type variable tuple (i.e. def fn(*args: *tuple[*Ts, T]) -> None: pass) (#​4440)
Caching
  • Fix bug where the cache was shared between runs with and without --unstable (#​4466)
Packaging
  • Upgrade version of mypyc used to 1.12 beta (#​4450) (#​4449)
  • blackd now requires a newer version of aiohttp. (#​4451)
Output
  • Added Python target version information on parse error (#​4378)
  • Add information about Black version to internal error messages (#​4457)
keras-team/keras (keras)

v3.8.0: Keras 3.8.0

Compare Source

New: OpenVINO backend

OpenVINO is now available as an infererence-only Keras backend. You can start using it by setting the backend field to "openvino" in your keras.json config file.

OpenVINO is a deep learning inference-only framework tailored for CPU (x86, ARM), certain GPUs (OpenCL capable, integrated and discrete) and certain AI accelerators (Intel NPU).

Because OpenVINO does not support gradients, you cannot use it for training (e.g. model.fit()) -- only inference. You can train your models with the JAX/TensorFlow/PyTorch backends, and when trained, reload them with the OpenVINO backend for inference on a target device supported by OpenVINO.

New: ONNX model export

You can now export your Keras models to the ONNX format from the JAX, TensorFlow, and PyTorch backends.

Just pass format="onnx" in your model.export() call:

### Export the model as a ONNX artifact
model.export("path/to/location", format="onnx")

### Load the artifact in a different process/environment
ort_session = onnxruntime.InferenceSession("path/to/location")

### Run inference
ort_inputs = {
    k.name: v for k, v in zip(ort_session.get_inputs(), input_data)
}
predictions = ort_session.run(None, ort_inputs)

New: Scikit-Learn API compatibility interface

It's now possible to easily integrate Keras models into Sciki-Learn pipelines! The following wrapper classes are available:

  • keras.wrappers.SKLearnClassifier: implements the sklearn Classifier API
  • keras.wrappers.SKLearnRegressor: implements the sklearn Regressor API
  • keras.wrappers.SKLearnTransformer: implements the sklearn Transformer API

Other feature additions

  • Add new ops:
    • Add keras.ops.diagflat
    • Add keras.ops.unravel_index
  • Add new activations:
    • Add sparse_plus activation
    • Add sparsemax activation
  • Add new image augmentation and preprocessing layers:
    • Add keras.layers.RandAugment
    • Add keras.layers.Equalization
    • Add keras.layers.MixUp
    • Add keras.layers.RandomHue
    • Add keras.layers.RandomGrayscale
    • Add keras.layers.RandomSaturation
    • Add keras.layers.RandomColorJitter
    • Add keras.layers.RandomColorDegeneration
    • Add keras.layers.RandomSharpness
    • Add keras.layers.RandomShear
  • Add argument axis to tversky loss

JAX specific changes

  • Add support for JAX named scope

TensorFlow specific changes

  • Make keras.random.shuffle XLA compilable

PyTorch specific changes

  • Add support for model.export() and keras.export.ExportArchive with the PyTorch backend, supporting both the TF SavedModel format and the ONNX format.

New Contributors

Full Changelog: keras-team/keras@v3.7.0...v3.8.0

v3.7.0: Keras 3.7.0

Compare Source

API changes

  • Add flash_attention argument to keras.ops.dot_product_attention and to keras.layers.MultiHeadAttention.
  • Add keras.layers.STFTSpectrogram layer (to extract STFT spectrograms from inputs as a preprocessing step) as well as its initializer keras.initializers.STFTInitializer.
  • Add celu, glu, log_sigmoid, hard_tanh, hard_shrink, squareplus activations.
  • Add keras.losses.Circle loss.
  • Add image visualization utilities keras.visualization.draw_bounding_boxes, keras.visualization.draw_segmentation_masks, keras.visualization.plot_image_gallery, keras.visualization.plot_segmentation_mask_gallery.
  • Add double_checkpoint argument to BackupAndRestore to save a fallback checkpoint in case the first checkpoint gets corrupted.
  • Add bounding box preprocessing support to image augmentation layers CenterCrop, RandomFlip, RandomZoom, RandomTranslation, RandomCrop.
  • Add keras.ops.exp2, keras.ops.inner operations.

