Skip to content

Experimentation of deep learning on the subjects of micro-expression spotting and recognition.

Notifications You must be signed in to change notification settings

mg515/lie-detektor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About

Experimentation of micro-expressions spotting and recognition using deep-learning architectures. Also my master's thesis.

Original project

This project first started as a fork of the following repository. Since then it has become its own, but the code backbone is still very much present from the original project, especially the data pre-processing steps. Big thanks to the original authors!

https://github.com/IcedDoggie/Micro-Expression-with-Deep-Learning

Platforms and dependencies

  • Ubuntu 18.04
  • Python 3.6
  • Keras 2.2
  • Theano 1.0.2 / TensorFlow 1.8.0
  • Opencv 3.1.0
  • CUDA 9.0 + CuDNN 5110

Running from scratch

main.py is a main control script to run the codes and there are several parameters to tune the training. The guide is as follows:

List of parameters: --train: determines the training script to run. eg: train.py, train_samm_cross.py --batch_size: the number of data to be run per batch --spatial_epochs: the number of epochs to run for spatial module(vgg module) --temporal_epochs: the number of epochs to run for the LSTM/Recurrent module. --train_id: the name of the training. --dB: the database/databases to be used. --spatial_size: the image resolution --flag: the type of training to be run. can choose whether to perform Spatial Enrichment, Temporal Enrichment or train single module only --objective_flag: choose either objective labels or emotion labels. --tensorboard: choose to use tensorboard. Deprecated.

Type of flags: st - spatial temporal. it's used to train single DB with both vgg-lstm. st4se - spatial temporal four channel spatial enrichment. optical flow + optical strain. st4te - spatial temporal four channel temporal enrichment. train both optical flow and optical strain with pre-trained weights and separately. st5se - flow + strain + grayscale raw image. st5te - flow, strain and grayscale train separately with vgg pre-trained weights.

flags with cde behind indicates that to use composite database evaluation as proposed in MEGC 2018.

Deprecated/not supported flags: s - spatial only. training vgg only. Remember to use --train './train_spatial_only.py' t - temporal only. training the lstm only. nofine - without finetuning. use the pre-trained weights directly

Type of scripts: main.py - control scripts. train.py - training scripts for single db and cde. models.py - deep models utilities.py - various functions for preprocessing and data loading. list_databases.py - scripts to load databases and restructure data. train_samm_cross.py - hde training test_samm_cross.py - hde testing evaluation_matrix.py - for evaluation purposes. labelling.py - load labels for designated db lbptop.py - where we created baselines using lbptop samm_utilities - preprocessing functions for samm only.

Examples for training temporal only: (the spatial size used in paper is 50) Not supported yet. but the code is in train_temporal_only.py

note: for two layers lstm, you can go to models.py and add another line in temporal_module. model.add(LSTM(3000, return_sequences=False))

Example for training spatial only: Not supported yet. but the code is in train_spatial_only.py

Example for single db: python main.py --dB 'CASME2_Optical' --batch_size=1 --spatial_epochs=100 --temporal_epochs=100 --train_id='default_test' --spatial_size=224 --flag='st'

Example for training CDE: python main.py --dB 'CASME2_Optical' 'CASME2_Strain_TIM10' --batch_size=1 --spatial_epochs=100 --temporal_epochs=100 --train_id='default_test' --spatial_size=224 --flag='st4se'

Example for training HDE: python main.py --train './train_samm_cross' --dB 'CASME2_Optical' --batch_size=1 --spatial_epochs=100 --temporal_epochs=100 --train_id='default_test' --spatial_size=224 --flag='st4se'

python main.py --dB './test_samm_cross' 'SAMM_Optical' --batch_size=1 --spatial_epochs=100 --temporal_epochs=100 --train_id='default_test' --spatial_size=224 --flag='st4se'

file structure as follow:

  • asterisk indicates that the folder needs to be created manually /db* (root): /db* /subjects /videos /video_frames.png /Classification* /Result* /db* /CASME2_label_Ver_2.xls , CASME2-ObjectiveClasses.xlsx, SAMM_Micro_FACS_Codes_v2.xlsx

for eg: /CASME2_Optical: /CASME2_Optical /sub01...sub26 /EP... /1...9.png /Classification /Result /CASME2_Optical /CASME2_label_Ver_2.xls , CASME2-ObjectiveClasses.xlsx, SAMM_Micro_FACS_Codes_v2.xlsx

Results

Single DB

F1 : 0.4999726178

Accuracy/WAR: 0.5243902439

UAR : 0.4395928516

CDE

F1 : 0.4107312702

Accuracy/WAR: 0.57

UAR : 0.39

HDE

F1 : 0.3411487289

Accuracy/WAR: 0.4345389507

UAR : 0.3521973582

If you find this work useful, here's the paper and citation

https://arxiv.org/abs/1805.08417

@article{khor2018enriched, title={Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression Recognition}, author={Khor, Huai-Qian and See, John and Phan, Raphael CW and Lin, Weiyao}, journal={arXiv preprint arXiv:1805.08417}, year={2018} }

About

Experimentation of deep learning on the subjects of micro-expression spotting and recognition.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published