forked from open-mmlab/OpenPCDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfusion_lidar.yaml
171 lines (138 loc) · 4.66 KB
/
transfusion_lidar.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
CLASS_NAMES: ['car','truck', 'construction_vehicle', 'bus', 'trailer',
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/nuscenes_dataset.yaml
POINT_CLOUD_RANGE: [-54.0, -54.0, -5.0, 54.0, 54.0, 3.0]
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
DB_INFO_PATH:
- nuscenes_dbinfos_10sweeps_withvelo.pkl
PREPARE: {
filter_by_min_points: [
'car:5','truck:5', 'construction_vehicle:5', 'bus:5', 'trailer:5',
'barrier:5', 'motorcycle:5', 'bicycle:5', 'pedestrian:5', 'traffic_cone:5'
],
}
SAMPLE_GROUPS: [
'car:2','truck:3', 'construction_vehicle:7', 'bus:4', 'trailer:6',
'barrier:2', 'motorcycle:6', 'bicycle:6', 'pedestrian:2', 'traffic_cone:2'
]
NUM_POINT_FEATURES: 5
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: True
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x', 'y']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.9, 1.1]
- NAME: random_world_translation
NOISE_TRANSLATE_STD: [0.5, 0.5, 0.5]
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.075, 0.075, 0.2]
MAX_POINTS_PER_VOXEL: 10
MAX_NUMBER_OF_VOXELS: {
'train': 120000,
'test': 160000
}
MODEL:
NAME: TransFusion
VFE:
NAME: MeanVFE
BACKBONE_3D:
NAME: VoxelResBackBone8x
USE_BIAS: False
MAP_TO_BEV:
NAME: HeightCompression
NUM_BEV_FEATURES: 256
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [5, 5]
LAYER_STRIDES: [1, 2]
NUM_FILTERS: [128, 256]
UPSAMPLE_STRIDES: [1, 2]
NUM_UPSAMPLE_FILTERS: [256, 256]
USE_CONV_FOR_NO_STRIDE: True
DENSE_HEAD:
CLASS_AGNOSTIC: False
NAME: TransFusionHead
USE_BIAS_BEFORE_NORM: False
NUM_PROPOSALS: 200
HIDDEN_CHANNEL: 128
NUM_CLASSES: 10
NUM_HEADS: 8
NMS_KERNEL_SIZE: 3
FFN_CHANNEL: 256
DROPOUT: 0.1
BN_MOMENTUM: 0.1
ACTIVATION: relu
NUM_HM_CONV: 2
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'height', 'dim', 'rot', 'vel']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2},
'height': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
'vel': {'out_channels': 2, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
FEATURE_MAP_STRIDE: 8
DATASET: nuScenes
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
HUNGARIAN_ASSIGNER:
cls_cost: {'gamma': 2.0, 'alpha': 0.25, 'weight': 0.15}
reg_cost: {'weight': 0.25}
iou_cost: {'weight': 0.25}
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'bbox_weight': 0.25,
'hm_weight': 1.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2]
}
LOSS_CLS:
use_sigmoid: True
gamma: 2.0
alpha: 0.25
POST_PROCESSING:
SCORE_THRESH: 0.0
POST_CENTER_RANGE: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0]
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.1
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 4
NUM_EPOCHS: 20
OPTIMIZER: adam_onecycle
LR: 0.001
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
BETAS: [0.9, 0.999]
MOMS: [0.9, 0.8052631]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 35
HOOK:
DisableAugmentationHook:
DISABLE_AUG_LIST: ['gt_sampling']
NUM_LAST_EPOCHS: 5