Performance improvements

  • JAX backend: add native Flash Attention support for GPU (via cuDNN) and TPU (via a Pallas kernel). Flash Attention is now used automatically when the hardware supports it.
  • PyTorch backend: add native Flash Attention support for GPU (via cuDNN). It is currently opt-in.
  • TensorFlow backend: enable more kernel fusion via bias_add.
  • PyTorch backend: add support for Intel XPU devices.

New Contributors

Full Changelog: keras-team/keras@v3.6.0...v3.7.0

v3.6.0: Keras 3.6.0

Compare Source

Highlights
  • New file editor utility: keras.saving.KerasFileEditor. Use it to inspect, diff, modify and resave Keras weights files. See basic workflow here.
  • New keras.utils.Config class for managing experiment config parameters.
BREAKING changes
  • When using keras.utils.get_file, with extract=True or untar=True, the return value will be the path of the extracted directory, rather than the path of the archive.
Other changes and additions
  • Logging is now asynchronous in fit(), evaluate(), predict(). This enables 100% compact stacking of train_step calls on accelerators (e.g. when running small models on TPU).
    • If you are using custom callbacks that rely on on_batch_end, this will disable async logging. You can force it back by adding self.async_safe = True to your callbacks. Note that the TensorBoard callback isn't considered async safe by default. Default callbacks like the progress bar are async safe.
  • Added keras.saving.KerasFileEditor utility to inspect, diff, modify and resave Keras weights file.
  • Added keras.utils.Config class. It behaves like a dictionary, with a few nice features:
    • All entries are accessible and settable as attributes, in addition to dict-style (e.g. config.foo = 2 or config["foo"] are both valid)
    • You can easily serialize it to JSON via config.to_json().
    • You can easily freeze it, preventing future changes, via config.freeze().
  • Added bitwise numpy ops:
    • bitwise_and
    • bitwise_invert
    • bitwise_left_shift
    • bitwise_not
    • bitwise_or
    • bitwise_right_shift
    • bitwise_xor
  • Added math op keras.ops.logdet.
  • Added numpy op keras.ops.trunc.
  • Added keras.ops.dot_product_attention.
  • Added keras.ops.histogram.
  • Allow infinite PyDataset instances to use multithreading.
  • Added argument verbose in keras.saving.ExportArchive.write_out() method for exporting TF SavedModel.
  • Added epsilon argument in keras.ops.normalize.
  • Added Model.get_state_tree() method for retrieving a nested dict mapping variable paths to variable values (either as numpy arrays or backend tensors (default)). This is useful for rolling out custom JAX training loops.
  • Added image augmentation/preprocessing layers keras.layers.AutoContrast, keras.layers.Solarization.
  • Added keras.layers.Pipeline class, to apply a sequence of layers to an input. This class is useful to build a preprocessing pipeline. Compared to a Sequential model, Pipeline features a few important differences:
    • It's not a Model, just a plain layer.
    • When the layers in the pipeline are compatible with tf.data, the pipeline will also remain tf.data compatible, independently of the backend you use.
New Contributors

Full Changelog: keras-team/keras@v3.5.0...v3.6.0

v3.5.0: Keras 3.5.0

Compare Source

What's Changed
  • Add integration with the Hugging Face Hub. You can now save models to Hugging Face Hub directly from keras.Model.save() and load .keras models directly from Hugging Face Hub with keras.saving.load_model().
  • Ensure compatibility with NumPy 2.0.
  • Add keras.optimizers.Lamb optimizer.
  • Improve keras.distribution API support for very large models.
  • Add keras.ops.associative_scan op.
  • Add keras.ops.searchsorted op.
  • Add keras.utils.PyDataset.on_epoch_begin() method.
  • Add data_format argument to keras.layers.ZeroPadding1D layer.
  • Bug fixes and performance improvements.

Full Changelog: keras-team/keras@v3.4.1...v3.5.0

matplotlib/matplotlib (matplotlib)

v3.10.0: REL: v3.10.0

Compare Source

Highlights of this release include:

- Preliminary support for free-threaded CPython 3.13
- Standard getters/setters for axis inversion state
- New more-accessible color cycle
- Dark-mode diverging colormaps
- Exception handling control
- InsetIndicator artist
- FillBetweenPolyCollection
- Fill between 3D lines
- Data in 3D plots can now be dynamically clipped to the axes view limits
- Rotating 3d plots with the mouse
- Increased Figure limits with Agg renderer
- Subfigures no longer provisional
- Subfigures are now added in row-major order

v3.9.4: REL: 3.9.4

Compare Source

This is the fourth bugfix release of the 3.9.x series.

This release contains two bug-fixes:

  • Fix toolbar icons in GTK backend
  • Fix Poly3DCollection initialization with list of lists

v3.9.3: REL: 3.9.3

Compare Source

This is the third bugfix release of the 3.9.x series.

This release contains several bug-fixes and adjustments:

  • Fix axline with extremely small slopes
  • Fix axline with non-linear axis scales
  • Fix minimumSizeHint with Qt backend
  • Fix config directory usage when it's behind a symlink
  • Fix draggable legend when blitting is enabled
  • Fix high CPU utilization in the macosx backend
  • Fix multiple hatch edgecolors passed to contourf
  • Improve compatibility with pytest 8.2.0

v3.9.2: REL: 3.9.2

Compare Source

This is the second bugfix release of the 3.9.x series.

This release contains several bug-fixes and adjustments:

  • Be more resilient to I/O failures when writing font cache
  • Fix nondeterministic behavior with subplot spacing and constrained layout
  • Fix sticky edge tolerance relative to data range
  • Improve formatting of image values in cases of singular norms

Windows wheels now bundle the MSVC runtime DLL statically to avoid inconsistencies with other wheels and random crashes depending on import order.

python/mypy (mypy)

v1.14.1

Compare Source

v1.14.0

Compare Source

v1.13.0

Compare Source

v1.12.1

Compare Source

  • Fix crash when showing partially analyzed type in error message (Ivan Levkivskyi, PR 17961)
  • Fix iteration over union (when self type is involved) (Shantanu, PR 17976)
  • Fix type object with type var default in union context (Jukka Lehtosalo, PR 17991)
  • Revert change to os.path stubs affecting use of os.PathLike[Any] (Shantanu, PR 17995)

v1.12.0

Compare Source

v1.11.2

Compare Source

  • Alternative fix for a union-like literal string (Ivan Levkivskyi, PR 17639)
  • Unwrap TypedDict item types before storing (Ivan Levkivskyi, PR 17640)
numpy/numpy (numpy)

v2.2.1: 2.2.1 (DEC 21, 2024)

Compare Source

NumPy 2.2.1 Release Notes

NumPy 2.2.1 is a patch release following 2.2.0. It fixes bugs found
after the 2.2.0 release and has several maintenance pins to work around
upstream changes.

There was some breakage in downstream projects following the 2.2.0
release due to updates to NumPy typing. Because of problems due to MyPy
defects, we recommend using basedpyright for type checking, it can be
installed from PyPI. The Pylance extension for Visual Studio Code is
also based on Pyright. Problems that persist when using basedpyright
should be reported as issues on the NumPy github site.

This release supports Python 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Simon Altrogge
  • Thomas A Caswell
  • Warren Weckesser
  • Yang Wang +

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​27935: MAINT: Prepare 2.2.x for further development
  • #​27950: TEST: cleanups
  • #​27958: BUG: fix use-after-free error in npy_hashtable.cpp (#​27955)
  • #​27959: BLD: add missing include
  • #​27982: BUG:fix compile error libatomic link test to meson.build
  • #​27990: TYP: Fix falsely rejected value types in ndarray.__setitem__
  • #​27991: MAINT: Don't wrap #include <Python.h> with extern "C"
  • #​27993: BUG: Fix segfault in stringdtype lexsort
  • #​28006: MAINT: random: Tweak module code in mtrand.pyx to fix a Cython...
  • #​28007: BUG: Cython API was missing NPY_UINTP.
  • #​28021: CI: pin scipy-doctest to 1.5.1
  • #​28044: TYP: allow None in operand sequence of nditer

Checksums

MD5
d3032be00b974d44aae687fd78a897b4  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
49863a39471cf191402da96512e52cb6  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
31c912e2fa723b877f2d710c26332927  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
95af4f6b620c76f9ccb8c5693c99737d  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
c1b113ad487a3bece6d7a70e0cf70f17  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e93369ddbb637d9d5a820b2bb79588c4  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b3de0a2c345541d2c9a322df360ca497  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
e3e62b93245d9e37cc03ec3cfaf68118  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
004063642d3c3792a3f5ff0241a3fa0f  numpy-2.2.1-cp310-cp310-win32.whl
462b0704ebfd79120edfe6431adc57f4  numpy-2.2.1-cp310-cp310-win_amd64.whl
a739a2dfbceaa1140e564424b2a57540  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
91731d46f4ce4b04db512400f4e76ccb  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
93f50db664a6986c2ebed3ceb588f7cc  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
8cc0d82b938d71f45a67c74e07ddc7fd  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
fc7b253096fc566bbcbadfdf6b034f1b  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b88238965c708578f2c198d1c6e2cf70  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df20d649bb023f98e487b229f01e9708  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
e23d2bfbdb1bd1b2872c9e6e15f64dca  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
cce4ebb9afc1470db243c2ab4cc6639b  numpy-2.2.1-cp311-cp311-win32.whl
c96783ee8ad6ce1efee94821929a12f5  numpy-2.2.1-cp311-cp311-win_amd64.whl
0b2024655573f96a595c7f5072205e84  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
22483d8935f5dc128393ad671fde7d8e  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
61d38533acaa90fb24657f089d177a6c  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
ecd4289c703356f5b4fd7e440bf94ce8  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
a05208461ea09079ae569414d82a606c  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c66f10580fa26d1d17b2bdda96a5fc5  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60a01c86b1fc55e4ba8f2b41f690703b  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
4bcac2b7f8510b0a6582b7d8661257be  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
7c24a6a3b5c5b2c53c6807bf06c595c5  numpy-2.2.1-cp312-cp312-win32.whl
dc9f3c1eaade4da63e5f87e878e5805e  numpy-2.2.1-cp312-cp312-win_amd64.whl
9aacdedcb2cb3d6a45dfb823148e01cf  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
8a2598b081c8af4ea6f6bbccc8965882  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
e58b8db1a97599ed02a630eb86616bb9  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
be6871a4edd2cd92b147421b9290e047  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
6d3f141f3a8ecd04e1a1f7c1f89a8ca2  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eba9d71e631521bd1d9882f8bfbc01d2  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07f7ea0a7f9f6ce0ba5e016dff2a91e8  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
a015f42afa15be8b87fc64120c245f18  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
881b9b20e68b317850ad7b6306ac1c51  numpy-2.2.1-cp313-cp313-win32.whl
35bd751636dcea0ca0534ad9dee8057a  numpy-2.2.1-cp313-cp313-win_amd64.whl
7057313b668a4a26b5386203ebc040d9  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
02031b405d028714126c26ffc5772f0e  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
73eb35111b027d6771d9a91eb21ad7ef  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
01f9a5eb7ec872d9682bb6a174897b35  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
9bc363d2782931efa2648b42ce358a4c  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b6492f49b50e892a7134baf2dba9f88d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a1c458a98cd9c7ad63f9c301398f4d63  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
38d2bf31247d9005c7a0197aa992cf1d  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30e6acf4391728d0a3a5e3494bd4a2c8  numpy-2.2.1-cp313-cp313t-win32.whl
2100b60306e75288799fca60bd00b84f  numpy-2.2.1-cp313-cp313t-win_amd64.whl
f975551321147c307bbdff4889061b47  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
cefbc2de3aa5ef518ce652fdaab00c96  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7e379c1d0a5be8e548e35fa7abe1d2c0  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3cba151351656a83e4c84c942cf490e7  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
57c5757508a50d1daefa4b689e9701cb  numpy-2.2.1.tar.gz
SHA256
5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95  numpy-2.2.1-cp310-cp310-win32.whl
b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf  numpy-2.2.1-cp310-cp310-win_amd64.whl
40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd  numpy-2.2.1-cp311-cp311-win32.whl
360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16  numpy-2.2.1-cp311-cp311-win_amd64.whl
694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2  numpy-2.2.1-cp312-cp312-win32.whl
ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8  numpy-2.2.1-cp312-cp312-win_amd64.whl
f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e  numpy-2.2.1-cp313-cp313-win32.whl
164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60  numpy-2.2.1-cp313-cp313-win_amd64.whl
4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2  numpy-2.2.1-cp313-cp313t-win32.whl
bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268  numpy-2.2.1-cp313-cp313t-win_amd64.whl
7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918  numpy-2.2.1.tar.gz

v2.2.0: 2.2.0 (Dec 8, 2024)

Compare Source

NumPy 2.2.0 Release Notes

The NumPy 2.2.0 release is quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

  • New functions matvec and vecmat, see below.
  • Many improved annotations.
  • Improved support for the new StringDType.
  • Improved support for free threaded Python
  • Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

  • _add_newdoc_ufunc is now deprecated. ufunc.__doc__ = newdoc
    should be used instead.

    (gh-27735)

Expired deprecations

  • bool(np.array([])) and other empty arrays will now raise an error.
    Use arr.size > 0 instead to check whether an array has no
    elements.

    (gh-27160)

Compatibility notes

  • numpy.cov now properly transposes single-row (2d
    array) design matrices when rowvar=False. Previously, single-row
    design matrices would return a scalar in this scenario, which is not
    correct, so this is a behavior change and an array of the
    appropriate shape will now be returned.

    (gh-27661)

New Features

  • New functions for matrix-vector and vector-matrix products

    Two new generalized ufuncs were defined:

    • numpy.matvec - matrix-vector product, treating the
      arguments as stacks of matrices and column vectors,
      respectively.
    • numpy.vecmat - vector-matrix product, treating the
      arguments as stacks of column vectors and matrices,
      respectively. For complex vectors, the conjugate is taken.

    These add to the existing numpy.matmul as well as to
    numpy.vecdot, which was added in numpy 2.0.

    Note that numpy.matmul never takes a complex
    conjugate, also not when its left input is a vector, while both
    numpy.vecdot and numpy.vecmat do take
    the conjugate for complex vectors on the left-hand side (which are
    taken to be the ones that are transposed, following the physics
    convention).

    (gh-25675)

  • np.complexfloating[T, T] can now also be written as
    np.complexfloating[T]

    (gh-27420)

  • UFuncs now support __dict__ attribute and allow overriding
    __doc__ (either directly or via ufunc.__dict__["__doc__"]).
    __dict__ can be used to also override other properties, such as
    __module__ or __qualname__.

    (gh-27735)

  • The "nbit" type parameter of np.number and its subtypes now
    defaults to typing.Any. This way, type-checkers will infer
    annotations such as x: np.floating as x: np.floating[Any], even
    in strict mode.

    (gh-27736)

Improvements

  • The datetime64 and timedelta64 hashes now correctly match the
    Pythons builtin datetime and timedelta ones. The hashes now
    evaluated equal even for equal values with different time units.

    (gh-14622)

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

  • Improved support for empty memmap. Previously an empty
    memmap would fail unless a non-zero offset was set.
    Now a zero-size memmap is supported even if
    offset=0. To achieve this, if a memmap is mapped to
    an empty file that file is padded with a single byte.

    (gh-27723)

  • A regression has been fixed which allows F2PY users to expose variables
    to Python in modules with only assignments, and also fixes situations
    where multiple modules are present within a single source file.

    (gh-27695)

Performance improvements and changes

  • Improved multithreaded scaling on the free-threaded build when many
    threads simultaneously call the same ufunc operations.

    (gh-27896)

  • NumPy now uses fast-on-failure attribute lookups for protocols. This
    can greatly reduce overheads of function calls or array creation
    especially with custom Python objects. The largest improvements will
    be seen on Python 3.12 or newer.

    (gh-27119)

  • OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX.

  • OpenBLAS on windows is linked without quadmath, simplifying
    licensing

  • Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    (gh-27147)

  • NumPy now indicates hugepages also for large np.zeros allocations
    on linux. Thus should generally improve performance.

    (gh-27808)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

  • The type annotations of numpy.float64 and numpy.complex128 now
    reflect that they are also subtypes of the built-in float and
    complex types, respectively. This update prevents static
    type-checkers from reporting errors in cases such as:

    x: float = numpy.float64(6.28)  # valid
    z: complex = numpy.complex128(-1j)  # valid

    (gh-27334)

  • The repr of arrays large enough to be summarized (i.e., where
    elements are replaced with ...) now includes the shape of the
    array, similar to what already was the case for arrays with zero
    size and non-obvious shape. With this change, the shape is always
    given when it cannot be inferred from the values. Note that while
    written as shape=..., this argument cannot actually be passed in
    to the np.array constructor. If you encounter problems, e.g., due
    to failing doctests, you can use the print option legacy=2.1 to
    get the old behaviour.

    (gh-27482)

  • Calling __array_wrap__ directly on NumPy arrays or scalars now
    does the right thing when return_scalar is passed (Added in NumPy
    2). It is further safe now to call the scalar __array_wrap__ on a
    non-scalar result.

    (gh-27807)

  • Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
    1_1 is end of life.

    (gh-27088)

  • The NEP 50 promotion state settings are now removed. They were always
    meant as temporary means for testing. A warning will be given if the
    environment variable is set to anything but NPY_PROMOTION_STATE=weak
    while _set_promotion_state and _get_promotion_state are removed. In
    case code used _no_nep50_warning, a contextlib.nullcontext could be
    used to replace it when not available.

    (gh-27156)

Checksums

MD5
1b58b9e275e80364cd02dafb3f8daf35  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
7d3773d9b665b2d7cfec0cc0b760e69e  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
8ef666a462d3765ccfd5288f2fdf8e08  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
e4f9e3117075ffe53d7993253c774158  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
fd60e410e5db402a2d0c0cb4dd23281d  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64c083cdbd91eb8670cd72b619f3a039  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c3c75c2299f5163770e2e42f0dee5276  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
f6ab05f787221bbaf8fb4a9778af5467  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
9b04caec124cadf90005ccdb662aad9f  numpy-2.2.0-cp310-cp310-win32.whl
58934f23b6bc71fb1f984b688c1c6136  numpy-2.2.0-cp310-cp310-win_amd64.whl
769e53438154e53ba490fb4f816c083e  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
aa8060c013c04133b63780025eef4451  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
72c10ef28a0ddffe6bf2495954ab82e0  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
946b2510c86eb48e374e6987582c9b46  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
3f5203ae901ddd78cb298582eda07627  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fd14624d40100a5eb0181bf393394448  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7c86d51d89dbc5a6860d65641ea131ef  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
895c6588c74019b94fb3c740b9e9a0f5  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
1468ae1cb59a43991b199cfa6f1e5679  numpy-2.2.0-cp311-cp311-win32.whl
48a3792698a81917320b91a30c0bacf4  numpy-2.2.0-cp311-cp311-win_amd64.whl
db4377351f167d82adc66b16965d11bd  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
3f3978b5e480ed18d55b1799d9a534ff  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
584b4063eb66688b607f7e7bdca58011  numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
dfacf4ee4842d845f5e12f912ebc2055  numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
2f10d9bc44635078a6222ed50c9fd0f2  numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bb69665b4b68b7af82939132972e8261  numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92e9b03039ab737e6799dbd9d057fce2  numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
a4198f53e3906394012ab88dffff4077  numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
f9cb2f38ae8272ab5eb4b209c59be45f  numpy-2.2.0-cp312-cp312-win32.whl
6ffe9e1abf69bb8c4ee2e913b1badfde  numpy-2.2.0-cp312-cp312-win_amd64.whl
330838b6e06481341b35f8d4b6b50bbb  numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
4fb63be6d2b92acfba0c2eaedce82e06  numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
e4086f43f9ce29b5adf939e1b5150f03  numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
ba74e1f7142954127fb2aef544a6b05e  numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
83f51806139d5adc70a2e309d0300ad1  numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bf9af9abb1e30521b3491f0748ba6199  numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4d30c57bd7103b36a4bf7a4a9e25e10d  numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
5b12557dde538f99fd87d1682638a212  numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
ee7689d2ecbcbd7c883f69099bd41892  numpy-2.2.0-cp313-cp313-win32.whl
370a2b14681c6dc4af8596f62d96bb20  numpy-2.2.0-cp313-cp313-win_amd64.whl
e6fd32fb42fd89c7659e799d65c19557  numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
8e9b0579f2e22f38f57399ab18d6e651  numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
71a7ee75208a633a8c36d4ed5b551c33  numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
3d76dfe8c2e26dc42b97fdf086ce1fa5  numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
b70ea00b40fb7d1b5d84868d8a073afb  numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a6bc7090a4e2b1e9deabd0671c691129  numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9789193a075e8d494851fe7955a23af7  numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
8c199d25bd806f737950428232b0dfa5  numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
1f566cfe4880ca30a591a828634da429  numpy-2.2.0-cp313-cp313t-win32.whl
eb9ea9f8fba78e7ae5b1415de1ee5c2c  numpy-2.2.0-cp313-cp313t-win_amd64.whl
9fbe2640c73e4f391019db5af6e854f5  numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fc89986fda7ba19c7c50712f1fc1e342  numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d76c5769a3fdfb9e25b3c1a951bd021f  numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c138d726fee19ec6ba85eaa2ba9a3390  numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
81a58d5fd26fe983162dc3cea2989b7a  numpy-2.2.0.tar.gz
SHA256

Configuration

📅 Schedule: Branch creation - "every weekend" (UTC), Automerge - "0 0 4 ? * MON *" (UTC).

🚦 Automerge: Enabled.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

👻 Immortal: This PR will be recreated if closed unmerged. Get config help if that's undesired.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 2 times, most recently from 1cae833 to baf4867 Compare August 25, 2024 00:28
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 2 times, most recently from 1ae3085 to 57701ca Compare September 3, 2024 16:11
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 3 times, most recently from 6a5c354 to 627b815 Compare September 12, 2024 17:23
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 4 times, most recently from 7dff159 to 3b57aca Compare October 8, 2024 03:44
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 3 times, most recently from c50ab59 to ae8c5da Compare October 20, 2024 04:16
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 2 times, most recently from c34abb9 to 4b29217 Compare October 28, 2024 16:07
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 3 times, most recently from f8cf5fb to 94b0dd1 Compare November 6, 2024 19:16
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 3 times, most recently from 6abfac3 to 39991bd Compare November 26, 2024 18:45
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 2 times, most recently from af2b373 to c5de24d Compare December 1, 2024 13:24
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch from c5de24d to 1139b35 Compare December 8, 2024 15:58
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 4 times, most recently from 9eccf7e to 0a10af9 Compare December 14, 2024 10:10
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 2 times, most recently from c4fba91 to 1ee5956 Compare December 21, 2024 21:21
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch from 1ee5956 to 1406f76 Compare December 30, 2024 17:10
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch 2 times, most recently from cb230e7 to b66e2b6 Compare January 9, 2025 15:33
@renovate renovate bot force-pushed the renovate/python-dependencies-(minor) branch from b66e2b6 to 5aec5d7 Compare January 10, 2025 11:11
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant